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Abstract. We propose a pipeline for transductive transfer learning and
demonstrate it in computer vision tasks. In pattern classification, meth-
ods for transductive transfer learning (also known as unsupervised domain
adaptation) are designed to cope with cases in which one cannot assume
that training and test sets are sampled from the same distribution, i.e.,
they are from different domains. However, some unlabelled samples that
belong to the same domain as the test set (i.e. the target domain) are
available, enabling the learner to adapt its parameters. We approach this
problem by combining three methods that transform the feature space.
The first finds a lower dimensional space that is shared between source
and target domains. The second uses local transformations applied to
each source sample to further increase the similarity between the mar-
ginal distributions of the datasets. The third applies one transformation
per class label, aiming to increase the similarity between the posterior
probability of samples in the source and target sets. We show that this
combination leads to an improvement over the state-of-the-art in cross-
domain image classification datasets, using raw images or basic features
and a simple one-nearest-neighbour classifier.

1 Introduction

In many machine learning tasks, such as object classification, it is often not possi-
ble to guarantee that the data used to train a learner offers a good representation
of the distribution of samples in the test set. Furthermore, it is often expensive to
acquire vast amounts of labelled training samples in order to provide classifiers
with a good coverage of the feature space. Transfer learning methods can offer
low cost solutions to these problems, as they do not assume that training and test
samples are drawn from the same distribution [1]. Such techniques are becom-
ing more popular in Computer Vision, particularly after Torralba and Efros [2]
discovered significant biases in object classification datasets. However, much of
the work focuses on inductive transfer learning problems, which assume that
labelled samples are available both in source and target domains. In this paper
we focus on the case in which only unlabelled samples are available in the target
domain. This is a transductive transfer learning (TTL) problem, i.e., the joint
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probability distribution of samples and classes in the source domain P (Xsrc , Ysrc)
is assumed to be different, but related to that of a target domain joint distribu-
tion P (Xtrg , Ytrg), but labels Ytrg are not available in the target set. We follow a
similar notation to that of [1] (see Table 1). Some papers in the literature refer
to this problem as Unsupervised Domain Adaptation.

TTL methods can potentially improve a very wide range of classification
tasks, as it is often the case that a domain change happens between training and
application of algorithms, and it is also very common that unlabelled samples are
available in the target domain. For example, in image classification, the training
set may come from high quality images (e.g. from DSLR cameras) and the target
test set may come from mobile devices. Another example is action classification
where training samples are from tennis and test samples are from badminton.
TTL methods can potentially generalise classification methods for a wide range
of domains and make them scalable for big data problems.

In this paper, we propose Transductive Transfer Machine (TTM), a frame-
work that combines methods that adapt the marginal and the conditional distri-
bution of the samples, so that source and target datasets become more similar,
facilitating classification. A key novelty is a sample-based adaptation method,
TransGrad, which enables a fine adjustment of the probability density function of
the source samples. Our method obtains state-of-the-art results in cross-domain
vision datasets using a simple nearest neighbour classifier, with a significant gain
in computational efficiency in comparison to related methods.

Table 1. Notation and acronyms used most frequently in this paper (also used in [3]).

X = [x1, · · · ,xi, · · · ,xn]� ∈ R
n×f Input data matrix with n samples of f features

xi = (xi
1, · · · , xi

j , · · · , xi
f )

� Feature vectors

Y = (y1, · · · , yn)� Array of class labels associated to X

Y = {1, · · · , C} Set of classes

Xsrc ∈ R
nsrc×f , Xtrg ∈ R

ntrg×f Source and target data matrices

Λsrc Classification model trained with Xsrc

G(X) Transformation function

θ transfer rate parameter

T Number of iterations

λ = {wk,µk, Σk, k = 1, · · · , K} GMM parameters with K components

Esrc [xj , y
i], Etrg [xj , y

i] Joint expectation of feature j and label yi

D(p, q) Dissimilarity between two distributions

∇biL(λtrg |xsrc) Gradient of the log likelihood with respect to bi

γ TransGrad translation regulator

TL, ITL, TTL Transfer Learning, Inductive TL, Transductive TL

MMD Maximum Mean Discrepancy

TransGrad Sample-based transformation using gradients

TST Class-based Translation and Scaling Transform
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In [3], we present a follow-up work which adds a step that automatically
selects the most appropriated classifier and its kernel parameter. The present
paper gives more details of the derivations of the methods in the pipeline and
includes further evaluations of its main steps.

In the next section, we briefly review related works and give an outline of our
contribution. Section 3 presents the core components of our method and further
discusses the relation between them and previous works. This is followed by a
description of our framework and an analysis of our algorithm. Experiments and
conclusions follow in Sects. 4 and 5.

2 Related Work

According to Pan and Yang’s taxonomy [1], Transfer Learning (TL) methods
can be of the following types: Inductive, when labelled samples are available in
both source and target domains, Transductive, when labels are only available
in the source set and Unsupervised, when labelled data is not present. For the
reasons highlighted in Sect. 1, we focus on Transductive TL problems (TTL).
They relate to sample selection bias correction methods [4,5], where training
and test distributions follow different distributions but the label distributions
remain the same. It is common to apply semi-supervised learning methods for
transductive transfer learning tasks, e.g. Transductive SVM [6]. In [7], a domain
adapted SVM was proposed, which simultaneously learns a decision boundary
and maximises the margin in the presence of unlabelled patterns, without requir-
ing density estimation. In contrast, Gopalan et al. [8], used a method based on
Grassmann manifold in order to generate intermediate data representations to
model cross-domain shifts. In [9], Chu et al. proposed to search for an instance
based re-weighting matrix applied to the source samples. The weights are based
on the similarity between the source and target distributions using the Kernel
Mean Matching algorithm. This method iteratively updates an SVM classifier
using transformed source instances for training until convergence.

