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Abstract

Recursive Bayesian state estimation is a powerful methodology which is useful for
the integration of data about a process of interest while considering all the sources
of uncertainty which are present in the observations and in modeling inaccuracies.
However, in its general form it is intractable and approximations need to be made in
order to use it in real life applications. The most widely used algorithm to perform
recursive state estimation is the Kalman filter, which assumes that the probability
distributions that it propagates are Gaussian and that the measurement and dy-
namical processes are linear. If these assumptions are satisfied, the Kalman filter is
optimal. In most applications, however, this proves to be an oversimplification, due
to which several techniques have arisen to handle model non-linearity and different
types of distributions.

In this thesis, a novel method for the estimation of distributions with nonlinear
dynamical and measurement models is presented, which uses a reparametrization
of the state space of the distributions in order to exploit the linear properties of
the Kalman filter. This involves the mapping of the distribution into a different
space, and a subsequent approximation as a Gaussian distribution. An analysis
of the adequacy of this transformation is presented, which shows that it is a valid
approach in a number of practically interesting filtering problems.

The proposed approach is applied to the estimation of the state of Earth-orbiting
objects, as it is a challenging estimation scenario which can benefit from the use of
filter. Space situational awareness is increasingly important as near-Earth space
becomes cluttered with satellites and debris. In this work, the sensors that are most
commonly used to track objects in orbit, radars and telescopes, are modeled and a
filter based on the previously discussed ideas is proposed.

Finally, a multi-object estimation filter based on a recent estimation framework
is presented which propagates high amounts of information while maintaining low
computational complexity. This is important as there are many challenges to track-
ing large amounts of orbiting objects in a principled way using ground-based sensors,
and naturally extends the single object filter described above to the multi-sensor,
multi-object case.
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— A riddle, sir? Ask me, sir.
— O, ask me, sir.
— A hard one, sir.
— This is the riddle, Stephen said:

The cock crew,
The sky was blue:
The bells in heaven
Were striking eleven.
’Tis time for this poor soul
To go to heaven.

What is that?

— What, sir?
— Again, sir. We didn’t hear.
Their eyes grew bigger as the lines were repeated. After a silence
Cochrane said:
— What is it, sir? We give it up.
Stephen, his throat itching, answered:
— The fox burying his grandmother under a hollybush.

Ulysses

James Joyce



Chapter 1

Introduction

S
tatistical state estimation is an area of great interest to the engineering com-

munity. With the advent of machines that needed to be controlled based on

their state, a reliable means of estimating said state was required in order to take

appropriate control actions. The scope of state estimation, however, goes far beyond

control applications. Indeed, it is an essential tool in disciplines such as defense, fi-

nance, robotics and many more, as it provides a reliable way of handling uncertainty

in problems where measurements can not be assumed to give perfect information on

the observed system.

The need to estimate the state of increasingly complex systems, coupled with the

rapidly expanding availability of low-cost, powerful computer hardware, has spurred

the development of estimation algorithms of growing sophistication. The advent of

the Kalman filter in the sixties was essential for the success of the Apollo missions, as

it permitted to offset the navigation errors with a continual stream of measurements

from their on-board sensors [30]. More recently, sophisticated particle filtering algo-

rithms have been fundamental for the development of autonomous vehicles whether

in air, on the ground, or underwater [94].

Using probability distributions rather than point estimates gives a considerably

large amount of information which can be used when decisions need to be taken based

on knowledge about the estimated process. Faithfully representing uncertainty in a

diversity of domains, however, is a challenging task due to the variety of dynamical

and measurement models that arise from different application areas. Filtering tech-

niques such as the Kalman filter [47] have proved to be useful in situations where

distributions can be reasonably represented with a Gaussian approximation, and the

modeled systems are simple enough to be represented with linear transformations.

They also benefit from not requiring a large amount of computational resources,
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since they use lean representations for the probability distributions. In more com-

plex systems, however, these approximations can result in undesirable effects such

as biased distributions, over or underconfident estimations of the uncertainty, and

more. More complex filters will naturally require more computational resources to

overcome these problems.

A central subject in this thesis is the combination of linear and nonlinear tech-

niques in order to minimize the additional resource requirements while still faithfully

propagating the distributions. This will usually be carried out by reparametrizing

the distributions in order to apply linear operations to the distributions, circum-

venting the problems associated with nonlinear dynamical or observation models.

Although estimating the state of single targets has been widely studied, a more

general problem is estimating the state of populations of objects, where both the

number of targets and their states are unknown [5]. This problem is not as straight-

forward as running a number of single target filters in parallel, as it is also necessary

to keep in mind the presence of false alarms, where spurious measurements not due

to any object of interest in the population appear in the collected data; missed detec-

tions, as the probability of detecting individuals in the scene may be less than unity;

and data association, as it is necessary to evaluate which measurement correspond

to which object in the scene.

Classical approaches to multiple object estimation are based on heuristic exten-

sions to single target filters, where data association techniques based on statistical

distance are used to hypothesize possible assignments from measurements to tracks,

misdetections, or false alarms. Although these approaches are widely used, the

heuristics that are used for track management introduce the need for parameter

tuning and make it impossible to verify the validity of the filters, e.g. by providing

convergence results. A more recent formulation for multiple object state estimation,

called finite set statistics [58], is based on the concept of propagating probability

distributions based on random sets rather than on random vectors, which has pro-

duced principled filters without the previously mentioned limitations of the classical

approach. Due to the set representation, however, track identity is not directly

propagated between time steps.

A new approach for estimating stochastic populations [37] has been recently con-

ceived which attempts to combine the best aspects of both classical approaches,

where track identity is preserved, and finite set statistics, which provides a prin-

cipled, extensible framework. Based on the concept of distinguishability, this very

recent approach has already produced filters which outperform their state-of-the-art

equivalents, especially in scenarios with particularly low probabilities of detection,
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while remaining fully probabilistic in the sense that they do not require the use of

heuristics at any stage of the filtering process.

Using principled multi-object state estimation filters has the advantage that

since they represent multi-object probability distributions, it is simple to manipulate

them in order to create more complex estimation systems. For instance, sensor

calibration or localization can be achieved by modeling the joint sensor-population

distribution as a hierarchical point process. Multi-sensor fusion can be done through

successive updates on the probability distribution using different sensors, and target

classification can be done by using multi-model state representations.

This work is principally motivated by the increasing need to have a clear picture

of near-Earth space, as the relevance of space-based infrastructure is essential for

areas like communications, localization, and defense, among others, and their safety

is endangered by the growing amounts of debris residing in orbit. Orbiting objects

are typically observed using ground-based sensors such as radars and telescopes, and

catalogs of their state is maintained by several agencies. The main available catalogs,

however, do not include measures of uncertainty in their estimates, which is essential

to evaluating important quantities such as the risk of collision for important assets,

or the imprecision in measurements obtained from satellite-mounted sensors that is

induced by the uncertainty in their position.

The final goal of this thesis is to present a method which provides a fully proba-

bilistic view of near-Earth space, based on noisy measurements from ground based

sensors, and which is able to adapt to observing previously undetected objects or

sensor clutter. In order to do this, several aspects of estimation for orbital objects

will need to be studied. A way to estimate the probability distribution of newly

measured objects based on observations that do not include their full state will need

to be proposed – telescopes, for instance, cannot measure the distance to an object

from Earth and thus cannot resolve its full position. Also, it will be necessary to

analyze the dynamics of orbiting objects and how they can be cast in a probabilis-

tic framework, alongside modeling ground-based sensors and the uncertainty that

they introduce. Finally, a suitable multi-object estimation framework will need to

be implemented in order to manage different tracks and give individual informa-

tion about observed objects in the presence of data association ambiguity, missed

detections and false alarms.

In this context, several important challenges arise. The dynamics of orbiting

objects are known with a high degree of accuracy, meaning that there is very low

uncertainty in the dynamical models, complicating the use of Monte Carlo methods

to propagate distributions. At the same time, their non-linearity makes it challeng-
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ing to use Kalman filter-like algorithms for estimation. In this work, a method which

attempts to use the best of both filtering paradigms will be proposed to tackle this

problem. In terms of the estimation of populations, it is desirable to have an efficient

method which scales well with the number of targets, as the amount of objects to

track in orbit is very large.

In this thesis, the previously mentioned filtering principles are illustrated in this

domain, and it is shown how they can be used to robustly and efficiently estimate the

state of orbiting objects alongside their uncertainty, and maintain a catalog which

takes into account the shortcomings of the sensors and the incomplete knowledge of

object dynamics.

This manuscript is divided as follows. In Chapter 2, the background of Bayesian

estimation and space situational awareness are discussed. Chapter 3 describes a

single-object filter for estimating the state of objects in orbit, and Chapter 4 extends

this to the multi-object case using a novel filtering method. Chapter 5 concludes

the thesis. Appendix A describes statistical tests for multivariate normality, and

Appendix ?? provides an application to estimation from video data which motivates

the reparametrization approach presented in this thesis.
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1.1 Objectives

1.1 Objectives

The objectives of this thesis are the following:

• Present the Bayesian framework for state estimation, alongside commonly used

filters that are derived from it, for single and multiple objects.

• Introduce a method to exploit linear filtering techniques in non-linear problems

by reparametrizing the state distribution into the sensor space.

• Show a new algorithm for estimating the state of objects in orbit, from data

obtained through radio-frequency and electro-optical sensors.

• Extend the previous algorithm to track multiple objects in orbit using a novel

multiple object estimation framework.

1.2 Contributions

During the course of this PhD project, the following publications have been produced

with contributions from the author, with a note about the level of involvement in

the particular work:

• J. Franco, J. Houssineau, D. E. Clark, and C. Rickman. Simultaneous tracking

of multiple particles and sensor position estimation in fluorescence microscopy

images. In Control, Automation and Information Sciences (ICCAIS), 2013

International Conference on, pages 122–127. IEEE, 2013 — Principal author.

• J. Franco, E. D. Delande, C. Frueh, J. Houssineau, and D. E. Clark. A spherical

co-ordinate space parameterisation for orbit estimation. In Proceedings of the

2016 IEEE Aerospace Conference, pages 1–12, 2016 — Principal author, this

is the basis for Chapter 3.

• J. Franco, E. D. Delande, C. Frueh, J. Joussineau, and D. Clark. Probabilistic

orbit determination using a sensor co-ordinate parametrization. Journal of

Guidance, Control and Dynamics, —(—), Under review — Principal author,

expands upon the previous publication.

• C. S. Lee, J. Franco, J. Houssineau, and D. E. Clark. Accelerating the single

cluster PHD filter with a GPU implementation. In Control, Automation and

Information Sciences (ICCAIS), 2014 International Conference on, pages 53–

58. IEEE, Dec 2014 — Experiments.
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1.2 Contributions

• I. Schlangen, J. Franco, J. Houssineau, W. T. E. Pitkeathly, D. E. Clark,

I. Smal, and C. Rickman. Marker-less stage drift correction in super-resolution

microscopy using the single-cluster PHD filter. IEEE Journal of Selected Top-

ics in Signal Processing, 10(1):193–202, 2016 — Concept, writing, part of the

experiments.

• J. Houssineau, D. E. Clark, S. Ivekovic, C. S. Lee, and J. Franco. A unified ap-

proach for multi-object triangulation, tracking and camera calibration. IEEE

Transactions on Signal Processing, 64(11):2934–2948, 2016 — Experiments,

validation of the distributions. This publication inspired the development of

the methods shown in Chapter 3.

• O. Hagen, J. Houssineau, I. Schlangen, E. D. Delande, J. Franco, and D. E.

Clark. Joint estimation of telescope drift and space object tracking. In

Aerospace Conference, 2016 IEEE, pages 1–10. IEEE, 2016 — Support with

the basic algorithm that was used in the application.

• C. Simpson, A. Hunter, S. Vorgul, E. D. Delande, J. Franco, and D. E. Clark.

Likelihood modelling of the space geodesy facility laser ranging sensor for

Bayesian filtering. In Sensor Signal Processing for Defence (SSPD), 2016,

pages 1–5. IEEE, 2016 — Concept, writing, supervision of the students. Case

study in Chapter 2.

• A. Pak, J. Correa, M. Adams, D. E. Clark, E. D. Delande, J. Houssineau,

J. Franco, and C. Frueh. Joint target detection and tracking filter for Chilbolton

advanced meteorological radar data processing. In Advanced Maui Optical and

Space Surveillance Technologies Conference, 2016 — Support with basic con-

cepts.

• E. D. Delande, J. Houssineau, J. Franco, C. Frueh, and D. E. Clark. A new

multi-target tracking algorithm for a large number of orbiting objects. In

Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San An-

tonio, TX, 2017 — Implementation, integration of SSA models, experiments,

writing. Forms the basis for Chapter 4.

• E. D. Delande, C. Frueh, J. Franco, J. Houssineau, and D. E. Clark. A novel

multi-object filtering approach for space situational awareness. Journal of

Guidance, Control, and Dynamics, 2017. submitted — Integration of SSA

models, experiments.
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1.2 Contributions

The research project which the author was part of involved work from many

collaborators. The particular contributions of the author were the following:

Chapter 2 Performed literature review. Supervised students in the development

of range-tracking filter for Herstmonceux laser ranging facility.

Chapter 3 Developed probabilistic initial orbit determination method for radar

and optical sensors. Collaborated in the creation of a radar tracking filter and

developed the optical filter. Validated the distributions using Henze-Zirkler

tests. Performed experiments and wrote two articles based on the work in this

chapter.

Chapter 4 Implementation and integration of SSA models into the HISP filter.

Experiments and validation.

Appendix A Literature review, implementation of test for different scenarios.

7



Chapter 2

Background

T
his chapter covers probabilistic state estimation from a Bayesian point of view;

that is, the integration of observation data from a process of interest with

models about how this data is generated and how the process behaves in order to

produce probability distributions that describe its state. This is framed in the con-

text of Space Situational Awareness (SSA), as it will be the main application focus

for this thesis. First, an overview of techniques used for estimation in space situa-

tional awareness will be presented, followed by a detailed description of the general

Bayesian filtering paradigm. After this, commonly used filters for the estimation of

the state of single objects will be presented, after which a review of state estimation

methods for populations of objects where not only the number of objects in the pop-

ulation must be estimated, but also their individual states, will be made. Finally,

methods which extend these estimation methods in order to additionally estimate

parameters of the observed process will be described. This will give an overview of

the state of the art of state estimation, which will set the stage for the contributions

of the thesis in later chapters.

2.1 Estimation in space situational awareness

Space infrastructure plays an increasingly important part in modern communica-

tions, reconnaissance, and geolocation, among other applications, and as more na-

tions increase their stake in the exploitation of near-Earth space the number of

artificial satellite launches increases year after year. Each of these launches gener-

ates debris which endangers current and future missions, and in spite of mitigation

efforts this remains a very relevant problem. Safeguarding orbital assets, then,

involves knowing their position and velocity with a high degree of accuracy and pre-
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2.1 Estimation in space situational awareness

cision, and also any potential collision risks that could be posed by other satellites

or by space debris [49].

Using noisy data to estimate the state of objects in orbit can be accomplished in

several ways. For instance, when a fixed amount of data is available to estimate the

parameters of an object, nonlinear curve fitting algorithms can be used [32]. Ap-

plications for this include the estimation of orbital parameters in remote planetary

sensing applications [92]. In this thesis, the recursive Bayesian estimation paradigm

is employed to estimate the state of orbiting objects as it enables the integration

of data as it comes, giving instantaneous information about the uncertainty of the

orbital estimate. This is particularly valuable when unknown objects appear in

orbit, or there are sudden perturbations which change the state of known objects.

Additionally, it enables the implementation of tractable multi-object estimation al-

gorithms as data association only needs to be performed from a time step to the

next rather than over all available data in past time instants.

Since the very beginning, the Kalman filter and its extensions have been in-

valuable in the domain of space situational awareness. From its use to plan and

execute the Apollo moon missions [30] to global navigation systems such as GPS

[31], passing by orbit determination and re-entry estimation methods [43], it has

been indispensable in most developments which have enabled humankind to explore

space.

Although techniques to propagate orbits from a known initial state have been

widely studied, the problem of estimating the collision risk of two objects naturally

benefits from knowing what the uncertainty of its position and velocity are. A prob-

lem with using only deterministic propagation to predict the position of an object

is that the object may drift away from its initially estimated orbit due to pertur-

bations such as space weather effects. Additionally, if an object is only observed

once, unique orbit determination is not possible as only a subset of the full state is

observable [95]. With this in mind, filtering algorithms such as the Kalman filter

and its extensions attempt to propagate probability distributions rather than only a

point estimate, and to use incoming measurements to decrease the uncertainty of

the estimated orbit [8].

The most commonly used sensors used for space situational awareness are radar

and optical sensors [76], although other sensors can be used such as laser ranging

systems [86]. Radars are commonly used to track objects in space, and combined

measurements typically give information about the azimuth and elevation of the

object, its distance to the station, and the rate of change of this distance when

Doppler information is available. Combined optical measurements are obtained from
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2.1 Estimation in space situational awareness

telescopes, and give azimuth, elevation, and their rates of change. While telescopes

can see objects that are very far away, they rely on passive illumination by the sun

and clear weather conditions; whereas although radars have the advantage of using

active sensing, it is costly to see objects that are far since radar energy returns are

inversely proportional to the fourth power of the distance [76].

When the initial state of an object that is being observed is not known, it can

be recovered deterministically if three measurements from the same target are avail-

able using Gauss’ method, double R iteration [21] or Gooding’s method [27]. This is

prone to errors due to measurement noise, however, and requires a reliable method

to determine that the measurements come from the same target. A recent develop-

ment in orbit determination has produced the admissible regions approach, which

offers constraints on the possible states of a target given that a single measurement

is available [95]. In the Bayesian context, it is possible to use these energy con-

straints to generate a prior distribution based on a single measurement. This will

be elaborated in chapter 3.

A limitation of the Kalman filter and its nonlinear extensions is that it relies

on linearization of the orbital dynamics and observation models to produce its esti-

mates, which will fail if the estimate uncertainty is too large causing the linearization

to lose validity [45]. This is particularly the case for the distributions of objects that

have been observed only once, as the range of values, and thus the uncertainty, of

the unobserved parameters is very large [95].

Classical approaches to solve the statistical orbit determination problem rely on

the Extended Kalman Filter [8] and its variants, which can only represent Gaussian

distributions, and thus the banana-shaped uncertainties that are found in orbital

estimation problems cannot be represented by it. This problem has been recognized

by the community, and solutions based on Gaussian sum filters have been proposed

instead, which are more flexible in the representation of the distribution [93, 96].

Another issue is that the measurement models are highly nonlinear so important

information can be lost through their linearization; and as it was shown in [45],

it gives biased estimates for range-bearing style problems as is the case in orbit

determination. For this reason, the Unscented Kalman Filter [45] has been explored

in orbital estimation situations. It relies on the propagation of the first two moments

of the filtering distribution, which are however insufficient to represent arbitrary

priors.

The bootstrap filter [29] is commonly used in problems where the dynamical or

measurement models are nonlinear, and allows for modeling of arbitrarily shaped dis-

tributions. The performance of particle filtering with respect to classical approaches
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2.2 Bayesian filtering

has been demonstrated in [60], and hybrid approaches which also use a UKF when

measurements are available have also been explored to reduce the uncertainty when

measurements are acquired [70]. Another way of representing uncertainty, based on

generalized polynomial chaos, is able to model parametric uncertainty in addition

to perturbations and uncertain initial conditions [51].

Several approaches have been used in the past to track multiple objects in space.

The MHT [87], Labeled Multi-Bernoulli [44] or CPHD [44] filters are examples of

this. Although these take into account the problems that arise in multiple object

estimation, they also suffer from several shortcomings – random finite set approaches

discard track identities, or try to propagate them in inefficient ways. Classical

approaches are heuristic based and it is not possible to theoretically verify that their

population management techniques are correct. The advantages and shortcomings of

these methods will be described in section 2.5. The stochastic populations framework

[14, 37] has been recently proposed to both maintain track identities while remaining

a theoretically principled method, and it will be described in detail later in the

chapter.

The remainder of this chapter describes the recursive Bayesian state estimation

framework, which will be exploited in subsequent chapters to derive single- and

multi-object filters for space situational awareness.

