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ABSTRACT

In this paper we present a novel audio-visual speaker detec-
tion and localisation algorithm. Audio source position es-
timates are computed by a novel stochastic region contrac-
tion (SRC) audio search algorithm for accurate speaker lo-
calisation. This audio search algorithm is aided by available
video information (stochastic region contraction with height
estimation (SRC-HE)) which estimates head heights over the
whole scene and gives a speed improvement of 56% over
SRC. We finally combine audio and video data in a Kalman
filter (KF) which fuses person-position likelihoods and tracks
the speaker. Our system is composed of a single video camera
and 16 microphones. We validate the approach on the prob-
lem of video occlusion i.e. two people having a conversation
have to be detected and localised at a distance (as in surveil-
lance scenarios vs. enclosed meeting rooms). We show video
occlusion can be resolved and speakers can be correctly de-
tected/localised in real data. Moreover, SRC-HE based joint
audio-video (AV) speaker tracking outperforms the one based
on the original SRC by 16% and 4% in terms of multi object
tracking precision (MOTP) and multi object tracking accu-
racy (MOTA). Speaker change detection improves by 11%
over SRC.

Index Terms— Video Tracking, Speaker Tracking, Mul-
timodal tracking, Optimization methods, Sampling Methods

1. INTRODUCTION

Solving visual tracking occlusion is inherently challenging
when only video information is available. Many existing pa-
pers solve the problem by using sophisticated multi-camera
3-dimensional (3D) systems [1] which are still prone to occlu-
sions when the camera fields-of-view do not overlap. More-
over, they are computationally expensive, often requiring
GPU/FPGA implementations to function at frame-rate. Thus,
supporting tracking with non-visual information, i.e. audio,
may compensate for noisy, missing and erroneous video data
via speaker detection info, reducing the number of cameras
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Fig. 1: A schematic of the system presented in this paper. Constituent parts
of this diagram are referred to explicitly in the text (e.g. “arrow 1”).

and the computational resources required at the expense of
a few microphones. Video and audio “fusion” (or combina-
tion) can be achieved in several ways mostly using variations
of sampling techniques [2–4]. Existing system architectures
work well in very sanitised scenarios e.g. meeting analysis
and diarisation [5–9]. They use large sensor networks com-
posed at least of 4 cameras and 16 microphones [3, 4, 6, 8].
Little attention has been focussed on uncontrolled (and larger)
areas of interest using smaller and less “invasive” sensor net-
works. Attention in the literature is principally focussed on
general event detection [10–12], rather than on people inter-
actions and behaviour analysis [13, 14]. The novel system
we present can localise and recognise a speaker among two
people in an ample, reverberant and noisy environment when
large video occlusion occur using a small sensor network. To
the best of our knowledge this work is similar to the ones
from [4, 15]. In contrast, we improve on the state-of-the-art
via: a) new, high accuracy, fast audio localisation algorithm;
b) real-time video localisation and tracking using particle
filter (PF) [1]; c) improved precision and accuracy metrics for
multi object tracking (2006 and 2007 CLEAR dataset [16]).

2. THEORY

A schematic diagram of our system is shown in Figure 1. In
the following sections we describe it in detail.
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Fig. 2: Video detected height data are novelly used to reduce the search of
space for audio source localisation SRC.

2.1. Height detection and video tracking

Full details of the video tracker based on a GPU-accelerated
particle filter with ellipsoid models for people can be found
in [1]. It is worth noting that we hereby use the video data
coming from only 1 camera view. Height measurement is
also extracted (Figure 2) to cue the audio localisation algo-
rithm, since it directly corresponds to a good estimate of the
speaker’s head position.

2.2. Audio source localisation

A popular method of audio source tracking is extracting max-
imal time difference of arrival (TDOA) values from the gen-
eralised cross correlation with phase transform (GCC-PHAT)
[17] of signals from a pair of microphones in the frequency
domain, given by Equation (1), which is an inverse Fourier
transform where Ĝxmxn

is the product of the signals xm and
xn in the frequency domain.