2.2 Bayesian filtering

Filtering is the process through which the probabilistic estimate, or filtering distri-

bution, of the object state is maintained as time passes, by using the dynamical

model of the object; and corrected when data is acquired, by using a model of how

the sensor observes the object [5]. These models also take into account the uncer-

tainties induced by the sources mentioned above. If these models are available, then

the filtering distribution can be obtained by applying the following recursion:

pk|k−1(x|z1:k−1) =

∫
fk(x|x′)pk−1(x′|z1:k−1) dx′ (2.1)

pk(x|z1:k) =
gk(zk|x)pk|k−1(x|z1:k−1)∫
gk(zk|x′)pk|k−1(x′|z1:k−1) dx′

, (2.2)

where pk|k−1(x|z1:k−1) is the predicted density at time k; fk(x|x′) is the nonlinear

state transition kernel of the system, i.e., the probability of the target being in state

x given previous state x′; pk(x|z1:k) is the data-corrected or updated density up
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2.2 Bayesian filtering

to time k; and gk(zk|x) is the measurement model, or the likelihood of observing

measurement zk conditioned on state x. The explicit conditioning on the past mea-

surements will be dropped from here onwards for reasons of succinctness. Equation

(2.1) is called the Chapman-Kolmogorov equation, and uses the knowledge about

how the process evolves in time to predict the filtering distribution before receiving

any additional data. Equation (2.2) is an application of Bayes’ rule, and uses the

measurement model to integrate the information of any acquired measurements into

the filtering distribution. It is clear that further to this, a prior distribution p0(x)

is required in order to recursively compute the subsequent distributions. This dis-

tribution represents any available knowledge about the object state before starting

the filtering process, and proper modeling of this initial distribution is essential to

obtaining accurate results. All together, this recursion is called the Bayes filter [80],

and does not constrain the form of the estimated distributions or the used models.

The evolution of the process of interest through time is considered through the

dynamical model. The function fk(x|x′) summarizes the knowledge of how the

state of the target evolves through time, and models also any uncertainty on this

evolution. Dynamical models range from Brownian motion, where the only source

of movement is random; passing by constant velocity or constant acceleration mod-

els, where it is assumed that these vector quantities only vary due to unmodeled

sources; to sophisticated models for maneuvering targets. A survey of commonly

used dynamical models can be found in [75], emphasizing those used for maneuver-

ing targets where it is critical to properly model their motion. In certain cases, the

dynamics of the objects that are modeled are very well known. One such case is that

of orbital objects, in which case the dynamical models can be borrowed from the

physical models describing their motion [7]. This case is studied further in Chapter

3.

The measurement model gk(zk|x) describes the type of measurements that are

acquired by the sensor, conditioned on the object state and possibly other measured

properties such as its attitude or reflectivity, and the sensor’s own measurement

capabilities at the time of the observation. Although the measurements will be used

to refine the estimate of the state of the object, it is possible that the sensor can

only observe part of the state of interest such that it is not possible to fully resolve

it using a single measurement. Additionally, the measurement model takes into

account its noise characteristics, in order to incorporate this source of uncertainty

into the filtering process. Measurement models can be anything from a fully observed

process, to complex non-linear interactions between the observed process and the

sensor. In further chapters, measurement models for different filtering problems are
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2.3 Single object state estimation

presented, including a way to model the sensor induced uncertainty.

2.3 Single object state estimation

Although (2.1) and (2.2) describe the statistically optimal filter for arbitrary forms of

the filtering distributions, in practice computing the integrals becomes intractable

unless the functional forms of the probability distributions is constrained. These

equations do not have closed form solutions in most cases, a notable exception being

that of Gaussian functions. In this section, the most commonly used approaches to

tractably use the Bayes filter are presented, starting with the closed form solutions in

the Kalman filter family of methods, followed by numerical integration approaches.

The purpose of showing this variety of single object state estimation filters is

that not only do they provide the essential building blocks to multiple object state

estimation algorithms, but also that according to the application, some filters will

be more suitable than others. In further chapters, new filters are derived that are

based on the ones described below, which makes it important to introduce them

here.

2.3.1 Closed form solutions

The Kalman filter is one of the most widely used solutions to the tractable imple-

mentation of the Bayes filter [47]. It propagates the mean and covariance of the

distribution of the observed process under certain conditions; namely, that the mea-

surement and dynamical models are linear and their respective random terms are

zero mean uncorrelated Gaussian random variables:

fk(xk|xk−1) = Fxk−1 + εt, εt ∼ N (·; 0, Qk); (2.3)

gk(zk|xk) = Hxk + νk, νk ∼ N (·; 0, Rk), (2.4)

where

N (x;µ,Σ) = (2π)−
d
2 |Σ|−

1
2 e−

1
2

(x−µ)′Σ−1(x−µ) (2.5)

is a multivariate Gaussian distribution with mean µ, covariance Σ, evaluated at

d-dimensional point x; and F and H are the matrices dictating the linear trans-

formations of the dynamical and measurement processes, respectively. If this is the

case, the Kalman filter uses the prior mean and covariance of the process µk−1 and
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2.3 Single object state estimation

Pk−1 to obtain in first instance the predicted mean and covariance

µk|k−1 = Fµk−1 (2.6)

Pk|k−1 = FPk−1F
′ +Qk. (2.7)

From here, when a measurement is obtained, it becomes possible to compute the

innovation mean zk − Hµk|k−1 and its covariance S = HPk|k−1H
′ + Rk, which

describe the distribution of the difference between the observed measurement with

respect to the expected measurement. This permits the computation of the and the

Kalman gain K = Pk|k−1H
′S−1, which minimizes the variance of the estimator of

the updated mean and covariance

µk = µk|k−1 +K(zk −Hµk|k−1) (2.8)

Pk = (I −KH)Pk|k−1. (2.9)

Kalman’s original article on this filter tackles the problem from a signal processing

point of view, but it is also interesting to consider the problem from a Bayesian

statistics point of view, as analyzed by Ho and Lee in [36]. In here, it is shown that

if the prior distribution is Gaussian, not only can these statistics be obtained but

the complete form of the distribution can be analytically determined to be Gaussian

with the parameters shown above. This is because under a Gaussian likelihood,

Gaussian functions are conjugate priors with themselves [69].

The main advantages of the Kalman filter are that it is not only robust and

principled, but also readily implementable and computationally efficient. However,

the requirement that the measurement and dynamical models be linear turns out

to be too restrictive for a wide class of problems, which turn out to include space

situational awareness, as both the dynamical and measurement models are non-

linear [8].

The attractive properties of the Kalman filter, coupled with the urgent need to

filter nonlinear systems that was spurred by the need to localize the Apollo spacecraft

as it made its way to the moon [30] led to the development of the Extended Kalman

filter (EKF) (See e.g. [5]). Rather than requiring linear transformations represented

by matrices, general dynamical and measurement models are used:

fk(xk|xk−1) = f(xk−1) + εt, εt ∼ N (·; 0, Qk); (2.10)

gk(zk|xk) = h(xk) + νk, νk ∼ N (·; 0, Rk). (2.11)
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2.3 Single object state estimation

Here, the functions f and g are required to be differentiable as the extended Kalman

filter relies on the linearization of these models obtained from their first-order Taylor

expansions. It can be noted here that more general functions of the form f(xk−1, εt)

and h(xk,νk) can be used, but only the simpler case with additive noise is illustrated

here for simplicity. The function f is linearized with respect to its parameter to

obtain the matrix

Fk =
∂f

∂xk−1

∣∣∣∣
xk−1=µk−1

. (2.12)

The mean of the predicted distribution is computed by applying the full state tran-

sition function to the prior mean, but the covariance is obtained using the linearized

function:

µk|k−1 = f(µk−1) (2.13)

Pk|k−1 = FkPk−1F
′
k +Qk. (2.14)

Having obtained this, the measurement model is also linearized around the predicted

mean to obtain

Hk =
∂g

∂xk

∣∣∣∣
xk=µk|k−1

. (2.15)

Similarly, the innovation zk−h(µk|k−1) is computed with the full nonlinear function,

while the innovation covariance and Kalman gain are calculated with the linear

approximation: Sk = HkPk|k−1H
′
k +Rk and Kk = Pk|k−1H

′
kS
−1
k . This is sufficient to

obtain the updated mean and covariance of the distribution:

µk = µk|k−1 +K(zk − g(µk|k−1)) (2.16)

Pk = (I −KH)Pk|k−1. (2.17)

It must be stressed that while under the assumptions outlined above the Kalman

filter yields distributions that are statistically optimal, the linearization in the EKF

causes the resulting distributions to be only approximate. The degree to which

the models can be linearized will determine how accurate the obtained filtering

distributions will be.

A more recent development in Kalman-like filters is the Unscented Kalman Filter

(UKF) [46]. The key idea of this method is that rather than approximating the

functions that compose the dynamical and measurement models, it is simpler and

more effective to approximate the distribution using a fixed number of samples. The

filter proceeds by decomposing the prior into a set of sigma points and associated
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2.3 Single object state estimation

weights, in such a way that the resulting empirical distribution will have the same

statistics as the original distribution; then propagating these points through the full

nonlinear functions; and finally using the resulting points to compute the statistics

required to obtain the filtering distribution. This approach differs from particle

filtering techniques in that the set of sigma points is chosen in a deterministic way,

and the weights do not indicate probabilities.

To use the prior to obtain a set of sigma points, the state must be extended to

include the noise terms in the transition kernel fk(xk|xk−1) = f(xk−1, εk), by ex-

tending the mean and covariance of the distribution with those of εk. A common way

to obtain these points is to use the Cholesky decomposition of its covariance matrix

to obtain a set of points which have the same statistics µk−1 and Pk−1. If the i-th

column of the Cholesky decomposition of Pk−1 is denoted σi, it is straightforward

to verify that the distribution of 2N + 1 points

x0
k−1 = µk−1

x
(i)
k−1 = µk−1 + σi, i = 1, 2, . . . , N

x
(N+i)
k−1 = µk−1 − σi, i = 1, 2, . . . , N,

(2.18)

where N is the dimension of the extended state, has the desired mean and covariance.

The predicted mean and covariance are then obtained by propagating these sigma

points through the transition kernel and computing the statistics:

µk|k−1 =
1

2N + 1

2N+1∑
i=0

f(x
(i)
k−1), (2.19)

Pk|k−1 =
1

2N + 1

2N∑
i=0

(f(x
(i)
k−1)− µk|k−1)(f(x

(i)
k−1 − µk|k−1)′, (2.20)

where f acts on the extended state vector instead of the original state vector and the

random term. To obtain the updated term, these are extended with the observation

noise term νk in the measurement model gk(zk|xk) = h(xk,νk). Following the

process outlined above, the extended covariance is again decomposed to obtain the

2M + 1 predicted sigma points x
(i)
k+1|k and the predicted observation ẑk is obtained:

ẑk =
1

2M + 1

2M∑
i=0

h(x
(i)
k+1|k), (2.21)

with M the dimension of the extended state space. The expected observation is

then used alongside the sigma points to obtain the innovation covariance S, and the
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state-observation cross-correlation Pxz:

S =
1

2M + 1

2M∑
i=0

(h(x
(i)
k+1|k)− ẑk) (2.22)

Pxz =
1

2M + 1

2M∑
i=0

(x
(i)
k+1|k − µk|k−1)(h(x

(i)
k+1|k)− ẑk)

′. (2.23)

From this, the Kalman gain can be computed as

K = PkzS
−1, (2.24)

from which the updated mean and covariance can be obtained:

µk = µk|k−1 +K(z − ẑk) (2.25)

Pk = Pk|k−1 −KSK ′. (2.26)

An advantage of using filters in this family have to do with the fact that since

the full dynamical and measurement models are used rather than approximations,

certain biases can be eliminated. In particular, linearizing the commonly used trans-

formation between polar and Cartesian co-ordinates has been shown to yield biased

results in the EKF, which does not happen in the UKF [45]. Additionally, deriving

and programming the Jacobian matrices required in the EKF is not necessary, which

is an intensive and error-prone process.

If priors which can be reasonably represented with a mean and a covariance

can be used, the UKF is an attractive method as it is simple and computationally

efficient. However, it can be difficult to apply this method if the distributions that

are used cannot be represented like this, as is the case in the priors presented in

chapter 3.

Since the methods shown above represent distributions through a mean and a

covariance, they cannot appropriately propagate multimodal distributions. Even if

a distribution is unimodal, the performance of the filter will suffer when the shape

of the distribution does not resemble that of a Gaussian. In order to solve these

problems, the Gaussian sum filter was proposed, which is based on the observation

that it is possible to use Gaussian mixtures to approximate a wide range of distri-

butions [1, 88]. Gaussian sum filters represent the filtering distribution as a sum of
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weighted Gaussian distributions:

pk(x|z1:k) =
N∑
i=1

w
(i)
k N (x;µ

(i)
k , P

(i)
k ). (2.27)

Prediction is applied to each individual Gaussian term in the same way as the

previously mentioned filters, and weights are left unchanged. For update, the update

operation of the above-described filters is also applied to each individual Gaussian,

after which the weights are updated based on the individual innovation and its

covariance:

w
(i)
k+1 =

w
(i)
k N (z − h(µ

(i)
k|k+1); 0, S

(i)
k )∑N

j=1 w
(j)
k N (z − h(µ

(j)
k|k+1); 0, S

(j)
k )

. (2.28)

A big advantage of closed-form solutions is that the parameters of the posterior

distribution can be found even if the mismatch between the prior distribution and

the measurement likelihood always exists. This is in contrast to numerical methods,

where Gaussians are essentially truncated after a certain distance from the mean,

such that the product of two Gaussians can numerically be zero even if it is not the

case theoretically. Unfortunately, this comes with the imprecision that is added by

the involved approximations.

2.3.2 Numerical integration

In cases where the state space of the variable to estimate is sufficiently small, the

integrals in (2.1) and (2.2) can be solved numerically. If the state space is discrete,

these can be calculated for each possible state, and the filter is called the discrete

Bayes filter. If it is hybrid or continuous, it is first discretized into bins, and a

representative point in each of these bins is used for prediction and update. This

method is called the histogram filter [94].

Since it is common for some regions of the state space to concentrate lower cu-

mulative probability than others, the state space can be decomposed unevenly to

represent the regions with higher likelihood with greater granularity, while using a

more compact representation for regions that don’t accumulate a lot of probability.

For this, methods such as quad- or oct-trees can be used [94]. Another interesting

method is that of optimal stochastic quantization, which learns a discrete represen-

tation of the state space which has higher resolution in the higher likelihood regions

[4].

The main disadvantage of solving Bayes’ filter numerically is that as the volume

and dimension of the state space increases, the problem becomes increasingly un-
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tractable from the computational point of view. This issue, usually called the curse

of dimensionality, has motivated the development of Monte Carlo methods which

are more tractable in high-dimensional state spaces.

2.3.3 Monte Carlo methods

An alternative to parametric filters such as the ones described above is the family

of Monte Carlo methods. These algorithms rely on solving the intractable integrals

which determine the predicted and updated state distributions using Monte Carlo

integration, which consists on making use of a weighted sample representation of the

probability distribution of the object state, and then using the weighted samples to

approximate the continuous integral as a discrete sum. This is useful since if it is

possible to draw N samples {x(i)
k }Ni=1 from a distribution of interest, it is possible to

estimate expected values using the following approximation [18]:

Epk(f) =

∫
f(x)pk(x)dx ≈ 1

N

N∑
i=1

f(x
(i)
k ), (2.29)

where Epk(f) denotes the expected value of function f under probability distribution

pk.

Representing a distribution with samples is not only useful to compute expected

values (from where the statistics of the distribution can be obtained), but also to

get an idea of the shape of the distribution, as areas with higher concentration of

particles integrate to higher probability. Equation (2.29) assumes that it is possible

to obtain independent, identically distributed (IID) samples from the probability

distribution pk. Generally, however, obtaining samples from arbitrary distributions

is not straightforward. The importance sampling framework is commonly used to

overcome this difficulty. It is based on the principle that the above expectation is

equivalent to

Epk(f) =

∫
pk(x)

π(x)
f(x)π(x)dx, (2.30)

where π, called the importance sampling function, is a probability distribution which

can be easily sampled from, with support overlapping that of pk. This suggests that

the expectation can be computed by sampling N particles from π and then using
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equation (2.29) to obtain

Epk(f) ≈
N∑
i=1

w
(i)
k f(x

(i)
k ), with (2.31)

w
(i)
k =

pk(x
(i)
k )/π(x

(i)
k )∑N

j=1 pk(x
(j)
k )/π(x

(j)
k )

. (2.32)

An alternative way of seeing this is that the probability distribution is being

approximated with a set of weighted samples {x(i)
k , w

(i)
k }Ni=1, with higher weights rep-

resenting higher likelihood for each particular sample. As the importance sampling

function is used to obtain samples to represent the updated distribution, the filter

efficiency will improve if these two distributions are close. If it is possible to di-

rectly sample from the updated distribution (2.2), e.g., if pk−1|k−1(x) is Gaussian

and gk(zk|x) and f(x|x′) are linear and Gaussian and methods such as the ones

described in section 2.3.1 are used, then the proposal is said to be optimal as it

minimizes the variance of the importance weights [18].

To maintain a representative sample of the distribution, resampling is usually

performed which replaces low weighted particles by particles in areas of higher like-

lihood, thus increasing the resolution of the distribution in the regions where more

precision is required. This is done by replacing the weighted sample {x̃(i)
k , w

(i)
k }Ni=1

by an equally weighted sample {x(i)
k ,

1
N
}Ni=1, with probability Pr(x

(i)
k = x̃

(j)
k ) = w

(j)
k .

These two sets of particles approximate the same original distribution.

In order to obtain samples from the distribution, methods such as those in

the Markov chain Monte Carlo (MCMC) family can be used. For example, the

Metropolis-Hastings algorithm requires only a conditional proposal distribution q

and a function that is proportional to the probability distribution to sample from,

f(x) ∝ p(x) [34]. The fact that the probability distribution only needs to be known

up to a constant of proportionality is useful in this case as it means that the denomi-

nator in (2.2) does not need to be computed, for instance. The method approximates

the distribution p(·) by starting at an initial random sample x0 and iteratively sam-

pling from a proposal kernel conditioned on the current point, x̃k ∼ q(·|xk−1). This

is accepted as the next sample xk = x̃k if p(x̃k) ≥ p(xk−1). If the probability is

lower, then it is accepted with probability f(x̃k)/f(xx−1) and rejected otherwise, in

which case xk = xk−1. Since this method tends to generate autocorrelated chains,

and needs to generate a number of samples before it achieves the desired stationary

distribution, it requires the generation of a number of samples before converging to

it, in addition to the usual requirement of thinning, or only taking one sample every

20



2.3 Single object state estimation

N samples generated from the obtained sequence, in order to avoid these undesired

correlations.

The MCMC family of methods rely on exploring regions of the state space with

high probabilities, as they need to provide more samples in these regions than in oth-

ers. Simple Brownian motion can be used as a proposal kernel in a process known as

Random Walk Monte Carlo, but the process will be aided by using more information

about the target distribution such as its gradient, as this enables the exploration of

higher likelihood areas. Methods that exploit this include the Metropolis Adjusted

Langevin Algorithms (MALA), which uses Langevin dynamics which make use of

the gradient of the logarithm of the posterior to create a stochastic sequence that

converges to this distribution [74]. Hamiltonian Monte Carlo, in turn, uses Hamil-

tonian dynamics to explore the state space [62]. This involves using an auxiliary

momentum variable, and has also been shown to perform very well.

In cases where it is simple to sample from sub-groups of variables of the target

distribution, and it is possible to compute the conditional distributions of the re-

mainder of the variables on this sub-group, Gibbs sampling may be used [9]. This

is an effective way of reducing the dimensionality of the problem, which greatly

reduces the complexity of MCMC methods.

More methods exist to obtain samples from the desired distribution, including

deterministic surrogate and optimization-based methods. An extensive survey of

stochastic simulation methods such as these can be found in [65].

As the time step k in (2.1) and (2.2) increases, generating samples using these

methods becomes increasingly onerous as the complete chain of samples must be

generated from the beginning up to the current time step. Sequential Monte Carlo

methods, however, allow for the computation of the current filtering distribution

conditioned on the previous belief, which is ideally suited to the filtering problem

as only one sample needs to be generated instead of having to recompute the entire

particle trajectory [18]. This filter is initialized with a sample of the prior distribu-

tion, {x(i)
0 ∼ p0(·)}Ni=1, with equal weights w

(i)
0 = 1/N, i = 1, · · · , N . At time step

k, when a measurement zk is received, it obtains the samples

x
(i)
k ∼ f(·|x(i)

k−1)

followed by the importance weights

w
(i)
k =

w̃
(i)
k∑N

i=1 w̃
(i)
k

, w̃
(i)
k = g(zk|x(i)

k )w
(i)
k−1,
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2.4 Case study: A filter for laser ranging

which is followed by resampling to avoid particle degeneracy. As it can be seen,

the classical bootstrap filter [29] uses the Markov transition kernel for each particle

as an importance function, but does not use any information about the received

measurement. Proposal distributions which make use of the measurement are called

fully adapted, and will naturally approximate the desired distribution better as they

use all the available information up to the current time step.

A way to use a fully adopted proposal in the particle filtering framework is to use

a MCMC rejection method to approximate the optimal distribution when sampling

the next particle [41]. The advantage of this approach is that the optimal proposal

is approximated directly, minimizing the variance of the particle weights. With this,

however, comes a highly increased computational cost. An alternative to this is the

Auxiliary Particle Filter [66]. In here, an additional step is performed to randomly

select a particle from the previous time step such that samples of higher likelihood are

obtained, and integrates the measurement likelihood into the proposal distribution.

This additional step yields more particles in the more informative regions of the state

space. After this, the proposal weights are computed as before. This filter has been

shown to strike a balance between computational efficiency and filter performance.

The issues involved with using particle filters in SSA have to do with the fact that

samples are needed from the Bayes filter recursion. The transition kernel tends to be

very narrow, as very little noise is needed in dynamical models for orbiting objects.

This is usually problematic in Monte Carlo approaches and tends to be solved by

using bridging densities [18]. These are intermediate densities which converge at a

given rate to the desired density. The problem with this is that the computational

cost of the resulting algorithm is greatly increased due to the intermediate sampling

steps.

2.4 Case study: A filter for laser ranging

In this section, single object filtering is illustrated by applying it to data acquired

from a ground-based laser ranging station that measures the distance from it to

satellites equipped with retroreflectors. The output of the range-only laser sensor

at the Herstmonceux Space Geodesy Facility is analysed in order to design a sensor

Section 2.4 uses material from ‘Likelihood modelling of the Space Geodesy Facility laser ranging
sensor for Bayesian filtering’ [86], C. Simpson, A. Hunter, S. Vorgul, E. Delande, J. Franco, D.
Clark, published in the proceedings of the Sensor Signal Processing for Defence (SSPD) conference,
used with permission. c©2016 IEEE.

22



2.4 Case study: A filter for laser ranging

model for filtering purposes. The sensor model is then exploited for the design of a

single-target Bayesian filter, comparing a Kalman filter and a particle filter.

The Space Geodesy Facility in Herstmonceux (East Sussex, UK) is a multi-

technique geodetic observatory operating an SLR station, an absolute gravimeter

and several Global Navigation Satellite System (GNSS) receivers. Along with forty

other similar sites around the world, the SGF in Herstmonceux forms part of the

International Laser Ranging Service (ILRS) [64]. The SLR technique, used primar-

ily for geodetic purposes, measures the time of flight of short laser pulses as they

travel between the observing stations and orbiting satellites equipped with retrore-

flectors [10, 83]. Satellites routinely tracked by the ILRS network include low Earth

orbiters with scientific payloads (e.g. Grace, Jason-3, Swarm), passive geodetic tar-

gets (e.g. LAGEOS, LARES), and various GNSS constellations (e.g. GLONASS,

BeiDou, GPS). Capable of providing measurements with sub-centimeter accuracy

and precision, SLR is one of the four space geodetic techniques contributing to the

realization of the International Terrestrial Reference Frame [2]. Beyond geodetic

applications, SLR can also be employed to track uncooperative space debris objects

(i.e. no retroreflectors present) [50, 102].

An Nd:Van pulsed laser (1 KHz repetition rate, 10 ps FWHM pulse width, 1.1

mJ/pulse) at the frequency-doubled wavelength of 532 nm is employed at the SGF

laser station. The receiver telescope is a 0.5 m Cassegrain reflector equipped with

a Single Photon Avalanche Diode (SPAD) detector. The timing measurements are

provided by a home built event timer of 1 ps resolution and 5 ps precision. A strictly

single-photon tracking policy is followed at SGF for all satellite targets, whereby the

energy levels of the returned pulses are controlled and limited to ensure that, on av-

erage, only a single photon is contained in each reflected pulse. This ensures that the

laser retroreflector arrays carried onboard the satellite targets are sampled in their

entirety, with no preferential detections obtained from points closer to the ground

station. In order to limit the negative impact of background and dark noise events,

the detector is gated shortly earlier (typically 100 ns) than the predicted range to

the satellite. This is necessary due to the high sensitivity of the sensor and the

present background radiation. The distribution of returns, excluding actual satellite

reflections, are adequately described with a negative exponential distribution, as

the detection events follow Poisson statistics [83]. The specific characteristics of the

distribution of detected pulses from the satellite targets depend on the shape and

orientation of the laser retroreflector arrays.

Three datasets collected from the SGF laser, named 746, 540, 737 for different

satellite passes, can be seen in Figure 2.1. The identities of the observed satellites
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2.4 Case study: A filter for laser ranging

is known, and the ground truth, shown in the figure is obtained from an avail-

able catalog. These figures illustrate the typical features of the raw ranging data

collected at SGF, though they all present a very noticeable skewness in the data

distribution around the ground truth. The data residuals are depicted in Figure 2.2.

In particular, batch 737 has an atypical shape in the lower range values due to a

temporal problem in the receiver hardware caused by laser overlap, which happens

when a pulse is fired at the same time a detector is gated. The pulse backscatters off

the atmosphere and triggers the detector. This run was recorded when the overlap

avoidance routine was disabled.

2.4.1 Filter design

A simple constant velocity motion model will be used to track the position and

velocity of each object. The state will be denoted xt = (r, ṙ), and its dynamics are

modeled as

xt =

[
1 ∆t

0 1

]
xt−1 + nt, (2.33)

with nt ∼ N (0, Qt) is the process noise vector. The measurement model is more

interesting, as it is evident from the residuals in Figure 2.2 that the noise distribution

does not have a Gaussian form. In order to obtain a suitable likelihood function,

an exponential curve was fit to the residuals of batch 746, obtaining the following

estimated relation:

`(zt|xt) ∝ exp(−2.811× 10−4(zt − rt)). (2.34)

The resulting curve can be seen in Figure 2.3.

In order to implement a Kalman filter, a Gaussian distribution was fit to the

residuals of the same batch in order to produce a linear observation model. The

results of this filter can be seen in Figure 2.4. From this figure, it can be seen

that since the filter expects a symmetrical distribution for the measurement noise,

it produces biased estimates.

A simple bootstrap filter was also implemented, as described in Section 2.3.3.

The filter was applied to datasets 540 and 737, using the likelihood function esti-

mated from dataset 746. As it can be seen in Figure 2.1, batch 540 has a very similar

noise distribution to the training set while batch 737 has some artifacts resulting in

a more complicated noise structure. The results of applying the filter with dataset

540 can be seen in Figure 2.5, where it can be seen how the effects of the noisy
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2.4 Case study: A filter for laser ranging

(a) Batch 746

(b) Batch 540

(c) Batch 737

Figure 2.1: SLR measurements. Ground truth (black), measurements (blue).
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(a) Batch 746

(b) Batch 540

(c) Batch 737

Figure 2.2: SLR residual data. Measurements in blue.
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Figure 2.3: Estimated measurement likelihood

Figure 2.4: Results of Kalman filtering on batch 540
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2.5 Multiple object state estimation

measurements are reasonably filtered out. Figure 2.6 shows the results of the filter

on batch 737. Here, it can be seen that the filter is also robust to sudden changes

in the distribution of the noise.

This sample filtering application shows how it is possible to handle different noise

profiles by adequately modeling the measurement likelihood functions, and how

Kalman filtering is not always applicable. The results indicate that the estimates

are consistent with the object states found in the catalog, in spite of the challenging

noise profile.

2.5 Multiple object state estimation

Multiple object estimation, or multi-target tracking, is the problem of simultane-

ously estimating the state of a group of objects of interest as it evolves through

time, and its unknown and time-varying size. This is particularly interesting as it

is general enough to study multiple problems of interest, including disciplines such

as simultaneous localization and mapping (robotics) [53], biological microscopy [25],

and defense [58]. Estimating the state of such a system, however, is rarely as easy as

estimating the states of each one of its components, due to a multiple of problems

which include the uncertainty of track-to-measurement associations, the possible

presence of spurious measurements in the data which are not produced by any ob-

ject of interest, and the possibility of missed detections, all of which increase the

difficulty of the estimation process [5].

Several approaches to solve the multi-object estimation problem exist, which can

be broadly divided into three categories. The first category can be referred to as

the ‘classical’ category, and attempts to use heuristics based on data association

techniques to assign measurements to single-object filters. The second category is

made up of filters based on Finite Set Statistics (FISST), which attempt to track the

whole population by estimating probability densities defined on random sets rather

than random vectors. The third category is based on a new formulation based on

the concept of distinguishability in stochastic processes. These techniques will be

described below.

2.5.1 Classical approaches

Classical methods of multi-target tracking are based on heuristic systems that man-

age a group of single target filters, assigning them measurements according to data

association heuristics. The Joint Probabilistic Data Association Filter (JPDAF)
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2.5 Multiple object state estimation

(a) Maxima and minima of the filtering distribution throughout
the estimation (green), measurements (blue)

(b) Detail of filtering results. Measurements and extrema as
above, ground truth (orange), estimate (red).

Figure 2.5: Results of the particle filter on pass 540
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2.5 Multiple object state estimation

(a) Maxima and minima of the filtering distribution throughout
the estimation (green), measurements (blue)

(b) Detail of filtering results. Measurements and extrema as
above, ground truth (orange), estimate (red).

Figure 2.6: Results of the particle filter on pass 737
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2.5 Multiple object state estimation

assumes that the number of targets is known, and assign measurements as either

being produced by a particular track or being a false alarm, leaving the remainder

of the tracks as tracks with a missed detection [5]. The data association mechanism

is based on the Mahalanobis distance between tracks and measurements. The clear

disadvantage of this technique is that the number of tracks must be known before-

hand by the operator, and is assumed to remain constant during the estimation

process - In many applications, target appearance and disappearance are essential

components of the dynamics of the multi-object system.

The Multiple Hypothesis Tracking (MHT) filter [71] is one of the most com-

monly used target tracking filters today, perhaps due to the fact that it is a rather

straightforward extension of single-target filtering techniques. It incorporates tar-

get appearance and disappearance into the filtering process by considering, for each

measurement, whether it was originated by either one of the previous tracks, a false

alarm, or a new track.

Each group of associations where each measurement is assigned to one of these

categories is called a hypothesis, and single target filters are run to evaluate the

new multi-target state per hypothesis. The likelihood of each hypothesis is then

evaluated by combining the individual filter likelihoods, and taking into account the

likelihood of the hypothesized false alarms and misdetections. Further heuristics

help curb the geometric growth of hypotheses, which would make the algorithm

prohibitively expensive to run after some time. Although this approach considers

the necessary components to make a useful multi-target tracker, the extensive use of

heuristics adds to the problem the need of tuning a number of additional parameters

and makes it hard to validate the filter analytically (e.g., by providing convergence

results).

It is worth noting here that different domain-specific methods exist for tracking

which have not been mentioned here. For instance, active contour methods such as

the one described in [48] can be used to effectively track moving objects in images

based on edge motion, or acoustic trackers such as those based on iterative time

reversal techniques are used to interactively focus energy on targets of interest with

active sonar systems [68]. The focus of this thesis, however, is to analyze general

tracking methodologies rather than these domain-specific methods.

2.5.2 Random finite set solutions

Finite Set Statistics (FISST) is an approach which generalizes the single-object

Bayes filter to multiple targets by using random finite sets (RFS) rather than ran-
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2.5 Multiple object state estimation

dom vectors. It introduces concepts such as the set integral and probability gener-

ating functionals which permit the direct manipulation of multi-object distributions

without the need to use heuristics and data association [58]. The first practical

filter produced with this framework is the Probability Hypothesis Density (PHD)

Filter [56], which propagates the first order moment of the multi-target distribution

to estimate both the number of objects of interest in the scene and their individual

states. The resulting filter is not computationally burdensome and the resulting

expressions for prediction and update are intuitive, which simplifies its implemen-

tation and the interpretation of its results. A downfall of the PHD filter, however,

is its strong assumption that the prior distribution is a Poisson multi-target pro-

cess, which means that all objects are Independent Identically Distributed (IID)

and that the cardinality distribution is Poisson. Poisson probability mass functions

have means equal to their variances, which causes the estimate of the number of

targets to be somewhat unstable when object appearance and disappearance are

frequent. Recent developments have attempted to overcome this limitation by using

more general distributions such as the negative binomial distribution [81].

The Probability Hypothesis Density (PHD) Filter [56] propagates the first mo-

ment D(x) of the multi-target posterior, known as the PHD or intensity, which is a

function defined on the single-target state space which indicates the expected num-

ber of targets in any of its regions. If the multitarget probability distribution is

denoted pk(X), then the PHD satisfies∫
S

D(x) dx =

∫
|X ∩ S|pk(X) δX = Nk(S), (2.35)

where Nk(S) denotes the expected number of targets in set S and |S| is the cardi-

nality of S. The integral of the form
∫
. . . δX is a set integral [56]. The process and

measurement models used by the PHD Filter are based on the following assumptions:

1. From time step k − 1 to time step k, each target xk−1 survives with proba-

bility PS(xk−1) (the probability of survival), evolving into xk ∼ fk(·|xk−1) or

disappears with probability 1− PS(xk−1).

2. New targets may appear at each time step according to an independent process.

3. Each target x produces a measurement z ∼ gk(·|x) with probability PD(x)

(the probability of detection) or is not detected with probability 1− PD(x).

4. False alarms are produced at each time step according to a certain clutter

distribution.
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2.5 Multiple object state estimation

These assumptions are synthesized in the following RFS process and measure-

ment models:

Xk = Γk ∪
⋃

x∈Xk−1

Yk|k−1(x) (2.36)

Zk = Kk ∪
⋃
x∈Xk

Θk(x) (2.37)

Where Γk and Kk are the birth and clutter random finite sets, respectively, and

Yk|k−1(x) =

{x′} , with probability PS(x) and x′ ∼ fk(·|x)

∅, with probability 1− PS(x)
(2.38)

Θk(x) =

{z} , with probability PD(x) and z ∼ gk(·|x)

∅, with probability 1− PD(x).
(2.39)

A derivation of the PHD filter starting from these assumptions can be found in

[56]. The resulting prediction and update equations are the following:

Dk|k−1(x) = γ(x) +

∫
PS(x′)fk−1(x|x′)Dk−1(x′) dx′ (2.40)

Dk(x) = (1− PD(x))Dk|k−1(x) +
∑
z∈Zk

PD(x)gk(z|x)Dk|k−1(x)

c(z) +
∫
gk(z|x′)Dk|k−1(x′) dx′

, (2.41)

Here, γ(x) is the PHD of the birth process and c(z) is the PHD of the clutter process.

In many applications, priors for newborn targets are not suitable to adequately

describe appearing targets. In these cases, an alternative strategy can be used with

measurement driven births [40]. In this approach, when no a priori information is

available on where targets are likely to appear, measurements are used to determine

likely positions new target appearances.

As in the case of the single target Bayes filter, an appropriate form for D(x) must

be chosen in order to use equations (2.40) and (2.41) to implement a tractable filter.

The most common approaches to do this are Gaussian mixture implementations [97]

and SMC implementations [98], mirroring the single target tracking case.

In addition to estimating the state of populations of objects, the PHD filter

has been extended to estimate more complex phenomena such as groups of objects

with correlated motion (group targets) [90] and targets which can generate multi-

ple measurements (extended targets) [89] by modeling them as independent spatial
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cluster point processes. As a particular case of these filters, the single-cluster PHD

filter was developed in order to estimate populations of objects conditioned on a

single-object random variable, which is also unknown [91]. This lends itself well to

problems where the population of objects is observed through a sensor which has

unknown state, as it is necessary to estimate the state of the sensor in order to

produce unbiased estimates of the observed population [73].

The single-cluster PHD filter has been used in many interesting applications.

Ristic et al have used it in order to calibrate sensors using non-cooperative targets

[73], while Lee et al. have applied to the robotics problem of simultaneous localiza-

tion and mapping [52, 53, 54]. Schlangen et al have used it to solve the problem

of estimating the position of intra-cellular proteins observed using fluorescence mi-

croscopy, while simultaneously correcting for microscope drift [25, 82]. Hagen et

al. applied it to image plane tracking of objects observed from a telescope, while

simultaneously stabilizing it [33], and Houssineau et al. applied it to simultaneous

3D tracking and camera calibration from video data.

An important limitation of the PHD filter is that it only propagates the first

moment of the multi-object posterior. Due to this, several attempts have been

made to create more informative filters using the FISST framework by propagating

more information. The Cardinalized Probability Hypothesis Density (CPHD) filter,

for instance, propagates the cardinality distribution of the multi-object distribution

alongside its spatial distribution, eliminating the need to assume a particular form

for the cardinality distribution of the estimated densities. The result is that the

estimated number of targets is more stable, but it adds to the computational burden

of the method and the resulting expressions are more convoluted than the regular

PHD filter [57].

More recent efforts have been oriented towards propagating the full multi-object

posterior rather than its moments, under the rather general assumption of the pro-

cess following a multi-Bernoulli distribution [58, 100]. Indeed, multi-Bernoulli distri-

butions do not assume that the multi-object population is IID, and their cardinality

distribution is arbitrary.

An important limitation of approaches based on FISST is that as opposed to

the classical framework, track identity is not directly propagated in the recursive

estimation process due to sets being unordered. An interesting approach to over-

coming this limitation was recently proposed alongside a study of conjugate priors

for multi-object distributions, where filtering is done on labeled RFS [99]. This al-

lows track identity to be preserved through time, but the resulting algorithm is

computationally expensive.
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2.5.3 Distinguishable stochastic populations

The two previously mentioned multi-object estimation frameworks can be seen as

two ends of a spectrum. On one end, the classical approaches propagate tracks and

use loose heuristic-based approaches to estimate the configuration of the population;

This naturally permits the preservation of track identities but makes population-level

modeling harder, the amount of parameters in the track manager larger, and the

results less reliable as it is hard to prove filter properties. On the other end, the

random finite sets approach estimates the state of the population as a whole, and

naturally deals with multi-object estimation issues in a principled way, but loses in-

formation on individual track identity due to the underlying set-based assumptions.

In order to solve both these issues, a new multi-object estimation framework

was recently proposed where individual track information is preserved, while popu-

lation dynamics are also modeled. The key idea that is exploited to obtain the best of

both worlds is the underlying modeling, which separates distinguishable populations,

where populations of objects where there is information that uniquely identifies them

(e.g., a track that has been observed in the past), and indistinguishable populations,

where not enough information is available to differentiate objects within them [37].

This is useful to differentiate and estimate together populations such as tracks com-

ing from the population of interest alongside those for tracks which have not yet

been observed, and special distributions for clutter, tracks leaving the surveillance

region, and so forth.

Estimating stochastic populations is in contrast to estimating point processes, as

the latter are symmetric and thus do not naturally preserve individual identity. A

realization of a stochastic population can be expressed as [14]

µn =
∑
i∈I

niδ[pi] (2.42)

where I is some indexing set, ni is the number of objects in population i, δ is the

Dirac delta function and pi is the probability measure indexed by i. If ni is greater

than one, then it is said that objects in population i are indistinguishable. Stochastic

populations are random variables that take values such as the one shown above, and

these are the mathematical objects which are estimated using this theory.

The Distinguishable Independent Stochastic Population (DISP) filter [14] is

based on this paradigm and uses a small set of assumptions in order to propagate

as much information as possible about the population of interest. It was designed

for challenging scenarios with highly ambiguous data association; for example, when
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targets have crossing trajectories or have similar states for long periods of time. In

terms of computational complexity, it is similar to the MHT as it propagates a set

of hypotheses, which are sets of compatible tracks. Compatibility here is defined as

tracks that can coexist as they have not been associated with the same measure-

ments at any point in their existence. At each time step, every possible association

of measurements to either tracks or false alarms is considered, and a new set of

hypotheses generated. The DISP filter then computes the probability of each one of

these hypotheses. The main advantage with respect to the MHT is that the filtering

of tracks and hypotheses is fully probabilistic, and not based in heuristics.

The Hypothesized Independent Stochastic Populations (HISP) filter is based on

the same framework but uses an additional assumption in order to greatly reduce its

computational requirements. Essentially, where the DISP maintains every possible

combination of possible tracks generated by the available observations, the HISP

assumes that any two tracks are unlikely to have generated a given observation.

This assumption greatly simplifies the data update, making its complexity linear

with the number of tracks and the number of measurements.

2.6 Summary

In this chapter, the advantages of performing sequential state estimation in space

situational awareness problems were discussed. The challenges that arise when im-

plementing estimation algorithms in this domain were shown, and an overview was

given of the approaches that have been used for this purpose in the past.