R̂xmxn
(τ) =

∫ ∞
−∞

Ĝxmxn(f)

|Gxmxn
(f)|

e2πfıτ df (1)

A method more robust to reverberation, the steered response
power (SRP), makes use of the GCC-PHAT to build an energy
map using Equation (2) in a system with M microphones.
This is the sum over all pairs (m, n) of microphones of the
corresponding value of the GCC-PHAT for the TDOA τ .

S(x, y, z) =

M∑
n=1

M∑
m=n+1

R̂xn xm [τnm(x, y, z)] (2)

The TDOA is defined by Equation (3), where p is the vec-
tor x, y, z of the point under investigation, c is the speed of
sound, and m and n are the positions of microphones m and
n respectively.

τnm(p) = (|m− p| − |n− p|) / c (3)

Evaluating the SRP across an entire room is computa-
tionally costly. In this work we use an enhanced version of

the SRC [18] algorithm to localise quicker and better an au-
dio source. This works by sampling the SRP randomly and
choosing a subset of the largest samples to form a new re-
gion to sample within. This is repeated until the process has
discovered a maximum. In order to further improve upon the
SRC, instead of sampling uniformly over height, a different
sampling distribution is used, centred around a head height.
To choose head height, existing knowledge of the current po-
sitions and heights of people in a room which is obtained from
the camera (Figure 2), is novelly used (SRC-HE). In particu-
lar, the height data is updated on each iteration to the height
of the last SRP peak found. This reduction of the search space
decreases its effective dimensionality, thereby decreasing the
computational complexity of SRC.

From a sparse set of people, the head height at every x-
y co-ordinate in the SRP map needs to be defined. This is
achieved using interpolation and extrapolation. When doing
the interpolation, there is a trade-off between the smoothness
of the curve produced and the size of ripples produced. The
interpolation should not contain severe ripples as they would
lead to large errors in the head height estimation across the
room. Ideally, it should be monotonic and one way to achieve
this is to use Delaunay triangulation [19] on the set of speak-
ers, which creates a surface which can be evaluated at any
2-dimensional (2D) point.

The height hsub to use at each time step for every point
p = (x, y) is then drawn from 4, which mixes a Gaussian
with a Uniform distribution across hr, the entire height of the
room.

p (z | p) = α0N
(
µh, σ

2
h

)
+ (1− α0)U (0, hr)

µh = H[p]

σ2
h = q̂(p, T)

(4)

Around each person, we can be relatively confident of
their height. Further away from them, the decreasing confi-
dence is modelled by increasing the variance of the sampling
probability density function (PDF). The variance at a distance
l metres from a speaker is chosen to be modelled by a sigmoid
function, q, such as Equation (5), which is a scaled error func-
tion. This is 0 at the origin and asymptotically approaches a
constant as its argument tends towards infinity.

q(l) = α1 erf (α2l) (5)

These need to be combined to form a global variance. At
any point p in space, the appropriate variance q̂ to use will be
the sigmoid function q of the minimum of the set of all 2D
Euclidian distances pq to known sources, where the set of
known source locations is denoted as T and an element from
the set of know sources is denoted as q. This is expressed
in Equation (6). The minimum is chosen to ensure that the
change in variance remains smooth even for overlapping sig-
moids from multiple sources.
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Lp,T = {l : (∃q ∈ T)(l = pq)}
q̂p,T = min

l∈Lp,T
q(l) (6)

2.3. Joint Audio-Video Speaker Tracking

SRC-HE algorithm allows for direct speaker position calcula-
tion, x. Nevertheless, speaker position estimations are char-
acterised by missing and false detections. This is mostly due
to speech pauses and room reverberation respectively. Thus,
we filter SRC estimated positions xa by a KF. We said al-
ready that, to speed up SRC searching time, speaker’s height
computed by the video PF, is input into the audio unit to drive
height sampling (arrow 1, Figure 1). Then, after the audio and
video data have been aligned, the posteriors of the KF audio
tracker and of the PF xa and xv are fused in a common KF
node (arrow 2, Figure 1). As data are gathered simultaneously
and used all at once in a centralised fashion, we assume the
audio and video pdfs to be independent of one another thus, on
the basis of the a priori local estimates for the state xa(t|t−1)
and xv(t|t − 1) predicted by the single-modality trackers at
each time step t, we evaluate the joint state estimate xav as
follows (where time dependency has been omitted for clar-
ity):