An overview was given of the most commonly used methods for single- and

multi-object estimation. The Bayesian paradigm was described, where it was shown

how probability distributions describing the state of a process of interest can be

manipulated in order to predict how it evolves through time, and how they can be

corrected using data once it becomes available.

In order to tractably estimate these distributions, an appropriate form for the

distribution to estimate must be chosen. Each choice produces a different filter, and

the most commonly used single-object filtering filters were discussed, including the

Kalman filter and its nonlinear variants, solutions based on numerical integration,

and sequential Monte Carlo solutions, commonly called particle filters.

A case study where the range of a satellite is measured from a laser ranging

facility. It was shown here that non-Gaussian distributions can arise in practical ap-

plications, and that careful modeling needs to be done to avoid obtaining inaccurate

results.
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Several approaches have been pursued to extend this estimation framework to the

multi-object case, where it is necessary to estimate the state of multiple objects, and

where it is necessary to not only estimate their stochastic state but also the number

of present objects. Classical engineering solutions such as the MHT filter were

discussed, followed by principled set-based solutions like the PHD filter and finally

a new and promising framework which has produced interesting new estimation

methods such as the HISP and DISP filters.
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Chapter 3

Sensor Modeling for Statistical

Orbit Determination

T
his chapter presents a Bayesian filter designed to estimate the state of Earth-

orbiting objects. As it was discussed in chapter 2, propagating the probability

distribution of a satellite is essential to having an accurate picture of the uncertainty

associated with its known state, and a robust single object filter is necessary to con-

structing the multi-object estimation algorithms which will be proposed in chapter

4.

In this chapter, different representations for objects in orbit will be analyzed,

alongside the models that will be used to predict their position in orbit as time

passes. Commonly used sensors for space situational awareness will be modeled,

and an analysis of the uncertainty associated with objects that are observed for the

first time will be proposed for each sensor.

Having presented the necessary elements to create it, a filter tailored to the es-

timation of objects in orbit will be presented. This will be based on the concepts

presented in chapter 2, and it will be necessary to address the issues that were men-

tioned there. In particular, a way to generate proposal distributions for sequential

Monte Carlo methods will be proposed, after which it will be shown that it will be

necessary to devise an approximation for efficient filtering.

The initial orbit determination step of the proposed filter will be based on a

particle representation of a uniform distribution, defined on the admissible regions

generated by the initial measurements. An update mechanism will be proposed

which exploits the linearity of the measurement model in the extended sensor space.

A filter for space situational awareness must be designed with the following

operations in mind:
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3.1 State representation and dynamical model

• Determining a prior distribution that represents the initial knowledge of the

object state,

• Applying the orbital dynamics model to predict the object’s state, and

• Using incoming data from the sensor to reduce the uncertainty of the object

state, when available.

Designing the filter will then involve defining a parametrization for the state of the

satellites of interest, appropriate dynamical and sensor models, and a way to obtain

prior distributions from relevant measurements in the context of recursive Bayesian

estimation. The rest of this chapter will begin by addressing these points, followed

by their integration into a filter. Finally, results are presented and the chapter

concludes.

3.1 State representation and dynamical model

Different parametrizations can be used to represent objects in orbit, and have differ-

ent uses and advantages at each stage of the filtering process. Cartesian co-ordinates,

for instance, are useful to solve the differential equations which model the motion of

the Earth-satellite system, and facilitate visualization. Other parametrizations such

as sensor-centered spherical co-ordinates can be more useful in order to process sen-

sor measurements. Finally, orbital elements are directly related to orbital dynamics.

The Cartesian and orbital element state representations are described below, and

the sensor centered spherical co-ordinates will be described in a later section.

3.1.1 Cartesian co-ordinates

When analyzing the motion of objects in orbit of a celestial body, typically a Carte-

sian co-ordinate system is chosen with origin at the center of the body. When the

celestial body of interest is the Earth, geocentric systems are used. Two co-ordinate

systems are common: the eclyptic system which uses as a fundamental plane the

orbital plane of the Earth, and the equatorial plane, which uses the plane crossing

the equator as fundamental plane. The reference direction x is normally taken to

be the vernal equinox ; that is, when the intersection of the equatorial and eclyptic

planes points towards the Sun around the first day of Spring [7]. The reference

Cartesian co-ordinate system that will be used in this work is an eclyptic Earth-

centered nonrotating inertial (ECI) frame. This space will be denoted Xc. At time

step k, the object state xc
k ∈ X is
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3.1 State representation and dynamical model

xc
k = [xk, yk, zk, ẋk, ẏk, żk]

′. (3.1)

The first three elements are the object’s position with respect to the reference

frame and the last three are its velocity in the same system. Cartesian co-ordinates

are simple to visualize and are also used to evaluate important quantities such as the

physical distance between two objects, which is necessary to evaluate, for instance,

the probability of collision of two objects.

3.1.2 Orbital elements

Orbital elements are a parametrization which arises from the solution of the two-

body problem. In the next section, it will be seen how using this parametrization

greatly simplifies prediction and modeling the transition kernel, at the cost of an

extra transformation. A vector xoe
t ∈ Xoe has the following form:

xoe
t =



Ωt

ωt

it

at

et

Mt


. (3.2)

Here, the right ascension of the ascending node Ωt alongside the argument of perigee

ωt and the inclination it define the orbital plane with respect to the equatorial plane

and the reference direction (the vernal equinox). The semi-major axis at, along with

the eccentricity et, define the shape of the orbit – the first parameter is the scale

of the ellipse, whereas the second determines its shape: Circular orbits have zero

eccentricity, ellipses have eccentricity between zero and unity, eccentricity greater

than one corresponds to hyperbolic orbits, which escape the Earth’s gravitational

field.. Finally, the mean anomaly Mt determines the position of the object along

the orbit. More details about orbital elements can be found in [7].

3.1.3 Representation of the distribution

The filtering distributions will be represented using particles. These are essentially

samples of the distribution, which can be used to compute expected values from it

using Monte Carlo integration [18]. One important difference is that rather than

updating these distributions with the typical likelihood weighting process of filters
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3.2 Dynamical model

like the bootstrap filter, the linearity of the measurement model in an alternate

parametrization will be exploited to update the distribution with a linear Kalman

filter, which will be discussed in Section 3.3.

3.2 Dynamical model

Dynamical models which describe the motion of objects orbiting Earth are usually

based on the solution to the differential equation which describes the two body

problem for the Earth-satellite system. In its most basic form, this differential

equation considers the gravitational force of attraction between the two bodies as

the sole acting interaction between them [7]:

m1
d2r1

dt2
= −m2

d2r2

dt2
=
Gm1m2

r3
(r2 − r1), (3.3)

where m1,m2, r1, r2 are the masses and positions of the objects in the system, re-

spectively, G is the gravitational constant, and r = ‖r1− r2‖. This equation can be

simplified if the mass of the orbiting object is considered negligible with comparison

to that of Earth, focusing only on the position r of the satellite around Earth:

d2r

dt2
+
µ

r3
r = 0 (3.4)

with µ = G(mE + mS) ≈ GmE, where mE,mS are the masses of the Earth and

the satellite, respectively. Solving this equation analytically involves solving Ke-

pler’s equation, which is trascendental. Due to this, solutions to Kepler’s problem

necessarily involve iterative procedures [7].

Since the two-body problem only considers the gravitational interaction between

the satellite and the Earth, it ignores important forces which modify the trajectory

of the satellite as it orbits the planet. Typical such sources include third body grav-

itational forces such as those caused by the sun and the moon, tidal and relativistic

effects, changes in atmospheric density, radiation pressure, electromagnetic effects

(due to the possible charge of the satellite), self-shadowing, complex unmodeled

shakes, numerical integration errors, among others [8]. These sources are usually

included in the differential equation through the use of the method of variation of

parameters [7].

Very precise numerical integration solutions exist which can be applied to the

problem of predicting the future state of an object in orbit. Since the orbital dynam-

ics are very well specified, methods to numerically solve the associated differential
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3.2 Dynamical model

equations, such as the Runge-Kutta family of methods, are widely used to predict

the position of satellites over time [7]. Although the proposed particle represen-

tation of the state distribution can admit any such method, two methods will be

proposed based on the unperturbed two-body problem. First, a simple prediction

method based on Shepperd’s transition matrix [85] based in Goodyear’s solution

[28] will be discussed, followed by a dynamical model based on the time evolution

of orbital elements. A comparison of the resulting distributions will be presented in

the results section.

Shepperd’s transition matrix is based only on the unperturbed solution of the

two-body problem, and is a function of the previous state of the particle, and the

elapsed time between the time steps, ∆k. Goodyear developed a closed-form transi-

tion matrix which, for a given time lapse ∆t and a given initial state xk, would allow

to find the predicted state of the orbiting state, which was subsequently improved by

Shepperd by simplifying the required calculations, making its computation simpler.

This will be denoted Φ(xk,∆k), and equals

Φ(xk,∆k) =



f 0 0 g 0 0

0 f 0 0 g 0

0 0 f 0 0 g

F 0 0 G 0 0

0 F 0 0 G 0

0 0 F 0 0 G


, (3.5)

where f, F, g, and G are obtained from solving Kepler’s problem:

f = 1− µEU2(w, β)

‖r0‖
(3.6)

g = ‖r0‖U1(w, β) + 〈r0,v0〉U2(w, β) (3.7)

F =
−µEU1(w, β)

(‖r0‖U0(w, β) + 〈r0,v0〉U1(w, β) + µEU2(w, β))‖r0‖
(3.8)

G = 1− µE
(‖r0‖U0(w, β) + 〈r0,v0〉U1(w, β) + µEU2(w, β))U2(w, β)

, (3.9)

where r0,v0 are the first and last 3 components of xk, respectively; β = 2µE
‖r0‖ −‖v0‖

is twice the negative energy of the object; and Un(w, β) are Stumpff’s universal

functions defined by

Un(w, β) =
∞∑
k=0

(−β)kwn+2k

(n+ 2k)!
. (3.10)
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3.3 Sensor modeling

In order to find the parameter w, the following equation needs to be solved for it:

∆k = ‖r0‖U1(w, β) + 〈r0,v0〉U2(w, β) + µEU3(w, β). (3.11)

Shepperd’s approach relies on continued fractions to solve this equation efficiently,

and implementation details can be found in his article [85].

The uncertainty in the dynamical model will be modeled as a Gaussian random

variable with mean 0 and covariance Qk. This results in the following transition

kernel:

f(xc
k|xc

k−1) = N (xc
k; Φ(xc

k−1,∆k)x
c
k−1, Qk), (3.12)

where the matrix Qk represents the uncertainty of the dynamical model due to per-

turbations and other unmodeled effects. As the dynamics of Earth-orbiting objects

are well understood, this term can be very small, and in certain cases an entirely

deterministic scenario can be of interest [8]. The impact of this on the filtering

process will be discussed in section 3.5.

The dynamical model for orbital elements is simpler:

xoe
t = xoe

t−1 + ∆t

[
05,1

nt−1

]
+wt−1 (3.13)

where

nt−1 =
√
µE/a3

t−1 (3.14)

is called the mean motion, with µE the gravitational parameter of the Earth. The

vector wt−1 ∼ N (06,1, Qt) is a Gaussian random vector which accounts for the un-

certainty due to unmodeled effects. The advantage of using this parametrization is

that the matrix Q can be chosen such that it reflects the actual uncertainty in the

propagation of the elements. For instance, if only uncertainty on the shape of the

orbit is desired, noise can be added exclusively on the semi-major axis and eccen-

tricity components. The transformations between orbital elements and Cartesian

co-ordinates can be found on [7], and require the solution of Kepler’s problem when

transforming to Cartesian.

3.3 Sensor modeling

Radars and telescopes are widely used sensors to observe Earth-orbiting objects.

Neither sensor provides measurements that can independently determine the full

state of the object – Doppler radars usually measure the distance from the sensor
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3.3 Sensor modeling

to the measured object, the rate of change of this quantity, and the azimuth and

elevation of the object; while optical measurements from telescopes usually comprise

azimuth, elevation, and their rates of change by integrating small exposures. Both

sensors provide measurements in the topocentric Earth-fixed local horizon frame, so

knowledge of the sensor’s position and rotation with respect to the Earth-centered

reference frame where the object’s state is being estimated is required to relate

incoming measurements to existing tracks. Computing a measurement produced by

an object, then, consists of the following steps:

1. Translate and rotate the object’s position so that it is in the sensor’s (Carte-

sian) reference frame,

2. Apply the nonlinear transformation mapping points in the Cartesian reference

plane into spherical co-ordinates, and

3. Select the components of the resulting vector which are observed by the sensor.

The rotation and translation are straightforward. Given the time-varying trans-

lation vector ts and rotation matrix Ws from the ECI frame to the sensor’s local

frame, the position of the satellite in this reference frame, x̃k, is obtained as

x̃k = [x̃k, ỹk, z̃k, ˙̃xk, ˙̃yk, ˙̃zk]
′ = Ws(xk − ts). (3.15)

After this, it is mapped into spherical co-ordinates to obtain a point ẑk in what

will be called the sensor extended state space S∗, as it includes both the variables

that the sensor observes and those it doesn’t. These two operations comprise the

transformation T (xk, ts,Ws):

ẑk = T (xk, ts,Ws) = [rk, θk, ϕk, ṙk, θ̇k, ϕ̇k]
′, (3.16)
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3.3 Sensor modeling

where the individual components are computed the following way:

rk =
√
x̃2
k + ỹ2

k + z̃2
k

θk = atan
ỹk
x̃k

ϕk = atan
z̃k√
x̃2
k + ỹ2

k

ṙk =
x̃k ˙̃xk + ỹk ˙̃yk + z̃k ˙̃zk

rk

θ̇k =
˙̃ykx̃k − ˙̃xkỹk
x̃2
k + ỹ2

k

ϕ̇k =
˙̃zk(x̃

2
k + ỹ2

k)− z̃k(x̃k ˙̃xk + ỹk ˙̃yk)

r2
√
x̃2
k + ỹ2

k

(3.17)

with θk ∈ [−π, π] and ϕk ∈ [π/2, π/2].

From here, the measurement can be obtained by selecting the components that

are measured by the particular sensor which is observing the target:

zk = Hẑk,

where H = Hr can be used for radars, or H = Ho for telescopes, with

Hr =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 , Ho =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .
In addition to these two sensors, the laser ranging sensor presented in chapter 2

could be used with H = Hl, where

Hl =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (3.18)

Since the focus of this chapter is to provide a full estimation algorithm, and an

initial orbit determination method is not available for this type of sensor, however,

only the first two types of sensors will be used from now on.

The measurement noise is modeled as additive Gaussian noise, with zero mean

and covariance Rk. The covariance will change according to the sensor type and its

particular characteristics, but more advanced models can be found in [79] if more
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3.4 Initial orbit determination

precision is required. The measurement likelihood can then be modeled as

gk(zk|xk) = N (zk −HT (xk, ts,Ws); 0, Rk) (3.19)

It is possible to define models which consider sensor resolution cells, and only

return measurements in this discrete space. Filtering with this type of measurements

is more difficult, however, as the quantization is a nonlinear operation and special

filtering techniques need to be used, such as in [19]. In this work, measurements will

be assumed to originate in a continuous space.

It is interesting to note here that, if the spherical parametrization S∗ were to be

used to represent the object state, a linear Kalman update could be used to update

the state and the covariance. This would mean, however, that the time prediction

equation would take on a much more difficult form as the topocentric frame is non-

inertial, requiring the orbital dynamics to be adjusted accordingly. This remark is

the base for the hybrid update mechanism which will be proposed in section 3.5.

3.4 Initial orbit determination

For the types of sensors that are considered in this work, it is possible to constrain

the unobserved parameters to specific regions as long as the object is orbiting the

Earth [95]. The approach to obtain these constraints and construct priors with them

is outlined below for radar and optical sensors.

3.4.1 Radar sensors

For objects with closed orbits around Earth, the internal energy of the object is

non-positive:

E =
1

2
‖ṙ‖2 − µ

‖r‖
≤ 0, (3.20)

where µ is the mass of the Earth times the gravitational constant, and r and ṙ are

the geocentric position and velocity of the satellite. These can be expressed as

r = rs + rρr (3.21)

ṙ = ṙs + ṙρr + rθ̇ρθ + rϕ̇ρϕ,
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3.4 Initial orbit determination

where the position and velocity of the sensor are expressed respectively as rs and

ṙs, and

ρr = [cos θ cosϕ, sin θ sinϕ, sinϕ]′,

ρθ = [− sin θ cosϕ, cos θ cosϕ, 0]′, and

ρϕ = [− cos θ sinϕ,− sin θ sinϕ, cosϕ]′.

(3.22)

Equation (3.21) is substituted into (3.20) to obtain the following form for the internal

energy as a function of the angular rates:

α1θ̇
2 + α2ϕ̇

2 + α3θ̇ + α4ϕ̇+ a5 ≤ 0, (3.23)

with

α1 = r2 cos2 ϕ

α2 = r2

α3 =
r〈ṙs,ρθ〉

2

α4 =
r〈ṙs,ρϕ〉

2

α5 = ṙ2 + 2ṙ〈ṙs,ρr〉+ ‖ṙs‖2 − 2µ

Q(r)
, and

Q(r) =
√
r2 + 2r〈rs,ρr〉+ ‖rs‖2.

(3.24)

Following the approach laid out in [95], the admissible values for (θ̇, φ̇) are those

inside of the elliptical disk bounded by

θ̇ =
α3

α1

+

√
α2

3

α2
1

+
α2

4

α1α2

− α5

α1

cosφ

ϕ̇ =
α4

α2

+

√
α2

4

α2
2

+
α2

3

α1α2

− α5

α2

sinφ,

(3.25)

for φ ∈ [0, 2π]. A sample admissible region obtained using this method can be seen

in Figure 3.1. Since there is no information to say any point inside this area is more

likely than another, the prior distribution is sampled from this area uniformly. To

sample from this elliptical disk, a random angle φs ∈ [0, 2π] and range us ∈ [0, 1]
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Figure 3.1: Typical angular rates admissible region.

are drawn, after which the sampled (θ̇s, φ̇s) pair is determined as

θ̇s =
α3

α1

+
√
us

√
α2

3

α2
1

+
α2

4

α1α2

− α5

α1

cosφs,

ϕ̇s =
α4

α2

+
√
us

√
α2

4

α2
2

+
α2

3

α1α2

− α5

α2

sinφs.

(3.26)

For each of these samples, a full S∗ vector is constructed by sampling the remaining

parameters from the observation likelihood. This process is described in algorithm

3.1.

Algorithm 3.1: Track initialization algorithm using radar measurements

Input :

• Measurement z = [r, θ, ϕ, ṙ]

• Covariance for observed parameters Rk

Output: Initialized particle distribution {x(i)
0 }Ni=1

Compute α1, α2, α3, α4, α5 from (3.24)
for i = 1 . . . N do

Sample φs ∼ U(0, 2π) and us ∼ U(0, 1)
Compute θ̇s, ϕ̇s from (3.26)
Sample [rs, θs, ϕs, ṙs]

′ ∼ N (·, z, Rk)

Set x
(i)
0 ← T−1([rs, θs, ϕs, ṙs, θ̇s, ϕ̇s]

′)
end
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3.4 Initial orbit determination

3.4.2 Optical sensors

Although many different types of optical sensors exist, the focus here will be in

those that can measure angles of observation (e.g., azimuth and elevation) and their

rates of change. As before, the two unobserved parameters can be bounded by using

energy constraints on the object being tracked. Equation (3.21) is substituted into

(3.20) to obtain the energy in terms of range and range rate:

2E = ṙ2 + w1ṙ + T (r)− 2µ√
S(r)

< 0, (3.27)

where

S(r) = r2 + w5r + w0,

T (r) = w2r
2 + w3r + w4,

w0 = ‖rs‖2,

w1 = 2〈ṙs,ρr〉,

w2 = θ̇2 cos2 ϕ+ ϕ̇2,

w3 = 2〈rs, θ̇ρθ + ϕ̇ρϕ〉,

w4 = ‖ṙ‖2, and

w5 = 2〈rs,ρr〉.

From (3.27), if a value for r is given, then ṙ is constrained to the following

interval:

ṙ ∈ (−w1/2− ζ(r),−w1/2 + ζ(r)) (3.28)

ζ(r) =
1

2

√
w2

1 − 4(T (r)− 2µ/
√
S(r)) (3.29)

A typical admissible region obtained this way can be seen in Figure 3.2. As an

additional constraint, minimum and maximum ranges can be defined for objects of

interest: r ∈ [rmin, rmax]. To sample uniformly from this region, rejection sampling

is used: The maximum and minimum values for r and ṙ are determined, and points

are sampled uniformly from this rectangle. Equation (3.28) is used to verify this is

a valid solution; If it is, it is admitted into the group of samples. If it is not, the

process is repeated until the amount of required samples is obtained. The algorithm

is detailed in listing 3.2.

The obtained admissible region can be made smaller if additional constraints are

posed on the eccentricity and the semimajor axis following the method proposed
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Figure 3.2: Typical range – range rate admissible region.

in [16], e.g., if the objects of interest are in specific orbits. However, since no

prior knowledge is assumed on the orbits of the observed objects these additional

constraints will not be used here.

3.5 Filtering recursion

A suitable filter to estimate the state of Earth-orbiting satellites must be able to use

priors of the form described in section 3.4, in addition to the nonlinear dynamical

and observation models outlined above. The nonlinear, non Gaussian nature of this

problem makes Kalman filters and their nonlinear variants unfit for this purpose.

The focus will be on designing a particle filter which can accurately propagate the

state distributions through time, and correct them as measurements are acquired.

Although SIR filters are very flexible, a problem arises when the Markov tran-

sition kernel (3.12) has low covariance. This is due to the fact that when using a

particle representation in (2.2), the weight update becomes

w
(i)
k =

w̃
(i)
k∑N

j=1 w̃
(i)
j

, (3.30)

where

w̃
(i)
k = w

(i)
k−1

f(x
(i)
k |x

(i)
k−1)gk(zk|x(i)

k )

π(x
(i)
k )

, (3.31)
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Algorithm 3.2: Track initialization algorithm using optical measurements

Data:

• Measurement z = [θ, ϕ, θ̇, ϕ̇]

• Range limits rmin, rmax

• Covariance for observed parameters Rk

Result: Initialized particle distribution {x(i)
0 }Ni=1

Evaluate w0, w1, w2, w3, w4, w5, T (r), S(r)
Compute ṙmin = −w1/2− ζ(rmin) and ṙmax = −w1/2 + ζ(rmin)
for i = 1 . . . N do

solution found ← false

while not solution found do
Sample r(i) ∼ U(rmin, rmax)
Sample ṙ(i) ∼ U(ṙmin, ṙmax)
Evaluate ζ from (3.29)
if ζ is real and (3.28) holds then

solution found ← true

end

end

Sample [θ(i), ϕ(i), θ̇(i), ϕ̇(i)]′ ∼ N (·; z,R)

x
(i)
0 ← T−1([r(i), θ(i), ϕ(i), ṙ(i), θ̇(i), ϕ̇(i)]′)

end
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which will make the weights quickly go to zero if the newly sampled values x
(i)
k are

unlikely under the transition kernel f(·|x(i)
k−1). At the beginning of the filtering pro-

cess, where there is high uncertainty on the target position and velocities induced by

the shape of the distribution yielded by the initial orbit determination, this is bound

to happen often. There are two particular forms of the importance sampling function

π which avoid this problem. The bootstrap filter uses π(x
(i)
k ) = f(x

(i)
k |x

(i)
k−1), which

cancels out in (3.31) with the problematic part in the numerator. This proposal,

however, does not use measurement information and is bound to be less efficient

than a fully adapted proposal distribution [18]. Another option is to use the opti-

mal proposal function π(x
(i)
k ) = f(x

(i)
k |x

(i)
k−1)gk(zk|x(i)

k ), in which case the weights

would remain constant through the filtering duration. In a typical SSA application,

this distribution is not available for direct sampling, due to the form of the mea-

surement and dynamical models. An approximation of this distribution based on

the linearity of the measurement model in the sensor state space will be outlined

below.

Although the dynamical model discussed in section 3.2 is a linear, Gaussian

approximation in the object’s state space (conditioned a given previous state) and

the sensor model is linear and Gaussian in the extended sensor state space discussed

in section 3.3, the nonlinear transformation between the two spaces means that a

closed form for the updated distribution is not available.

Using a particle representation for the object state provides a straightforward

way to map between the two spaces, by simply applying the required transformation

to each particle. This is an essential part of the proposed method, whether for radar

or optical measurements. The particle distribution is updated as measurements

arrive by approximating it as a Gaussian distribution in S∗, and then applying

a Kalman update to it before sampling a new set of particles from the updated

distribution. This approach is outlined below. To begin, the unweighted particles

from the previous time step {x(i)
k−1}Ni=1 are used to produce a set of predicted particles

by drawing from the transition kernel (3.12):

x
(i)
k|k−1 ∼ N (·; Φ(xk−1,∆k)xk−1, Qk).

If no measurement is available, then these particles are kept as the predicted distri-

bution. However, if a measurement has been received, the particles are first mapped

to S∗ using (3.17) to obtain

y
(i)
k|k−1 = T (x

(i)
k|k−1, ts,Ws).
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The mean and covariance of this set of particles are computed:

µk|k−1 =
1

N

N∑
i=1

y
(i)
k|k−1,

Σk|k−1 =
1

N − 1

N∑
i=1

(y
(i)
k|k−1 − µk|k−1)2,

after which a linear Kalman Filter update is performed [47]:

S = HΣk|k−1H
′ +R,

K = Σk|k−1H
′S−1,

µk = µk|k−1 +K(zk −Hµk|k−1),

Σk = (I −KH)Σk|k−1.

(3.32)

Here, S denotes the innovation covariance and K the Kalman gain. The updated

set of particles is drawn from a Gaussian distribution with these parameters

y
(i)
k ∼ N (·;µk,Σk), (3.33)

and finally the updated set of particles is obtained by mapping back to X,

x
(i)
k = T−1(y

(i)
k , ts,Ws). (3.34)

Although this approach has been shown to perform very well, it is important to

note that it is not strictly a particle filtering method as the distribution is not

weighted. Two concerns with this approach are that approximating the distribution

as a Gaussian may cause some loss of information on the shape of the distribution,

and sampling from a single distribution discards the particle trajectories. Below,

an importance sampling function is sketched which reproduces this hybrid update

approach while maintaining the theoretical properties of a SIR filter. To do this, it

can be remarked that the correction step can be applied to each individual particle,

rather than the distribution mean, to obtain

y
(i)
k = y

(i)
k|k−1 +K(zk −Hy(i)

k|k−1) (3.35)
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the mean of this distribution is the following:

E[y
(i)
k ] = E[y

(i)
k|k−1] +K(zk −HE[y

(i)
k|k−1])

= µk|k−1 +K(zk −Hµk|k−1),
(3.36)

which matches the mean of (3.33). The covariance is given by

cov[y
(i)
k ] = (I −KH)Σk|k−1(I −KH)′

= (I −KH)Σk|k−1 − (Σk|k−1H
′K ′ −KHΣk|k−1H

′K ′)

= (I −KH)Σk|k−1 − (Σk|k−1H
′K ′ −K(S −R)K ′)

= (I −KH)Σk|k−1 − (Σk|k−1H
′K ′ −KSK ′ +KRK ′)

= (I −KH)Σk|k−1 − (Σk|k−1H
′K ′ − Σk|k−1H

′K ′ +KRK ′)

= (I −KH)Σk|k−1 −KRK ′.

(3.37)

This means that the covariance will be underestimated by comparison to the previous

method by a factor of KRK ′. In order to compensate for this, an independent

random variable with covariance KRK ′ can be added such that the total variance

will be (I −KH)Σk|k−1:

y
(i)
k = y

(i)
k|k−1 +K(zk −Hy(i)

k|k−1) + νk (3.38)

where ν
(i)
k ∼ N (·; 0, KRK ′), for example. In this case, the value of the importance

sampling function would be

π(y
(i)
k ) = N (ν

(i)
k ; 0, KRK ′))N (x

(i)
k|k−1; Φ(xk−1,∆k)xk−1, Qk). (3.39)

An alternative is to inject variance into the resulting distribution by uniformly mov-

ing the particles away from the mean. In this case, for a given matrix F , the particles

would be computed as

y
(i)
k = (I + F )(y

(i)
k|k−1 +K(zk −Hy(i)

k|k−1))− Fµk, (3.40)

in which case the mean would be

E[y
(i)
k ] = (I + F )(E[y

(i)
k|k−1] +K(zk −HE[y

(i)
k|k−1]))− Fµk

= (I + F )(µk|k−1 +K(zk −Hµk|k−1))− Fµk
= µk + Fµk − Fµk
= µk,

(3.41)
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3.5 Filtering recursion

which is as required, and the covariance would be

cov[y
(i)
k ] = (I + F )(I −KH)Σk|k−1(I −KH)′(I + F )′

= (I + F )(Σ∨)(I + F )′

= Σ∨ + FΣ∨ + Σ∨F ′ + FΣ∨F ′,

(3.42)

where Σ∨ = (I −KH)Σk|k−1 −KRK ′. To get the required covariance, F must be

a solution to

Σ∨ + FΣ∨ + Σ∨F ′ + FΣ∨F ′ = KRK ′. (3.43)

If a symmetry condition is imposed on F , this equation can be solved using the

method described in [67]. In this case, the importance function can be evaluated as

π(y
(i)
k ) = N (x

(i)
k|k−1; Φ(xk−1,∆k)xk−1, Qk). (3.44)

Unfortunately, these importance sampling approaches have the problem that the

numerator of (3.31) will be either zero or very close to it as the kernel f(x
(i)
k |x

(i)
k−1)

will usually be very narrow (or in the deterministic case just a Dirac delta) compared

to the correction applied by the Kalman update, causing degenerate distributions as

most weights will go to 0. For this reason, the particle set obtained from (3.33) will

be used instead. This can be seen as an approximation of the optimal importance

sampling function as the sample is unweighted. A flowchart detailing the filtering

process can be seen in Figure 3.3. The prediction and update algorithms can be

seen in Algorithms 3.3 and 3.4, respectively.

Algorithm 3.3: Prediction algorithm

Data:

• Particle distribution {x(i)
k−1}Ni=1 at time step k − 1

• Covariance matrix of the process noise Qk

• Elapsed amount of time ∆k

• Translation and rotation to sensor Cartesian frame ts,Ws

Result: Predicted particle distribution {x(i)
k|k−1}Ni=1

for i = 1 . . . N do
Sample εi ∼ N(0, Qk)

Φ← Shepperd matrix(x
(i)
k−1,∆k)

x
(i)
k|k−1 ← Φx

(i)
k−1 + εi

end

55



3.5 Filtering recursion

Algorithm 3.4: Update algorithm

Data:

• Predicted particle distribution {x(i)
k|k−1}Ni=1 at time step k

• Radar or optical measurement z

• Covariance matrix of the noise Rk

Result: Updated particle distribution {x(i)
k }Ni=1

Choose H according to the type of sensor to use
for i = 1 . . . N do

y−i ← T (x
(i)
k|k−1, ts, Rs)

end
µ−k ← mean({y−i }Ni=1)
Σ−k ← cov({y−i }Ni=1)
Compute Kalman Filter updated mean and covariance
ξ ← z −Hµ−k
S ← HΣ−kH

′ +Rk

K ← Σ−kH
′S−1

µk ← µ−k +Kξ

Σk ← (I −KH)Σ−k
for i = 1 . . . N do

Sample yi ∼ N(µk,Σk)

x
(i)
k ← T−1(yi, ts, Rs))

end

3.5.1 Performing inference

Once the filtering distributions have been approximated with the algorithms de-

scribed above, they can be used to compute useful information such as the expected

position of a satellite, or to approximate the probability of collision between two

bodies. In general, performing inference with Monte Carlo methods is very flexible;

it could be interesting to know, for instance, the confidence intervals of the obtained

estimators or the highest posterior density regions of the obtained distribution [42].

However, these advanced inference techniques are out of the scope of this thesis and

are left for future work.

Obtaining a point estimate from the obtained distributions can be useful to indi-

cate the likeliest state given the available data. As it was previously discussed, the

distributions are made up of unweighted particles which means that the Maximum

A Posteriori (MAP) estimate used commonly in particle filtering approaches, which
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3.5 Filtering recursion

Figure 3.3: Flowchart for the filtering algorithm with global correction

returns the state of the particle with the highest weight, is not suitable in this case.

Due to the nature of orbital mechanics, the spread of particles after prediction

will tend to lay along the same orbit and thus take a banana-shaped distribution.

Taking the Expected A Posteriori (EAP) estimate from the distribution in the Carte-

sian space X, then, will introduce bias in the estimated orbit as illustrated in Figure

3.4 for a sample cloud of particles. To solve this, it is proposed to first map the

distribution into the augmented sensor frame S∗, compute the EAP in this space,

and then map this value back into X as the filter output. The resulting estimator

is compared to the original one in Figure 3.4, where it can be seen that the filter

estimate agrees more with the estimated orbit as predicted by the orbital dynamics.

The method is described in Algorithm 3.5.

Algorithm 3.5: State estimate extraction process

Data:

• Particle distribution {x(i)
k , w

(i)
k }Ni=1 at time step k

Result: Estimated state x̂k
for i = 1 . . . N do

ŷi ← T (x
(i)
k , ts, Rs)

end
µk ← mean({yi}Ni=1)
x̂k ← T−1(µk, ts, Rs))

To approximate the probability of collision, the expected value of a function
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Figure 3.4: EAP of the Cartesian distribution (red circle) compared to the proposed
state estimate (green circle).

determining if the two objects are closer than a distance representing their size

could be computed. This assumes that the objects are spherical and have the same

size, but the distance parameter could be adjusted to relax this assumption. If the

function

collision(x, y) =

{
1, if d(x, y) < T,

0 otherwise,
(3.45)

with d(x, y) the distance between points x and y in Cartesian co-ordinates, then

the probability of collision between objects X1,k, X2,k with particle distributions

{x(i)
1,k, w

(i)
1,k}Ni=1, {x

(i)
2,k, w

(i)
2,k}Ni=1, respectively, could be approximated as its expected

value:

pc = E[collision(X1, X2)]

≈
N∑
i=1

N∑
j=1

w
(i)
1,kw

(j)
2,k collision(x

(i)
1,k,x

(j)
2,k).
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3.6 Experiments

3.6 Experiments

In this section, an analysis is made of the validity of the assumptions of the proposed

algorithm, followed by experiments on simulated data, and a brief discussion about

how this method compares to other filtering algorithms is finally presented.

3.6.1 Comparison to the true posterior

This chapter presents an approximation of the filtering distribution obtained from

Bayes’ filter,

p(xk) =
f(xk|xk−1)gk(zk|xk)∫
f(x′k|xk−1)gk(zk|x′k) dx′k

. (3.46)

Although as it was discussed before there is no closed form for this distribution,

simulation methods such as the ones discussed in chapter 2 could be used to sample

from the true posterior density. This is beneficial as it can be used to analyze how

faithfully the approximated distribution resembles the real posterior.

In order to obtain samples from the posterior, the Metropolis-Hastings algorithm

was used using the denominator of (3.46) and a Gaussian kernel. Due to the prob-

lems described in section 3.5, however, sampling directly from this distribution was

problematic. The main problem was that it was hard for the term corresponding to

the Markov transition kernel to be greater than zero, as it is very narrow compared

to both the measurement likelihood and the prior, so all of the samples were rejected

and the algorithm would be stuck at the initial value.

Although more sophisticated sampling algorithms exist, where for instance bridg-

ing densities are used to help the MCMC method converge smoothly to the target

distribution, these usually involve a higher computational burden [18]. Since it

would still be interesting to compare the approximation done here with the true

posterior, however, the implementation of these will be left for future work.

3.6.2 Analysis of the distributions

The Kalman Filter provides an estimator which is optimal in the sense of minimal

variance if the prior distribution is Gaussian and the measurement model is linear.

The distributions which are derived from the initial orbit determination methods

described above are not, however, Gaussian, and thus using a Kalman filter naively

can provide invalid results.

Gaussian distributions are completely characterized by their first two moments,

but the uniform distributions on the admissible regions described before need more
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3.6 Experiments

parameters to be characterized. The Gaussian approximation that is done, then,

truncates some of the available information and can generate samples that are not

admissible. However, approximating this distribution as a Gaussian yields big per-

formance gains since the number of required particles is relatively low, as discussed

in section 3.5. Fortunately, the generated distributions are not multimodal as they

are composed of Gaussian and uniform components, and so the Gaussian approxi-

mation is reasonable. The uniform components could be better approximated with

distributions with fatter tails, such as Student’s t distribution, and so filters for

these such as the one in [77] could reasonably be used here. Alternatively, Gaussian

mixtures such as the ones described in chapter 2 could be used to increase the faith-

fulness of the approximation, as in [16]. The Kalman filter, however, is both simple

and efficient compared to these two approaches so it will be used in this work.

Since the filtering distribution is approximated as a Gaussian when there is an

update step, it is important to see how robust the filter is to these reparametrizations

as they can entail some information loss. To do this, a Gaussian distribution in the

sensor state space will be generated and non-linear transformations of two types will

be applied to it:

• First, when the relative position of the object in the sensor frame of reference

S∗ evolves;

• Second, when the spatial distribution of the object in the Earth frame of

reference X is corrupted with noise.

In order to evaluate if a distribution is still Gaussian after each of these transforma-

tions, Henze and Zirkler’s BHEP test [35] is used. This test compares the theoretical

characteristic function of a Gaussian distribution with the empirical characteristic

function of the available samples, and develops a test statistic which can be used to

test whether it is plausible for the samples to have come from a Gaussian distribu-

tion. The p-values of the test that are presented below indicate the probability of

the test statistic (or a more extreme result) having been produce under the hypoth-

esis of the distribution being Gaussian. The hypothesis is rejected if the p-value

falls under a specified threshold probability, e.g., 0.05.

In the first experiment a Gaussian distribution in spherical co-ordinates is ini-

tialized, corresponding to an object directly above a sensor and at a distance of 4

times the radius of the Earth, with covariance

diag([10002, (π/180)2, (π/180)2, 1002, (π/180)2, (π/180)2]),
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Figure 3.5: Results of the BHEP test averaged over 100 Monte Carlo runs for the
first sensibility experiment. The red line indicates the 0.05 confidence interval, under
which the hypothesis of the distribution being Gaussian is rejected.

where diag(·) denotes the diagonal matrix with elements in the diagonal given by

its argument. The sensor frame of reference is then modified, corresponding to the

sensor motion induced by the rotation of the Earth during 20 seconds, and the initial

distribution is mapped to this new co-ordinate frame. The BHEP test is used to

analyze the probability of the distribution being Gaussian in this new frame, and

the process is iterated for a duration of approximately 1 hour. This was repeated

for 100 Monte Carlo runs, and the average values of the p-values yielded by the test

can be seen in Figure 3.5 graphed against the relative angle to the initial sensor

frame of reference.

The results of the first experiment suggest that the validity of the Gaussian

assumption in a sensor frame of reference is robust to moderate alterations of the

sensor frame of reference. While out of the scope of this chapter, it opens the

possibility for the exploitation of the sensor co-ordinate parameterization when two

sensors observe simultaneously the same orbiting object.

In the second experiment a Gaussian distribution in spherical co-ordinates is

initialized as in the first one. The spatial distribution is then mapped to the Carte-

sian frame of reference, corrupted with Gaussian noise in this parametrization with

covariance

diag([10002, 10002, 10002, 1002, 1002, 1002]),

before being mapped back to sensor frame of reference. The BHEP test is then used

to assert whether the resulting distribution is Gaussian. This procedure is then

repeated for growing levels of noise. The experiment was performed on 100 Monte

Carlo runs, and the averaged p-values can be seen in Figure 3.6.
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Figure 3.6: Results of the BHEP test averaged over 100 Monte Carlo runs for the
second sensibility experiment. The noise level indicates how many times Gaussian
noise was added to the distribution in Cartesian co-ordinates. The red line indicates
the 0.05 confidence interval.

T. a e i Ω ω
1 16495.0 km 0.01 2.0◦ 20.0◦ 311.0◦

2 26352.5 km 0.6 11.3◦ 60.0◦ 351.0◦

Table 3.1: Target index, semi-major axis (a), eccentricity (e), inclination (i), right
ascension of the ascending node (Ω), and argument of perigee (ω).

The results of the first experiment suggest that the validity of the Gaussian

assumption in a sensor frame of reference is robust to the corruption of the distribu-

tion in the Cartesian frame of reference with significant noise levels. In particular,

since the level of the process noise Qk in the prediction step (3.12) is significantly

lower than the threshold over which the BHEP test fails in Figure 3.6, these results

suggest that the validity of the Gaussian approximation hold for successive filtering

steps while an object is in the sensor’s field of view and thus frequently observed

and updated.

3.6.3 Filtering results

The performance of the proposed filter will be evaluated on two simulated orbits

which were generated using the method described in [26], where a Runge-Kutta

7/8 numerical integration method is used to propagate the orbits of the objects

taking into account the gravitational field of the Earth up to order and degree 12,

including third-body perturbations of the Sun and the Moon and radiation pressure.