p(zav | x) = p(za | x)p(zv | x); (7)

this means the joint likelihood is still a Gaussian probability,
although no longer normalised, and the a posteriori state es-
timate is given by:

xav = Pav
{
P−1a xa +P−1v xv}, (8)

where
Pav = (P−1a +P−1v )−1. (9)

P−1a and P−1v are the inverse of the audio and video a poste-
riori covariance estimation matrices. Pav is the joint a pos-
teriori covariance estimation matrix. Finally, the last joint
AV output xav = Paxa + Pvxv is fed back into the indi-
vidual audio and video trackers as the best estimate of the
previous time step to improve the single modality estimation
(arrow 3, Figure 1). It is important to notice that, as we make
the assumption that people speak alternatively, like in a nor-
mal conversational mode, to a single audio signal za, cor-
respond several video measurements zvi at a time, one for
each of the N detected targets. By basing the audio-to-video
data association step on spatial proximity, i.e. nearest neigh-
bour (NN), speaker segmentation and recognition can also be
obtained as long as people are resolved by the AV tracker and
its measurements can be considered robust with respect to the
speaker motion model. In particular, the speaker identity in-
ferred by the joint tracker is equal to the one of the i-th target
if Sav = argmaxi

{
p(za, zvi | x)

}
, i = 1 , ...,N (arrow 4,

Figure 1). Saying that, once an identity i has been assigned

(a) (b)

(c) (d)
Fig. 3: SRC and SRC-HE raw speaker position detections. Interesting is the
number of FEs which on average is reduced by 56% (FEs 56, 281 vs 24, 797)
for the SRC-HE implementation. (a) and (b) show respectively audio source
SRC and SRC-HE detections for the ‘Formal’ experiment. While (c) and (d)
show them for the ‘Informal’ one.

Experiment System SSL Accuracy (%) FEs

‘Formal’ SRC 62.50 56742
SRC-HE 69.07 23601

‘Informal’ SRC 47.30 55821
SRC-HE 51.22 25992

Table 1: SRC vs SRC-HE performance comparison for the two set of data
(’Formal’ and ’Informal’). Results are shown for 2 off-line runnings of the
two algorithms. SSL accuracy changes by 4% when adding up extracted
video height info. More interesting is the 56% change in the number of FEs
which has to be calculated, meaning that narrowing down the space of search
effectively results in speeding up the localisation task.

to every target in an image frame, the speaker change detec-
tion output by the audio unit is used in order to recover iden-
tity (ID) tracking when occlusions occur. In particular, in case
audio and video inference about the detected number of tar-
gets in the scene is conflicting, or when audio and video data
do not both fall within a certain region (‖xa − xv‖ ≤ A),
audio source position is considered to be correct and it is also
sent back to the video tracking unit to indirectly re-assign the
correct appearance models to the targets, successfully resolv-
ing occlusions (arrow 3, Figure 1).

3. EXPERIMENTATION AND RESULTS

In this section we show that SRC-HE outperforms original
SRC using video data and that our global AV system can
maintain and recover speaker ID. We used 1 camera and
4− by − 4 T-shape microphone arrays to record AV data in a
typical open office room, whose size is 111.44m2, where the
area considered of interest is 12 m2 (as seen in Figure 4(a)).
Ground-truth data was hand labelled to 5 cm of accuracy, on
a ground plane common to camera and microphones. Audio
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Fig. 4: Real experiments layout (a) and ‘Formal’ and ‘Informal’ visual re-
sults. In (b) a formal conversation between two people is shown. Video
tracker, as well as multimodal tracker, can detect and recognise there are two
targets speaking alternatively and their output is the same. (c) shows an in-
formal conversation between two people. They are so close the video tracker
on its own cannot detect there are two different targets. In (d) instead, the
AV multimodal tracker is shown to detect the two speakers and successfully
recognise their identity.