The simulated objects are spherical and have area-to-mass ratios of 0.02m2/kg and

their orbital characteristics can be seen in Table 3.1.
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Figure 3.7: Orbits used for performance evaluation. Target 1 is shown in red when
observed and blue otherwise; target 2 in orange when observed and green otherwise.

An illustration of the orbits can be seen in Figure 3.7, including the periods

where they are observed by the Earth-based sensors. The challenges for each filtering

scenario are different - Target 1 is only seen for brief periods of time as it flies past

the sensor field of view, while Target 2 is seen for an uninterrupted time interval.

For each target, 100 sets of measurements are simulated for either a radar (Target

1) or a telescope (Target 2), and the estimation error is calculated for each.

Comparison of dynamical models

The dynamical model will be chosen to be the one based on orbital element propaga-

tion, as it is possible to have a model of dynamical noise which reflects more closely

what is expected in orbital dynamics. To illustrate this, the described filter was run

on the radar measurements produced by target one. The measured covariance in

Earth-centred spherical co-ordinates can be seen in figures 3.8 and 3.9, shown for

each parameter. It is clear here that the orbital elements parametrization can be

used to add a reasonable amount of covariance during filtering, without adding too

much uncertainty in the periods when the target is not observed.

Simulations

The first target is a low-earth orbit satellite which is observed for three brief time

intervals as it comes into the field of view of the sensor. A radar is used for this
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Figure 3.8: Estimated standard deviation for range, azimuth, and elevation, for the
orbital elements prediction (continuous line) and the Shepperd matrix prediction
(dashed line) in logarithmic scale. The regions highlighted in blue represent periods
of time when the object is observed.
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Figure 3.9: Estimated standard deviation for the rates of change of range, azimuth,
and elevation, for the orbital elements prediction (continuous line) and the Shepperd
matrix prediction (dashed line) in logarithmic scale. The regions highlighted in blue
represent periods of time when the object is observed.
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experiment as the distance from Earth to the object is not too large. The initializa-

tion is done without any prior knowledge of the object’s characteristics. Figure 3.10

shows the Root Mean Square Error (RMSE) in position and velocity of the estimate,

and the periods when the object is observed. Although the orbit is not perfectly

recovered, it can be seen that the estimated uncertainty is sufficient to reacquire

the track in the following observation periods and reduce the error each time the

object is seen. The estimation error can be seen alongside the estimated parameter

variance in figures 3.11 and 3.12, where it can be seen that it is well captured save

for a few spikes due to numerical instability.

The second target is on an elliptical orbit which is farther away from Earth. An

optical sensor is used to observe the object, which lies in its field of view for most

of the filtering duration. The results of the estimation are shown in Figure 3.13,

where it can be seen how the error is kept low during the observation period, and

starts to drift once the object is no longer seen. As before, the estimated covariance

of the filter is shown in figures 3.14 and 3.15, where it can be seen that save for a

spike due to numerical errors the estimation error is well captured by the estimated

covariance.

3.7 Summary

A method for statistical orbit determination was shown which uses measurements

from ground-based radar or optical sensors to provide orbit estimates and their asso-

ciated uncertainty. The importance of propagating probability distributions rather

than point estimates in the space situational awareness context was described. A

method was described where particles are used to represent the filtering distributions

as this allows for high flexibility in the shape that it can take, which is necessary

due to the distribution shapes obtained during initial orbit determination.

The filtering algorithm comprises a method to obtain initial estimates of the

probability distribution of the orbit from a single measurement, based on the ad-

missible regions approach. This is done by imposing a constraint on the possible

states that the unobserved variables can have, based on the fact that the energy of

the observed object must be negative for it to be orbiting the Earth. An orbital

propagation method based on the Shepperd matrix was designed, which incorporates

uncertainty on the dynamical model to account for unmodeled factors. The update

algorithm corrects the distribution when new data is acquired by approximating

the predicted particle distribution as a Gaussian distribution in a sensor-centered

spherical co-ordinate system, where a linear Kalman update can be applied as the
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Figure 3.10: Average error in position and velocity for target 1, observed by a radar.
The periods when the target is in the field of view are highlighted in blue.
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Figure 3.11: Estimated error in spherical co-ordinates (continuous line) and 3-σ
bounds of estimated standard deviation (dashed line) for the radar experiment.
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Figure 3.12: Estimated error in spherical co-ordinates (continuous line) and 3-σ
bounds of estimated standard deviation (dashed line) for the radar experiment.
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Figure 3.13: Average error in position and velocity for target 2, observed by a
telescope. The periods when the target is in the field of view are highlighted in
blue.
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Figure 3.14: Estimated error in spherical co-ordinates (continuous line) and 3-σ
bounds of estimated standard deviation (dashed line) for the optical experiment.

71



3.7 Summary

Figure 3.15: Estimated error in spherical co-ordinates (continuous line) and 3-σ
bounds of estimated standard deviation (dashed line) for the optical experiment.
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measurement model is linear. The validity of this approximation was evaluated

using the BHEP test, which tests whether a distribution is Gaussian.

Realistic simulated data was used to validate the approach, and error plots were

provided for objects in orbit being observed both with optical and radar sensors. It

was shown that for these simulated objects the method has adequate performance.

In the next chapter, the approach followed here will be embedded in a multi-object

estimation filter in order to estimate populations of objects.
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Chapter 4

Efficient State Estimation of

Multiple Orbiting Objects

I
n Chapter 3, the main challenges related to tracking single Earth-orbiting ob-

jects were described, and a filter was presented in order to address them. How-

ever, the issues related to tracking populations of objects were left out. In this

chapter, this method is extended to estimate the state of multiple objects in the

space situational awareness context.

The maintenance of a catalog of Earth-orbiting objects is essential to preventing

collisions, ensuring that an adequate level of accuracy is provided by navigation,

communication and surveillance satellites, and identifying potential risks caused by

debris. In order to do this, measurements obtained from ground sensors are used to

confirm and potentially correct the location of known objects, or identify new ones

as they are detected by the sensors. Additionally, it is necessary to consider sensor

failings such as missed detections and spurious measurements, and the possibility of

ambiguous associations between measurements and tracks.

Tracking objects in the space situational awareness context has several inter-

esting particularities. The field of view of the sensors is small with respect to the

surveillance region, which means that targets will not be observed for long periods

of time. The dynamics of orbiting objects are well known, which means that the

dynamical model will have low amounts of noise. Finally, very little information

is available about newly observed objects as they could be debris with very differ-

ent characteristics, so robust initial orbit determination procedure is required which

accurately reflects this lack of knowledge.

A recent estimation framework for stochastic populations proposes an alternative

probabilistic description of the multi-object state, by introducing the notion of object
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distinguishability [37]. The main feature of this framework is that it allows the

representation of both objects that can be individually distinguished, or that are

part of a larger population. Two filters have been developed with this framework:

The Distinguishable Independent Stochastic Populations (DISP) filter [14], and the

Hypothesized Independent Stochastic Populations (HISP) filter [38].

The framework for the estimation of stochastic populations provides the advan-

tages of both random finite set based methods, which provides a way to create

principled filters which estimate populations of objects in a fully probabilistic way,

with classical approaches which use heuristic track managers to provide individual

track information. Another approach which has recently surfaced to do this extends

random finite sets with labels to propagate track identity [99], and has produced

the labeled multi-Bernoulli (LMB) filter [72]. The LMB filter has cubic complexity,

however, whereas the filter that will be proposed in this chapter is linear.

The DISP filter does not make many assumptions apart from the estimated ob-

jects behaving independently from one another, and so is highly robust to ambiguous

data association. Since it propagates a large amount of information, however, it suf-

fers from high computational complexity. This filter has been successfully used for

the estimation of orbiting objects [13], where it was shown that it can deal with

high levels of clutter in a multi-sensor scenario.

In space situational awareness, it is often the case that the state of a high number

of objects, both objects in the catalog and debris, need to be estimated. Additionally,

save for complex scenarios such as the break-up of a satellite, the data association is

not usually ambiguous enough to warrant the use of a filter of very high complexity.

An alternative filter based on the stochastic populations approach is proposed in

this chapter as a way to deal with these issues. The HISP filter [38] is an estimation

algorithm that is derived from the DISP by using the assumption that the data

association is only moderately ambiguous. The resulting filter loses much of the

computational complexity of the DISP, and is linear in the number of targets and

in the number of measurements. Due to this, it is ideally suited to a scenario with

very large numbers of targets which are observed with sensors with limited coverage,

where the measurements are corrupted by noise, and there are possible false alarms

and misdetections.

As a base to this multi-object filter, the single-object filter described in Chapter

3 will be employed. An additional improvement that is explored here is a different

parametrization of the state space, which permits the use of more accurate orbital

dynamics. By using orbital elements [7], the unperturbed two-body problem can be

solved directly as opposed to using the linearization that is done when computing
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the Shepperd matrix [85]. The effect of using this dynamical model with higher

accuracy will be described in this chapter.

The purpose of this chapter is to present a multi-object state estimation filter

for space situational awareness which is both powerful and computationally efficient.

The framework for estimating stochastic populations is described in section 4.1. The

DISP and HISP filters are described in section 4.2, and implementation details of

the HISP filter in a space situational awareness scenario are given in section 4.3.

Results on a challenging simulated scenario are shown in section 4.4, and finally a

summary is presented.

4.1 The estimation framework for stochastic

populations

In this section, a broad description of the context in which the HISP filter was devel-

oped is presented. The estimation framework for stochastic populations, introduced

in [37], proposes a unified probabilistic description of all the sources of uncertainty in

a generic multi-sensor multi-object detection and tracking problem. This framework

enables the construction of filtering solutions in a principled way, where the choice

of the assumptions will determine the complexity of the resulting algorithm. The

framework divides the propagated uncertainty in two levels: the individual level and

the population level.

On the individual level, the targets of the population of interest are represented

by tracks. Each track describes the current state of the object, or population of

objects, associated to it. A track does not necessarily represent a single target, as it

can also represent collectively a sub-population of targets which are indistinguishable

from each other for the purpose of estimation. The concept of target distinguisha-

bility is a key element of this estimation framework and will be discussed in more

detail further on.

On the population level, the composition of the population of interest is rep-

resented by multi-target configurations. Each of these proposes a combination of

tracks and an associated multiplicity, i.e., the number of targets represented by each

track, as a representation of the whole of the population of interest. A multi-target

configuration is associated to a scalar weight which describes the probability that

this configuration reflects the true composition of the estimated population.

As before, the considered estimation framework is embedded in the Bayesian

paradigm. In order to integrate available information about the population of inter-
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est, a sequence of time prediction and data update steps are applied to the estimated

stochastic population. Time will be indexed by a discrete set T, and for any t ∈ T,

the state space when the target is in the region of interest will be denoted X•t ⊆ Rd,

while the observation space where real measurements are generated will be denoted

Z•t ⊆ Rd′ . These are augmented with two discrete states; the empty state ψ and the

empty observation φ, respectively, to form the full target state space Xt = X•t ∪{ψ}
and the full observation space Zt = Z•t ∪{φ}. The empty state ψ describes the state

of targets outside the region of interest, such as objects that disintregrate upon at-

mosphere re-entry, or those that leave near-Earth space; while the empty observation

φ describes misdetections, i.e., when an object fails to produce an observation.

In this application, the target state space Xt is constant throughout the esti-

mation since the surveillance region is a fixed volume of space around Earth. The

observation state space Zt, however, can vary since measurements from different

sensors can be used for estimation. At each time t ∈ T, each sensor is assumed to

have finite resolution, with resolution cells corresponding to pixels or radar cells, for

example. At time t ∈ T, resolution cells will be indexed by the set Z ′t and the set of

observations will be denoted Zt ⊆ Z ′t. When augmented with the empty observation,

they will be denoted Z̄t = Zt ∪ {φ}.

4.1.1 Representation of individuals

Each track represents an individual object, or a sub-population of targets that are

indistinguishable from one another, as the same information is available for all of

them. The probability density p on Xt associated to a track describes the state

of each individual of the sub-population of targets that it represents. Examples of

populations that are indistinguishable can include, for instance, the pieces of debris

following a collision before information on each piece is available to uniquely identify

them. In tracking applications, the most direct way to distinguish targets is usually

to consider the sequence of measurements which have been associated with it, which

will be called their observation history, or observation path. For this reason, The

space Ōt of observation histories is considered, defined as the Cartesian product

Ōt
.
= Z̄0 × · · · × Z̄t, (4.1)

so that ot ∈ Ōt takes the form ot = (φ, . . . , φ, zt+ , . . . , zt− , φ, . . . , φ) with t+ and

t− the times of appearance and disappearance of the considered track, respectively,

and with zt ∈ Z̄t for any t ∈ [t+, t−]. The empty observation path (φ, . . . , φ) ∈ Ōt

is denoted φt. It is worth noting that targets cannot produce measurements before
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their time of appearance or after their time of disappearance.

Each target is identified by an index i in a set I. Here, an index refers to any

element that uniquely identifies a target, and is not restricted to a number. For

instance, observation paths can be a natural way of indexing targets, although even

more information can be added to index tuples – for instance, what sub-population

a target belongs to, or what time the target disappeared. This will be described in

more detail later, as the nature of the index depends on the particular filter.

The DISP and HISP filters rely on the following modeling assumptions. At any

time t ∈ T,

M.1 A target produces at most one observation (if the target does not produce a

measurement, a misdetection occurs), and

M.2 An observation originates from at most one target (if no target produces it, a

false positive occurs).

An important consequence of M.1, and M.2 is that an observation characterizes

an individual target. A track i associated to an observation path with a least one

detection (i.e., oit 6= φt) cannot have a multiplicity ni greater than one since it

cannot represent more than one target. The previously detected target represented

by the track i is then said to be distinguishable, and the probability density pi in

the full state space Xt describes the state of that individual and none other. On

the contrary, a track i associated to the empty observation path oit = φt represents

a sub-population of yet-to-be-detected targets that are indistinguishable from one

another, and may have a multiplicity ni greater than one.

4.1.2 Representation of populations

The composition of the population of interest is described probabilistically using

multi-target configurations. These associate a multiplicity to each track in order

to describe a specific composition, and attach to this a weight which describes the

likelihood of this population given the available data. Whenever the multiplicity

of a particular multi-target configuration is zero, it indicates that according to this

configuration the target does not exist.

The assumptions that the DISP and HISP filters use that are related to multi-

target configurations are the following:

M.3 Targets evolve independently from one another, and
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M.4 Measurements that result from target detections are generated independently

from one another.

The assumptions of independence are put in place since considering target inter-

actions would make the filters intractably expensive in computational terms. In

general, filters derived from this framework propagate tracks covering all possible

observation paths from the measurements received up to the current time, along

with multi-target configurations representing all possible groups of these tracks and

their weights. Additionally, it is possible to propagate information about yet-to-be-

detected targets, but in tracking applications this is usually not necessary as little

information is available about these.

A simplifying assumption that is used in the HISP filter and some versions of

the DISP filter is the following:

S.1 Appearing targets and yet-to-be-detected targets are mixed in a single popula-

tion

This simplification reduces the complexity of the filters by reducing the amount of

sub-populations that need to be propagated. In tracking applications, this does not

cause a great loss of precision since it is usually not necessary to estimate the state

of objects for which no measurements are available. The population that represents

these undetected targets is indexed by the symbol u ∈ I.
An illustration of possible observation paths up to time t = 3 is shown in Figure

4.1, where two measurements are obtained in time step 1, one in time step 3, and

zero in time steps 0 and 2. The six possible observation paths that result from this

are listed in the figure.

Figure 4.1: Observation paths at time t = 3, given a sequence of collected observa-
tions.
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4.2 Derived filters

In this section, the DISP and HISP filters are described. The DISP filter does not

require any additional assumptions apart from the ones described in the previous

section, and is a robust estimation algorithm which is well suited to situations where

data association is highly ambiguous. The HISP filter uses an additional assump-

tion which discards some information about the population, but benefits from high

computational efficiency. Both filters are described below.

4.2.1 The DISP filter

The DISP filter maintains a representation of the stochastic population through a set

of tracks indexed through their observation paths i ∈ I, and a set of hypotheses Ht

which are sets of pairwise compatible tracks. In this context, two tracks are said to be

pairwise compatible if their observation histories do not share any measurements,

which is in line with modeling assumption M.2. A possible composition of the

population of interest is then given by

• a subset of pairwise compatible tracks H ⊆ It \u representing tracks that have

been previously detected, and

• the undetected track u with multiplicity nu representing a sub-population of

nu yet-to-be-detected targets.

The representation of the stochastic population, then, is given by the set of all

the possible multi-target configurations (H,nu) ∈ Ht × N with associated weights

wt(H,n
u) ∈ R+ such that ∑

(H,nu)∈Ht×N

wt(H,n
u) = 1. (4.2)

The probability of existence wit of distinguishable tracks i ∈ It \ u can be found by

adding the weights of all hypotheses which contain it and all multiplicities of the

undetected track:

wit =
∑

(H,nu)∈Ht×N
H3i

wt(H,n
u), i ∈ It. (4.3)

Similarly, the cardinality distribution of yet-to-be-detected targets can be found by

marginalizing over all hypotheses:

ρu
t (n) =

∑
H∈Ht

wt(H,n), n ∈ N. (4.4)

80



4.2 Derived filters

The robustness of the DISP filter comes from the fact that it propagates the

joint existence of any subset of tracks based on their full observation paths. Due to

this, its computational complexity grows steeply with the number of observations

and targets as the set of maintained hypotheses grows very large. In this sense, it

is comparable with the MHT filter, although with the advantage that it is derived

from a fully probabilistic framework in a principled way, avoiding the need for track

management heuristics.

4.2.2 The HISP filter

The HISP filter is a principled approximation of the DISP filter that considers that

it is unlikely for two objects to have generated the same observation in Zt. In space

situational awareness, this is reasonable as orbiting objects tend to have reasonable

distances between them with respect to the resolution of the sensors that are used

to observe them. This additional assumption greatly simplifies the data update step

of the DISP filter, resulting in a method with linear complexity with respect to the

number of hypotheses and observations.

In order to describe the prediction and update steps of the HISP filter, it is

important to note that as the target state space Xt = X•t ∪ ψ is a hybrid discrete-

continuous space, and so it is necessary to use the formalism of measure theory

to define integrals and probabilities. As such, integrals on this space are defined

as Lebesgue integrals, such that for instance the integral of a function f on a set

B ⊆Xt is expressed as∫
B

f(x)dx =

∫
X•t

1Bf(x)dx+ 1B(ψ)f(ψ). (4.5)

The observation space is also made up of a continuous part and a discrete part,

requiring the use of a special update mechanism. Let p be a probability density

function and lz an integrable function defined on the same space Xt. The formula

p̂(x) =
lz(x)p(x)∫
lz(x′)p(x′)dx′

, (4.6)

defined whenever
∫
lz(x

′)p(x′)dx′ > 0, is the equivalent of the Bayes update defined

in Chapter 2 with lz(x) = g(z|x). The function lz is referred to as a potential since it

reshapes p by increasing or decreasing its probability according to the values that it

takes. In this filtering application, the potential of interest lz will be the probability

density function corresponding to a likelihood on Xt evaluated at the observation
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z ∈ Z•t .

As it was seen in Chapter 2, if p is Gaussian and the observation process is

linear and Gaussian, then p̂ is the Kalman filter posterior distribution. In the

linear and Gaussian case, solutions to the multi-target tracking problem can be

formulated in terms of Kalman filters in interaction [12], and it can be seen that

the denominators of the Bayes update,
∫
lz(x

′)p(x′)dx′, indicate the likelihood of

track-to-measurement associations.

An issue that comes up in multi-object tracking scenarios is that the use of the

measurement likelihood as described in (2.4) can be problematic as its value will

be dependent on the reference measure used – the association likelihoods will be

different, for instance, if the state space is measured in meters or kilometers, as the

association is not unitless (its units are the reciprocal of the units of the reference

measure). This means that if different reference measures are used, the value of

the association likelihood will be different even if the same association likelihood is

being evaluated. A consequence of this is that comparisons to events such as false

alarms or newly appearing tracks will be unreliable, as these association functions

are dimensionless.

As a way to circumvent this problem, it is preferrable to scale this potential

such that the denominator is unitless and is directly comparable to the probabilities

of target appearance, survival, and measurement false alarm and misdetection [38],

such as

lz = exp

(
−(Hm− z)′S−1(Hm− z)

2

)
, (4.7)

from where ∫
lz(x)p(x)dx =

√
|R|
|S|

exp

(
−(Hm− z)′S−1(Hm− z)

2

)
, (4.8)

where | · | denotes the determinant. This potential is unitless, scales the association

likelihoods to the range (0, 1], and does not change the results of the single-target

estimated probability as the scaling affects the numerator and denominator equally.

In practice, the observation process at time t is modeled by a potential

`zt (x) = pd,t(x)lzt (x), z ∈ Zt,

`φt (x) = 1− pd,t(x),
(4.9)

where pd,t(x) is the probability of detection and the dimensionless potential lzt is the

likelihood of association with measurement z.
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Simplification S.1 implies that in terms of population management, the HISP fil-

ter collapses the populations of appearing targets, i.e., those entering the surveillance

region at the current time step; and yet-to-be-detected targets, i.e., those that have

previously entered the scene but have not yet been detected, into the same track.

Due to this, the time of appearance of a target is unknown and does not provide

a way to uniquely identify an individual in the population. Since targets with the

same observation paths can both represent objects that disappeared from the scene

at the last time they were observed, and objects that have been misdetected since

the last measurement, it is important to add the last time at which the target is

believed to have been in the scene to the indexing function.

At time step t ∈ T, targets are then indexed by pairs i = (t′,o) ∈ It = T × Ōt

where t′ is the last epoch where the target was known to be in the scene, and the

observation path o indicates the measurements that have been associated with it.

If t′ < t, it means that the target is believed to have left the scene, whereas if t′ = t

the target is believed to still be in the scene. Individuals of the first type are not

used for filtering, but they are used for state extraction as will be explained later,

so they will be stored in a different indexing set, I−t for targets which disappeared

at time t, which will be defined later.

The composition of a population after prediction at time t is denoted It|t−1 =

{(t,o |o ∈ Ōt−1}, while the updated population is indexed with set It = {(t,o |o ∈
Ōt}. From here on, the symbol (m) will be used to denote tracks that have been

previously detected (or measured), such that o 6= φt. This is the population of

previously-detected targets. The symbol (u) will be used to denote targets that are

in the state space, but have not yet been detected, in which case o = φt. According

to S.1, this last population has a single element, which will be denoted iut , or when

there is no possible ambiguity, simply u. Using this notation, the HISP filter can be

expressed by the propagation of a set of hypotheses

Pt =
{(
pit, w

i
t , n

i
t

)}
i∈It

.

For each i ∈ It, pit indicates the single-object probability distribution associated to

the track, wit is the weight or probability of existence, and nit is the multiplicity of

the hypothesis. It is important to note that the probability of existence of a track

is different from the probability of presence in the scene, 1− pit(ψ). Also, the HISP

filter propagates hypotheses that are different in meaning than those of the DISP,

the biggest difference being that a single set is propagated with all the tracks. Track

extraction is then more involved than the DISP, where it all that is required is to
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extract the set H with the highest weight.

In order to maintain a tractable structure for the HISP filter, some additional

assumptions need to be made. In particular, it is assumed that the terms

w̆k,zt = wkt|t−1

∫
`zt (x)pkt|t−1(x)dx (4.10)

corresponding to the association of target with index k ∈ It|t−1 with observation

z ∈ Zt satisfy, for tracks k,k′ ∈ It|t−1, that it is unlikely for two tracks to produce

the same measurement:

S.2 For any k,k′ ∈ It|t−1 with k 6= k′, and any z ∈ Zt, it holds that w̆k,zt w̆k
′,z
t ≈ 0.

The final assumption sacrifices the propagation of the joint probability of existence

of tracks, and is also necessary to obtain linear computational complexity:

S.3 Hypotheses are independent of one another.

HISP prediction is done through a transition kernel which is divided in three

parts: one which models object dynamics, one which models object disappearance

and one which models object appearance. The first kernel models exclusively the

dynamics of the object, and is denoted qπt . For x ∈ X•t and x′ ∈ X•t−1, it is the

transition kernel described in Chapter 2: qπt (x,x′) = f(x|x′). For x′ ∈ X•t−1,

qπt (ψ, ψ) = 1 and qπt (x′, ψ) = 0. The probability of survival can be computed as

pπt (x) =
∫
qπt (x,x′)dx′ and can be interpreted as the probability that a target with

state x does not disappear at time t− 1.

The disappearance kernel is denoted qωt and satisfies, for x′ ∈ X•t−1,∫
X•t
qωt (x′,x) = 1 and qωt (ψ,x) = 0. The transitions qπt and qωt are meant to be

complementary in the sense that qωt (x, ψ) + pπt (x) – either a target disappears or it

does not. The final kernel qαt is for appearing targets; for x′ ∈ X•t−1 and x ∈ X•t ,

qαt (x′,x) = 0 and qαt (x′, ψ) = 0, and qαt (ψ,x) is the distribution of appearing targets

with weight wαt .

After prediction, the newly appeared and yet-to-be-detected targets are jointly

represented by

pu
t|t−1(x) =

nu
t−1

∫
qπt (x′,x)pu

t−1(x′)dx′ + nαt p
α
t (x)

nu
t−1 + nαt

(4.11)

wu
t|t−1 =

nu
t−1w

u
t−1 + nαt w

α
t

nu
t−1 + nαt

(4.12)

nu
t|t−1 = nu

t−1 + nαt , (4.13)
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where (pαt , w
α
t , n

α
t ) are the probability distribution, weight, and cardinality of ap-

pearing targets at time t.

The remainder of the predicted population is composed of objects that have been

observed at least once in the past, and have indices of the form k = (t− 1,o) with

o 6= φt−1. These can either be propagated using kernel qπt , or disappear with kernel

qωt . After prediction, they are represented by

pit|t−1(x) =

∫
qκt (x′,x)pkt−1(x′)dx′, (4.14)

wit|t−1 = (wit|t−1, 1), (4.15)

nit|t−1 = 1 (4.16)

for κ ∈ {π, ω}, and i = (t,o) when κ = π and (t − 1,o) otherwise. These last

hypotheses are not considered further for filtering – they are not indexed in It|t−1

– but must be stored in the set of disappeared targets I−t for the track extraction

process. The resulting multi-target configuration is then defined as

Pt|t−1 =
{(
pit|t−1, w

i
t|t−1, n

i
t|t−1

)}
i∈It|t−1

.

For the observation update, it is necessary to model false alarms and misde-

tections. The probability that a false alarm will be generated in a resolution cell

z ∈ Zt will be denoted vzt . For k = (t,o) ∈ It|t−1 and z ∈ Z̄t (recall Z̄t is the set

of resolution cells augmented with the empty detection), define index i = (t,o× z)

where this observation path is the concatenation of o and measurement z. Let pit

be the probability density function on Xt given by

pit(x) =
`zt p

k
t|t−1(x)∫

`zt p
k
t|t−1(x′)dx′

. (4.17)

In order to obtain the posterior probability for z ∈ Zt to be a false alarm, and to

help with state extraction, an additional set of indices needs to be introduced to

represent false alarms. At time step t, let I′t = {z}z∈Zt , and define wz,zt = w̆z,zt = vzt ,

and wz,φt = 1 − vzt . Then for k ∈ It|t−1 ∪ I′t, the weights corresponding to the a

posteriori probability for the given hypothesis are given by

wit =
wk,zex w̆

k,z
t∑

z′∈Z̄t w
k,z′
ex wk,z

′

t

(4.18)
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or, equivalently,

wit =
wk,zex w̆

k,z
t∑

k′∈It|t−1
wk
′,z

ex wk
′,z
t

, (4.19)

where wk,zt = w̆k,zt + 1φ(z)(1 − wkt|t−1) is the probability mass attributed to the

association between hypothesis with index k and measurement z, which also ac-

commodates the possibility of the target not existing in the case z = φ, i.e., a

missed detection. For an observation z ∈ Zt and an index k ∈ It|t−1 ∪ I′t, the scalar

wk,zex is the probability of the association of the remaining observations with false

alarms, any of the remaining hypotheses, or any of the remaining yet-to-be-detected

individuals. Approximation S.2 permits this to be expressed as

wk,zex = C ′t(k, z)
∏

k′∈ Im
t|t−1

\{k}

wk′,φt +
∑

z′∈Zt\{z}

wk
′,z′

t

Ct(z′)

 , (4.20)

where Im
t|t−1 = It|t−1 \ iut−1, where Ct(z) = wu,z

t /wu,φ
t + vzt /(1− vzt ) and where

C ′t(k, z) =
[
wu,φ
t

]nu
t|t−1

−1u(k)

 ∏
z′∈Z′t\Z′

(1− vz′t )

 ∏
z′∈Zt\{z}

Ct(z
′)

 (4.21)

with Z ′ = {z} when k ∈ I′t and Z ′ = ∅ otherwise. After the update, the resulting

state configuration is given by

Pt =
{(
pit, w

i
t , n

i
t

)}
i∈It

,

where nit = nu
t|t−1 if i = u and nit = 1 otherwise.

As it can be seen, the computation of target weights is of linear complexity with

respect to the number of measurements and the number of hypotheses. Assumptions

S.2 and S.3 are essential to this, and a derivation of the filter using them can be

seen in [37].

4.3 The HISP filter for space situational

awareness

This section describes the implementation of the HISP filter in a space situational

awareness scenario, extending the single object estimation method described in sec-

tion 3 to track multiple orbiting targets.
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4.3.1 State representation and dynamical model

As it was seen in chapter 3, the orbital elements parametrization gives the possibility

to model noise in such a way that the predicted covariance of the filter does not

grow too fast, without adding such little noise that it becomes hard to associate

measurements and tracks. For this reason, it will be used in this chapter.

Although it is possible to model target disappearance (for example, objects dis-

integrating as they enter the atmosphere of the Earth), it is out of the scope of this

work. The disappearance kernel qωt is assumed constant and verifies, for x ∈ X•t ,

qωt (x, ψ) = 10−10, that is, the probability of survival is assumed to be almost unity.

4.3.2 Initial orbit determination and data update

The initial orbit determination method that is used is the same as the one described

in Chapter 3. The appearance kernel qαt is also assumed to be constant, as no a

priori information about target appearance is available.

The data update step is modified in order to consider the field of view of the

sensor. As opposed to the single-object filter described in Chapter 3, it is necessary

to introduce particle weights in order to consider the probability of detection. In

this application, it is determined to be a sensor-dependent constant if the state

is within the field of view of the sensor, and zero elsewhere. If track i ∈ It|t−1 is

associated with the empty measurement φ, then the particle weights γk,jt−1, j = 1 . . . J,

are updated as

γi,jt =

[
1− pd,t(x

k,j
t|t−1)

]
γk,jt−1∑J

j′=1

[
1− pd,t(x

k,j′

t|t−1)
]
γk,j

′

t−1

, (4.22)

where xk,jt|t−1 is the state of the j-th particle of track k. This gives an association

weight

w̆k,φt = wkt|t−1

J∑
j=1

[
1− pd,t(x

k,j
t|t−1)

]
γk,jt−1. (4.23)

In the case that z 6= φ, the target is detected and needs to be updated. The state

update is in this case the same as in Chapter 3, save that the particles are now

weighted, and the probability of detection needs to be taken into account. The

Gaussian approximation is obtained by first weighting the predicted distribution

pkt|t−1 with the probability of detection, and obtaining the Gaussian approximation
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in spherical co-ordinates with these weighted samples:

γ̂k,jt =
γk,jt pd,t(x

k,j
t|t−1)∑J

j′=1 pd,t(x
k,j′

t|t−1)γk,j
′

t

, j = 1, . . . , J

µkt|t−1 =
J∑
j=1

γ̂k,jt y
k,j
t|t−1

P kt|t−1 =
J∑
j=1

γ̂k,jt

(
yk,jt|t−1 − µ

k
t|t−1

)(
yk,jt|t−1 − µ

k
t|t−1

)′
(4.24)

where yk,jt|t−1 is obtained by transforming xk,jt|t−1 into spherical co-ordinates as de-

scribed in Chapter 3. As before, a Kalman update is applied in this space which

permits the computation of the association weight as in the linear and Gaussian

case:

w̆k,zt = wkt|t−1

(
J∑
j=1

γ̂k,jt

)√√√√ |R|∣∣∣Skt|t−1

∣∣∣ exp

(
1

2

(
Hµkt|t−1 − z

)′ (
Skt|t−1

)−1 (
Hµkt|t−1 − z

))
(4.25)

4.3.3 State extraction

One of the necessary tradeoffs of the HISP filter is that it loses information on

the joint probability of existence of targets. As such, in order to extract the most

plausible configuration from the propagated population Pt, it is necessary to perform

an additional step. A criterion to extract the likeliest configuration is to obtain

a subset of tracks which have the maximum possible a posteriori weight, while

maintaining pairwise compatibility. Additionally, it is important to consider the

likelihood of measurements being false alarms, weighted against the likelihood of

association (which has been stored in set I′t), and the disappeared targets in a given

window τ prior to the current time step. The set of indices that are used in the

optimization process is then

Iext = It ∪
t⋃

k=t−τ

(
I′k ∪ I−k

)
, (4.26)

and the desired subset It of targets can be found by solving

It = argmax
I⊆Iext

∏
i∈I

wit (4.27)
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subject to the constraint of no targets sharing any measurements in their observation

paths. This is equivalent to solving

It = argmax
I⊆Iext

∑
i∈I

lnwit (4.28)

subject to the same constraint, which can be done using integer programming [101].

4.3.4 Additional approximations

With the process described in this section, the set of assumptions grows at every

iteration. This is undesirable as it will mean that obtaining the posteriors at each

time step will always grow in computational cost, and all hypotheses, even those

that are very unlikely, will be propagated.

As an additional simplifying assumption, it can be considered that certain hy-

potheses grow too unlikely to be of interest to the filter. As such, after each time

step, hypotheses i ∈ It such that wit < τ , with τ a user-defined threshold that indi-

cates the minimum likelihood for which tracks are still of interest, can be removed

from the indexing set without a high loss of information.

4.4 Results

To evaluate the performance of the HISP filter, simulated data was generating with a

perturbed orbital model considering the Earth’s gravitational field up to degree and

order 12; third order perturbations of the Sun and the Moon; and direct radiation

pressure. The propagation was done with a Runge-Kutta numerical integration

procedurre, where 30 spherical-shaped satellites were simulated.

In order to observe the objects, three sweeping Doppler radar sensors were simu-

lated, located at latitudes 15◦, 0◦, and −15◦, with an even spread in longitude. The

sensors sweep along the parallel of latitude on a 120◦ arc with an angular speed of
2π

5000
rad s−1. The sensor resolution and the profile of the field of view of all sensors

can be seen in Table 4.1, and a constant probability of false alarm was chosen on the

volume of the sensor with mean 1 false alarm per time-step per sensor. The false

alarm rate, obtained by dividing this among the number of resolution cells of the

sensor, is vzt = 7.7× 10−15. The probability of detection was chosen to be constant

in the field of view and equal to pd = 0.98.

The orbital parameters of the simulated objects can be seen in Table 4.2, and a

snapshot of their positions in orbit can be seen in Figure 4.3, along with the field of
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Figure 4.2: Amount of observations per time step in the simulated scenario. True
measurements in blue, and clutter in red.

r (m) θ (◦) ϕ (◦) ṙ (m s−1)
Cell resolution 100 0.1 0.1 10

Noise (std. dev.) 100 0.1 0.1 10
Field of view [50, 45× 106] [−8, 8] [−45, 45] [−1× 104, 1× 104]

Table 4.1: Sensor resolution and field of view profile: range r, azimuth θ, elevation
ϕ, range rate ṙ.

view of the sensors. Figure 4.2 shows the measurements per time step observed by

all of the sensor, separating the true positives and the false alarms.

In terms of modeling, the matrixQt was defined to be constant across the scenario

and equal to

Qt =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 10−10 0

0 0 0 0 0 10−10


, (4.29)

and the matrix Rt was also chosen to be a constant matrix with entries equal to

those found in Table 4.1 in the diagonal, squared, and zeros elsewhere. The particle

number was set to J = 500, and a pruning threshold of 10−4 was used to curtail the

growth of the number of hypotheses.

The scenario was run for 1000 time steps with a constant time lapse of ∆t =
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ID a (km) e i (◦) Ω (◦) ω (◦) ν (◦)
1 42170.23 0.000973 35.74 359.30 124.11 341.97
2 42190.79 0.000492 2.64 295.41 255.24 317.11
3 42164.04 0.000724 2.44 295.04 203.94 90.98
4 42153.98 0.000899 4.64 302.39 221.78 44.81
5 42292.17 0.000292 14.44 339.69 146.81 352.69
6 42164.64 0.000141 13.88 100.70 16.65 163.95
7 42212.84 0.000733 14.93 10.88 178.06 306.36
8 42359.18 0.000915 15.02 14.21 94.00 179.74
9 42249.35 0.000779 14.17 27.57 160.13 102.09
10 42308.74 0.000319 13.81 30.98 346.16 386.31
11 42415.51 0.000439 11.59 41.16 175.70 247.43
12 24520.92 0.718 6.54 166.94 338.94 193.98
13 42525.07 0.000697 10.94 42.45 109.67 302.51
14 24937.89 0.710 63.00 227.43 288.57 199.96
15 42165.47 0.000381 63.00 72.85 158.97 127.09
16 42165.90 0.000333 0.0258 109.85 105.54 227.60
17 42165.04 0.000341 0.0247 174.29 347.57 254.69
18 24727.66 0.716 1.00 106.26 59.20 146.90
19 42165.57 0.000470 0.0215 242.27 354.11 65.60
20 42166.58 0.000146 0.0240 214.79 359.35 282.24
21 42166.67 0.000166 0.0515 123.26 79.71 301.46
22 42164.80 0.00157 7.43 52.77 114.58 6.10
23 42165.97 0.000279 0.0283 89.19 131.19 96.03
24 42165.37 0.000269 0.0332 236.95 21.52 28.76
25 24738.09 0.721 88.19 313.00 287.64 164.39
26 24637.14 0.687 64.85 186.72 272.84 205.14
27 42170.58 0.00345 54.43 203.14 195.94 106.66
28 42166.40 0.000668 2.72 245.36 327.12 342.87
29 42165.96 0.000378 0.0310 31.02 188.23 81.98
30 24353.42 0.725 17.85 272.76 181.96 148.44

Table 4.2: Initial semi-major axis a, eccentricity e, inclination i, right ascension of
the ascending node Ω, argument of perigee ω, and true anomaly ν of the 30 orbiting
objects in the scenario.
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4.4 Results

Figure 4.3: Near-Earth space with the initial position of the 30 targets (blue dots)
and the sensor field of view (grey volumes), in 3D view (above) and 2D view from
above (below).
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20s between time steps. In Figure 4.4, the estimated number of objects is shown

alongside the observable number of objects. An object is said to be observable from

the first time step it enters the field of view of any sensor. Here it can be seen that

given the sharpness of the used models, and the low amount of false alarms, the

HISP is highly reactive and takes about two time steps to initialize tracks. Two

spikes are visible where the HISP filter briefly overestimated the number of targets.

Two sample tracks were selected to illustrate the single-object estimation per-

formance, by showing the estimated number of tracks originated by measurements

produced by the chosen object; the number of track swaps, or events when the filter

decides that a track with a different observation path is more credible than the one

it had been building up up to that time step (it “changes its mind” about the track

it is following); and the root mean square errors for position and velocity for the

best track in case the number of tracks is overestimated.

Figures 4.5 and 4.6 show the estimation results for object 1. Here, the HISP filter

performed very well in the estimation. In Figure 4.5 it can be seen that the number

of tracks is not overestimated at any time in the scenario, and that the track was

initialized very quickly after it was observed for the first time. There are no track

swaps, which indicates that the filter was confident about the observation path that

it assigned to this object. Figure 4.6 shows how the RMSE of position and velocity

decreases steadily as the object is observed, and the estimation improves as it is

reobserved. All objects save for objects 4 and 12 show behavior similar to this one.

Figures 4.7 and 4.8 show the performance of the filter in estimating the state

of track 12. Figure 4.7 shows that the HISP filter discards the track which it had

assigned to the object in favor of restarting with the most recent measurements. This

can be explained by the fact that the dynamical model was not accurate enough to

correctly predict the behavior of the target, and the introduced bias caused the filter

to assign more credibility to a freshly started track for it. The resulting RMSE, which

can be seen in Figure 4.8, is accordingly higher across the scenario. The estimated

state for object 4 shows similar behavior.