signals were sampled by the audio interface with a 24-bit pre-
cision resolution at 44.1 kHz, whereas the camera recorded
the 640× 480 RGB video frames at a 7.5Hz rate. Moreover,
each audio signal was filtered using a ≈ 20 ms long Gaus-
sian window to ensure signal stationarity [20]. We made no
attempt to reduce normal background noise (desk fans, foot-
steps, talking etc.) and a large reverberation time (T60 ≈ 0.5
s) was measured. Synchrony of data was insured by pro-
cessing audio and video streams accordingly to the camera
frame rate. Filters were initialised using the video detected
position of their correspondent targets and static matrices Q
and R [21], whose values were chosen on the basis of an op-
timisation step. We describe the results in terms of MOTP
and MOTA [16]. We also calculate the diarisation error rate
(DER), which measures the ability of detecting a change in
speaker ID, expressing the speaker error only [22].

Experiments meant to simulate a personal (formal) and in-
timate (informal) conversation between two people, resulting
in an occlusion in the case of informal conversation. Specifi-
cally:
‘Formal Conversation’, considers two people having a 60 s
conversation. Throughout all the experiment they are sepa-
rated by a distance of approximately 104 cm. Results as pre-
sented in Figure 4 (b).
‘Informal Conversation’, considers two people having a 56
s conversation. Throughout all the experiment they are sep-
arated by a distance of approximately 40 cm. Results are
shown in Figure 4 (c) and (d) .

Figure 3 demonstrates SRC vs SRC-HE raw speaker po-
sition detections for the two set of data (’Formal’ and ’In-
formal’). In Table 1 we enumerate their performance com-

Experiment System MOTP (m) MOTA (%) DER (%)

‘Formal’ SRC 0.35 85 21
SRC-HE 0.34 90 7

‘Informal’ SRC 0.20 97 20
SRC-HE 0.12 100 11.80

Table 2: Experiment results. SRC AV tracker does not incorporate prior
video height information while SRC-HE does.

Fig. 5: SRC vs SRC-HE AV tracking averaged over both the experiments
and 100 montecarlo runs performance comparison. SRC-HE detection ac-
curacy improvement results in an AV tracker which outperforms SRC based
AV tracker precision (MOTP) by 16% and accuracy by 4%. Of interest here,
is that DER is also improved by 11%, which make this solution 11% better
than SRC in handling large video occlusions. Note that the video tracker on
its own instead can not resolve occlusion at all.

parison. Results are shown in terms of SSL accuracy and
number of FE calculations. In both cases, the results show
a significant decrease in the number of FEs as well as an im-
provement in accuracy. Moreover, video only and SRC-HE
based AV tracker outputs are shown in Figures 4 (c) and (d)
for a comparison. Furthermore, in Table 2 we present MOTP,
MOTA and detection error rate (DER) of the joint AV track-
ers based on SRC only and on SRC-HE. At last, their per-
formance comparison is shown in Figure 5. Please note that,
when we talk about SRC results we refer to an AV system as
in Figure 1 where arrow 1 does not exist (no video cueing).

4. CONCLUSION AND FUTURE WORK

In this paper integrating height information coming from a
video PF with a SRC SSL algorithm (SRC-HE), has been
proved to speed up by 56% speaker detection based on the
original SRC algorithm. Moreover, it has been shown that
augmenting video tracking with audio data does solve large
occlusion which otherwise would not be solved by the video
tracker only. Furthermore, using audio data detected with
SRC-HE improves by 16% and 4% AV speaker MOTP and
MOTA tracking and by 11% AV speaker change detection, if
compared to an AV tracker which uses the original SRC im-
plementation. In future, we would like to carry out a tighter
integration between audio and video using updated height in-
formation from every frame to investigate further improve-
ments on SRC-HE. Furthermore, we would like to record
datasets similar to other existing works to carry out a thor-
ough comparison against state-of-the art joint AV systems in
non-meeting rooms.
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