It can be noted that for both shown tracks the error seems to rise slightly during

the observation process when the obtained error is close to the lowest available

error. This can be due to several reasons - the estimator for the mean position that

is used to compute the RMSE is relatively crude, as it was discussed in Chapter

3. Additionally, the particle resampling that is carried out every time an update is

done can also add an amount of approximation error. Although in general the filter

accurately reduces the estimation error of the observed objects, these observed spikes

open the path to investigate how to preserve particle histories, which could smooth
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4.4 Results

Figure 4.4: Cardinality estimate, full scenario (above), detail (below). An object is
deemed observable from its first time of entry in one of the sensor field of view.
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these spikes over as the amount of resampling done would be greatly reduced.

Figure 4.9 shows the run time across the scenario, where the interesting thing to

note is that the trend of the plot follows the number of observable objects, which is

in line with the linear complexity of the filter in terms of tracks and measurements.

This is due to the number of hypotheses maintained by the filter being reasonably

low. In Figure 4.10, the amount of hypotheses per timestep of the filter can be seen

in a representative run, where it is clear that the number of hypotheses maintained

is kept to a reasonable number.

4.5 Summary

In this chapter the HISP filter, a novel multi-object estimation algorithm, is pre-

sented in the context of space situational awareness. This filter originates from a

recent estimation framework for stochastic populations, and is an approximation of

the DISP filter which had previously been used to estimate a smaller number of

orbiting targets.

The presented filter enables the extension of the single-object estimation algo-

rithm presented in Chapter 3 to track a number of orbiting objects, and account for

the problems inherent to multiple object estimation. The complexity of the algo-

rithm is linear in the number of objects and the number of measurements which is

ideal for situations where a large number of objects need to be estimated, such as

catalog maintenance in space situational awareness.

As an improvement to the work presented in Chapter 3, a more accurate dynam-

ical model is presented which exploits the use of orbital elements in order to solve

the unperturbed two-body problem.

The filter was tested with simulated data, showing good performance. It is reac-

tive in the creation of new tracks, while remaining robust to false alarms and mis-

detections and performing its computations in reasonable amounts of time. Future

work includes implementing a parallel version of the filter, as many computations

can be done independently, and improving the dynamical model further to better

account for perturbations.
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Figure 4.5: Estimated number of tracks and track swaps for object 1. Blue areas
indicate time windows where the object is in the field of view of a sensor.
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Figure 4.6: Position and velocity RMSE for object 1. Blue areas indicate time
windows where the object is in the field of view of a sensor.
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Figure 4.7: Estimated number of tracks and track swaps for object 12. Blue areas
indicate time windows where the object is in the field of view of a sensor.
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Figure 4.8: Position and velocity RMSE for object 12. Blue areas indicate time
windows where the object is in the field of view of a sensor.
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Figure 4.9: Processing time for each time step of the filter across the scenario.
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Figure 4.10: Number of maintained hypotheses by the HISP filter. The blue line
corresponds to confirmed tracks, the red line marks the number of hypotheses that
correspond to tracks, and the yellow one is the total number of hypotheses (including
those used only for display).
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Chapter 5

Conclusion

T
his thesis presents the concepts of recursive Bayesian state estimation, a pow-

erful framework for propagating uncertainty and gaining information about

processes measured with imperfect sensors, and proposes solutions to challenging

problems using this framework. In doing so, novel estimation methods embedded in

the Bayesian paradigm are introduced, and integrated with existing techniques to

build solutions to different problems.

Chapter 2 discusses the background of recursive Bayesian state estimation.

Bayes’ filter, a conceptual method based on these ideas, was presented. This fil-

ter was shown to be intractable in the general case, although it sets the stage for

many practical implementations, the most common of which were presented. Among

these, the Kalman filter was shown to provide a statistically optimal solution when

the propagated distributions are Gaussian, and linear measurement and dynamical

models are used. Since it is also efficient computationally and easy to implement,

many attempts have been made at obtaining an analogous filter in the non-linear

non-Gaussian case. Two of these approaches were presented – the Extended Kalman

filter, for instance, linearizes the models in order to approximate the propagated dis-

tributions with a Kalman update, while the Unscented Kalman filter approximates

the distribution as a set of discrete samples, after which empirical statistics are

obtained from the propagated distributions.

The sequential Monte Carlo family of filters was also shown, which does not

make any assumptions on the form of the filtered distributions or of the dynamical

or measurement models that are used. These are ideal for situations where mak-

ing the assumption that a distribution is Gaussian or attempting to linearize the

models incurs significant losses in estimation accuracy. The trade-off is that since

this strategy is based on propagating samples of the distribution, it can become
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computationally burdensome.

Based on the previously discussed concepts, a novel way to use the Kalman

filter in non-linear problems was developed in this work. The core concept is that

a Monte Carlo approach is used to map probability distributions into the extended

sensor state space, where the measurement model becomes linear. Having done

this, the distribution is approximated as a Gaussian in this new space, enabling the

application of a linear Kalman update. After doing this, the same Monte Carlo

approach is used to map the distribution back to the original space.

An application of the proposed single-object filter was to space situational aware-

ness, shown in Chapter 3. In this domain, it is common for the focus to be on devel-

oping numerical propagation algorithms of high sophistication, but little attention

is paid to the propagation of uncertainty. Here, the objects of interest are satellites

or debris in Earth orbit which are observed with telescopes or radars, and the proxy

space was a sensor-centered system of spherical co-ordinates. The filtering ideas

that were applied in the previous chapter were applied to this domain, and it was

shown that the filter performed well in propagating orbital uncertainty. An initial

orbit determination method which generates a prior from a single measurement was

shown, based on the energy constraints of orbiting objects, and the filter manages

to propagate it in spite of its the non-Gaussian form. The prediction was done with

a linear solution to the two-body problem, the Shepperd matrix. Filtering results

were presented using realistic simulated data. Further work in this area can involve

the inclusion of more sophisticated prediction models, exploring different ways to

map distributions between spaces, and extending the algorithm to use measurements

from a more diverse set of sensors.

Chapter 4 shows how a novel multi-object estimation framework can be used

to produce an efficient multi-sensor multi-object estimation filter, using the single-

object filter for space situational awareness that had been previously described.

This is an ideal method for catalog maintenance, as it is normally of interest to keep

track of objects in space, whether man-made or not, in order to safeguard space-

based infrastructure. The HISP filter, a principled, efficient estimation algorithm

which allows for a large degree of flexibility when modeling filtering problems, was

used for this purpose. The resulting method was shown to perform well in tracking

large numbers of orbiting targets while maintaining reasonable running times. As

further work, it would be interesting to analyze how a parallel implementation of the

HISP filter would perform in a scenario where thousands of targets are tracked, as

this algorithm has a highly parallelizable structure and the problem of maintaining

large catalogs and integrating data from sensors in different places along the surface
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of the Earth is a real problem which this method could provide a solution for.
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Appendix A

Testing for Multivariate Normality

M
any of the methods described in this thesis use the assumption that the

underlying probability distributions that are being analyzed are Gaussian.

This is due to several reasons: Gaussian distributions are simple but descriptive,

making them ideal to model random processes; They have a compact representa-

tion, requiring only two parameters to be fully characterized; They have several

properties which simplify computing the results of usual operations done on prob-

ability distributions; and natural processes seem to follow them often, which is not

unreasonable considering that the central limit theorem dictates that a sum of ran-

dom variables will converge to a Gaussian distribution as the number of summands

grows to infinity.

In this appendix, a summary is given about methods to assess whether a set of

samples plausibly originates from a Gaussian distribution, since some of the results

presented on this thesis rely on approximating empirical distributions as continuous

Gaussian ones. A departure from multivariate normality in this case will normally

indicate that a measure of the information contained in the samples is being lost

by the approximation, which would make the results of the methods that use it

less reliable. In order to perform this assessment, two types of tools are usually

available. So called graphical methods rely on visually inspecting quantile plots

in order to assess how closely the empirical distribution resembles the theoretical

Gaussian distribution, while hypothesis tests evaluate the likelihood of a hypothesis

given the available data. Since graphical methods cannot be automated, the focus

of this appendix will be on hypothesis testing.
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A.1 Tests for univariate Gaussian distributions

A.1 Tests for univariate Gaussian distributions

A hypothesis test is a quantitative method which evaluates whether a given hy-

pothesis is likely given the available data. A null hypothesis H0 is tested against

the alternative hypothesis Ha. The test then consists on evaluating a test statistic,

which is a function of the available data, and evaluating its probability under the

assumption that H0 is true. The p-value is the probability of obtaining the test

statistic, or a more extreme value, given that the null hypothesis is true. If this

value is lower than a pre-specified confidence threshold α, the null hypothesis is

rejected in favor of the alternative. If not, it is said that the available evidence is

not enough to reject it. The performance of statistical tests is usually evaluated

through their power. The power of a statistical test is defined as the probability

of rejecting the null hypothesis given that the alternative is true. The higher the

power of a test, the more sensitive it is to evidence in rejecting the null hypothesis

[11].

In the univariate case (i.e., the dimension of the random variable is 1), com-

monly used tests to evaluate whether a sample comes from a Gaussian distribution

are goodness of fit tests based on the theoretical cumulative distribution function,

such as the Anderson-Darling test [3]; the Shapiro-Wilk test [84], which is generally

regarded as having very high power to detect deviations from univariate normality

[22]; and an examination of the third and fourth moments of the empirical distribu-

tion (skewness and kurtosis) [55].

A.2 Multivariate Gaussian tests

The tests outlined above cannot be in general extended to the multivariate case.

For a random vector, having every one of its components be distributed Gaussian

is a necessary, but not sufficient, condition for it to be distributed multivariate

Gaussian [55]. Several statistical tests have designed to assess the validity of the

assumption of multivariate normality, roughly following three different approaches:

Those extending the Shapiro-Wilk test to the multivariate case, those assessing the

multivariate skewness and kurtosis of the distribution, and those which are based

on an analysis of the empirical characteristic function [61]. In the first category,

tests such as the one proposed by Royston [78] apply a transformation based on the

Shapiro-Wilk W test statistic to the random vectors which collapse them to a sample

of univalued random variates, which can then be used to compute a W statistic. In

the second category, the multivariate skewness and kurtosis are obtained for the

105



A.3 The Henze-Zirkler test

sample, for which the distribution is known in the case of a multivariate Gaussian

generating distribution [59]. Tests exist for both skewness and kurtosis separately,

but it has been shown that a test combining both has more power than testing

individually [17]. Finally, the third category are based on a statistic which computes

the distance between the empirical characteristic function of the obtained sample

and the that of a Gaussian distribution. This class of tests extends the Epps-Pulley

test for univariate normality [20], giving the name BHEP to this family of tests

(Named after Baringhaus, Henze, Epps and Pulley) after its generalization to the

multivariate case due to Baringhaus and Henze [6].

Monte Carlo studies have been used to evaluate the performance of these statis-

tical tests, yielding a strong advantage for the BHEP family of tests [22, 61]. It also

has the advantage of being invariant to linear transformations of the tested sam-

ple. For these reasons, it will be used in this work whenever it will be necessary to

evaluate whether a random sample can reasonably be said to come from a Gaussian

random variable or not. The Henze-Zirkler test [35] which generalizes the work by

Baringhaus and Henze [6] can be seen below.

A.3 The Henze-Zirkler test

The characteristic function φX(t) of a d− dimensional random variable X is defined

as

φX(t) = E[eit
′X ] =

∫
eit
′xdx. (A.1)

Distributions are uniquely characterized by their characteristic functions [11]. Based

on this, the idea of the test is to compare the characteristic function of the empirical

distribution of the samples s = {xi}ni=1

ψs(t) =
1

N

n∑
j=1

eit
′xj (A.2)

with that of a Gaussian random variable,

e−
1
2
‖t‖2 . (A.3)

To begin, the samples are normalized such that their mean is the zero vector and

their covariance matrix is the identity matrix of appropriate dimension, obtaining

a new set of samples s′ {yi}ni=1. Then the test statistic is based on the weighted
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difference between these two characteristic functions

D =

∫ ∣∣∣ψs′(t)− e− 1
2
‖t‖2
∣∣∣2 φ(t)dt, (A.4)

with some weighting function φ(t). The Henze-Zirkler test chooses this function to

be a Gaussian kernel:

φ(t) = (2πβ2)−d/2e
− ‖t‖

2

2β2 , (A.5)

with a given value for β which parametrizes the weighing function. This value can

be chosen such that the mean square integration error is minimized, by making an

analogy with kernel density estimation:

βopt =
1√
2

[
(2d+ 1)n

4

] 1
d+4

. (A.6)

In [35] it is shown that (A.4) can be rewritten as

D =
1

n2

n∑
i=1

n∑
j=1

e−
β2

2
‖yi−yj‖ − 2(1 + β2)−

d
2

1

n

n∑
j=1

e
− β2

2(1+β)2
‖yj‖2 + (1 + 2β2)−

d
2 . (A.7)

The limiting distribution of the statistic T = nD is not available in closed form,

but it is approximated by Henze and Zirkler as a lognormal distribution lnN (m, s2)

with mean

m = 1− (1 + 2β2)−
d
2

[
1 +

dβ2

1 + 2β2
+
d(d+ 2)β4

2(1 + 2β2)2

]
, (A.8)

and variance

s2 = 2(1 + 4β2)−
d
2 + 2(1 + 2β2)−d

[
1 +

2dβ4

(1 + 2β2)2
+

3d(d+ 2)β8

4(1 + 2β2)4

]
− 4w(β)

d
2

[
1 +

3dβ4

2w(β)
+
d(d+ 2)β8

2w(β)2

]
, (A.9)

where w(β) = (1 + β2)(1 + 3β2). This way, the p-value of the test can be obtained

as

p = 1− Φ−1(nD;m, s2), (A.10)

with Φ−1 the inverse cumulative distribution function of a log-normal random vari-

able. This p-value is then compared with a chosen confidence threshold in order to

evaluate the likelihood of the samples coming from a multivariate Gaussian random

variable.

107



Bibliography

[1] D. L. Alspach and H. W. Sorenson. Nonlinear bayesian estimation using gaus-

sian sum approximations. IEEE transactions on automatic control, 17(4):439–

448, 1972.

[2] Z. Altamimi, X. Collilieux, and L. Métivier. ITRF2008: an improved solution

of the international terrestrial reference frame. Journal of Geodesy, 85(8):457–

473, 2011.

[3] T. W. Anderson and D. A. Darling. A test of goodness of fit. Journal of the

American statistical association, 49(268):765–769, 1954.

[4] V. Bally, G. Pagès, and J. Printems. A stochastic quantization method for

nonlinear problems. Monte Carlo Methods and Applications, 7:21–34, 2001.

[5] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic

Press Professional, Inc., San Diego, CA, USA, 1987.

[6] L. Baringhaus and N. Henze. A consistent test for multivariate normality

based on the empirical characteristic function. Metrika, 35:339–348, 1988.

[7] R. H. Battin. An introduction to the mathematics and methods of astrodynam-

ics. AIAA, 1999.

[8] T. Byron, R. Schutz, and G. H. Born. Statistical orbit determination. Aca-

demic Press, 2004.

[9] G. Casella and E. I. George. Explaining the gibbs sampler. The American

Statistician, 46(3):167–174, 1992.

[10] L. Combrinck. Satellite laser ranging. In Sciences of Geodesy-I, pages 301–338.

Springer, 2010.

[11] H. Cramér. Mathematical Methods of Statistics. Princeton University Press,

1962.

108



BIBLIOGRAPHY

[12] P. Del Moral and J. Houssineau. Particle Association Measures and Multiple

Target Tracking. In Theoretical Aspects of Spatial-Temporal Modeling, pages

1–30. Springer, 2015.

[13] E. D. Delande, C. Frueh, J. Franco, J. Houssineau, and D. E. Clark. A novel

multi-object filtering approach for space situational awareness. Journal of

Guidance, Control, and Dynamics, 2017. submitted.

[14] E. D. Delande, J. Houssineau, and D. E. Clark. Multi-object filtering with

stochastic populations. ArXiv e-prints, January 2015.

[15] E. D. Delande, J. Houssineau, J. Franco, C. Frueh, and D. E. Clark. A

new multi-target tracking algorithm for a large number of orbiting objects.

In Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San

Antonio, TX, 2017.

[16] K. J. DeMars and M. K. Jah. Probabilistic initial orbit determination us-

ing Gaussian mixture models. Journal of Guidance, Control, and Dynamics,

36(5):1324–1335, 2013.

[17] J. A. Doornik and H. Hansen. An omnibus test for univariate and multivariate

normality. Oxford Bulletin of Economics and Statistics, 70(s1):927–939, 2008.

[18] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo

Methods in Practice, volume 1. Springer-Verlag, 2001.

[19] Z. Duan, V. P. Jilkov, and X. Rong Li. State estimation with quantized mea-

surements: Approximate MMSE approach. In Information Fusion (FUSION),

2008 11th Conference on, pages 1–6. IEEE, 2008.

[20] T. W. Epps and L. B. Pulley. A test for normality based on the empirical

characteristic function. Biometrika, 70(3):723–726, 1983.

[21] P. R. Escobal. Methods of orbit determination. New York: Wiley, 1965, 1965.

[22] P. J. Farrell, M. Salibian-Barrera, and K. Naczk. On tests for multivariate nor-

mality and associated simulation studies. Journal of Statistical Computation

and Simulation, 77(12):1065–1080, 2007.

[23] J. Franco, E. D. Delande, C. Frueh, J. Houssineau, and D. E. Clark. A spher-

ical co-ordinate space parameterisation for orbit estimation. In Proceedings of

the 2016 IEEE Aerospace Conference, pages 1–12, 2016.

109



BIBLIOGRAPHY

[24] J. Franco, E. D. Delande, C. Frueh, J. Joussineau, and D. Clark. Probabilistic

orbit determination using a sensor co-ordinate parametrization. Journal of

Guidance, Control and Dynamics, —(—), Under review.

[25] J. Franco, J. Houssineau, D. E. Clark, and C. Rickman. Simultaneous tracking

of multiple particles and sensor position estimation in fluorescence microscopy

images. In Control, Automation and Information Sciences (ICCAIS), 2013

International Conference on, pages 122–127. IEEE, 2013.

[26] C. Frueh, T. M. Kelecy, and M. K. Jah. Coupled orbit-attitude dynamics of

high area-to-mass ratio (HAMR) objects: influence of solar radiation pressure,

earth’s shadow and the visibility in light curves. Celestial Mechanics and

Dynamical Astronomy, 117(4):385–404, 2013.

[27] R. H. Gooding. A new procedure for the solution of the classical problem of

minimal orbit determination from three lines of sight. Celestial Mechanics and

Dynamical Astronomy, 66(4):387–423, 1996.

[28] W. H. Goodyear. Completely general closed-form solution for coordinates and

partial derivative of the two-body problem. Astronomical Journal, 70(3):189

– 192, 1965.

[29] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F

(Radar and Signal Processing), volume 140, pages 107–113. IET, 1993.

[30] M. S. Grewal and A. P. Andrews. Applications of Kalman filtering in

aerospace, 1960 to the present, historical perspectives. IEEE Control Sys-

tems, 30(3):69–78, 2010.

[31] M. S. Grewal, L. R. Weill, and A. P. Andrews. Global positioning systems,

inertial navigation, and integration. John Wiley & Sons, 2007.

[32] P. Gurfil and P. K. Seidelmann. Celestial Mechanics and Astrodynamics: The-

ory and Practice. Astrophysics and Space Science Library. Springer Berlin

Heidelberg, 2016.

[33] O. Hagen, J. Houssineau, I. Schlangen, E. D. Delande, J. Franco, and D. E.

Clark. Joint estimation of telescope drift and space object tracking. In

Aerospace Conference, 2016 IEEE, pages 1–10. IEEE, 2016.

110



BIBLIOGRAPHY

[34] W. K. Hastings. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109, 1970.

[35] N. Henze and B. Zirkler. A class of invariant consistent tests for multivariate

normality. Communications in Statistics-Theory and Methods, 19(10):3595–

3617, 1990.

[36] Y. C. Ho and R. Lee. A Bayesian approach to problems in stochastic estimation

and control. IEEE Transactions on Automatic Control, 9(4):333–339, 1964.

[37] J. Houssineau. Representation and Estimation of Stochastic Populations. PhD

thesis, Heriot Watt University, 2015.

[38] J. Houssineau and D. E. Clark. Multi-target filtering with linearised complex-

ity. ArXiv e-prints, 2016. arXiv:1404.7408v2.

[39] J. Houssineau, D. E. Clark, S. Ivekovic, C. S. Lee, and J. Franco. A unified ap-

proach for multi-object triangulation, tracking and camera calibration. IEEE

Transactions on Signal Processing, 64(11):2934–2948, 2016.

[40] J. Houssineau and D. Laneuville. PHD filter with diffuse spatial prior on

the birth process with applications to GM-PHD filter. In Information Fusion

(FUSION), 2010 13th Conference on, pages 1–8. IEEE, 2010.
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