Transfer learning methods can be categorised based on instance re-weighting
(e.g. [9,10]), feature space transformation (e.g. [11,12]) and learning parameters
transformation (e.g. [7,13]). Different types of methods can potentially be com-
bined. In this paper, we focus on feature space transformation and approach
the TTL problem by finding a set of transformations that are applied to the
source domain samples G(Xsrc) such that the joint distribution of the trans-
formed source samples becomes more similar to that of the target samples, i.e.
P (G(Xsrc)), Ysrc) ≈ P (Xtrg , Ytrg∗), where Ytrg∗ are the labels estimated for target
domain samples.

Long et al. [12] proposed a related method which does Joint Distribution
Adaptation (JDA) by iteratively adapting both the marginal and conditional
distributions using a procedure based on a modification of the Maximum Mean
Discrepancy (MMD) algorithm [11]. JDA uses the pseudo target labels to define
a shared subspace between the two domains. At each iteration, this method
requires the construction and eigen decomposition of an n × n matrix whose
complexity can be up to O(n3).
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Our pipeline which first searches for a global transformation such that the
marginal distribution of the two domains becomes more similar and then with
the same objective applies a set of local transformations to each transformed
source domain sample. Finally in an iterative scheme, our algorithm aims to
reduce the difference between the conditional distributions in source and target
spaces where a class-based transformation is applied to each of the transformed
source samples. The complexity of the latter step is linear on the number of
features in the space, i.e., O(f).

3 The Transductive Transfer Machine

We propose the following pipeline (see Table 1 for the notation):

1. MMD – A global linear transformation G1 is applied to both Xsrc and Xtrg

such that the marginal P (G1(Xsrc)) becomes more similar to P (G1(Xtrg)).
2. TransGrad – For a finer grained adaptation of the marginal, a local transfor-

mation is applied to each transformed source domain sample G2
i (G

1(xi
src)).

3. TST – Finally, aiming to reduce the difference between the conditional dis-
tributions in source and target spaces, a class-based transformation is applied
to each of the transformed source samples G3

yi(G2
i (G

1(xi
src))).

Figure 1 illustrates the effect of the three steps of the pipeline above on a
dataset composed of subset of digits 1 and 2 from the MNIST and USPS datasets.
The effect of step (MMD) is to bring the mean of the two distributions closer to
each other while it projects the data into its principal components directions of
the full data including the source and target.1 We use a marginal distribution
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Fig. 1. Effect of the steps of the TTM pipeline on digits 1 and 2 of the MNIST→USPS
datasets, visualised in 2D through PCA. The source dataset (MNIST) is indicated
by stars, the target dataset (USPS) is indicated by circles, red indicates samples of
digit 1 and blue indicates digit 2 (better viewed on the screen). This figure has been
reproduced from [3] with permission.

1 In Fig. 1, the feature space is visualised in 2D using PCA projection and only two
classes are shown, but the MMD computation was done on a higher dimensional
space on samples from 10 classes. For these reasons it may not be easy to see that
the means of source and target samples became closer after MMD.
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adaptation method which relates to the works of [12,14,15]. This uses the empiri-
cal Maximum Mean Discrepancy (MMD) to compare different distributions and
compute a lower-dimensional embedding that minimises the distance between
the expected values of samples in source and target domains.

For the second step of our pipeline (TransGrad), we proposed a method
that distorts the source probability density function towards target clusters. We
employ a sample-wise transformation that uses likelihoods of source samples
given a GMM that models target data. Up to our knowledge, this is the first
time a sample-based transformation is proposed for transfer learning.

In the final step (TST), the source class-conditional distributions are iter-
atively transformed to become more similar to their corresponding target con-
ditionals. A related approach has been followed in [12] using pseudo-labels to
iteratively update a supervised version of MMD. We adopt a method that uses
insights from Arnold et al. [16], who used the ratio between the expected class-
based posterior probability of target samples and the expected value of source
samples per class. This effectively re-scales the source feature space. Our method
is a more complex transformation, as each individual feature is both scaled and
translated, with different parameters per class. We describe early experiments
with TST in [17].

The next subsections detail each of the steps above.

3.1 Shared Space Detection Using MMD

In the first step of our pipeline, we look for a shared space projection that
reduces dimensionality of the data whilst minimising the reconstruction error.
As explained in [12], one possibility for that is to search for an orthogonal trans-
formation matrix A ∈ R

f×k such that the embedded data variance is maximised
as follows:

max
A�A=I

tr(A�XHX�A), (1)

where X = [Xsrc ; Xtrg ] ∈ R
f×nsrc+ntrg is the input data matrix that combines

source and target samples, tr(·) is the trace of a matrix and H = I− 1
nsrc+ntrg

11 is
a centring matrix where 11 is a (nsrc+ntrg)×(nsrc+ntrg) matrix of ones. The opti-
misation problem can be efficiently solved by eigen-decomposition. However, the
above PCA-based representation may not reduce the difference between source
and target domains. Following [12,14,15,18] we adopt the Maximum Mean Dis-
crepancy (MMD) as a measure to compare different distributions. This algorithm
searches for a projection matrix, A ∈ R

f×k which aims to minimise the distance
between the samples means of the source and target domains:
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where M is the MMD matrix and is computed as follows:

Mij =

⎧

⎪⎨

⎪⎩

1
nsrcnsrc

, xi,xj ∈ Xsrc

1
ntrgntrg

, xi,xj ∈ Xtrg

− 1
nsrcntrg

, otherwise.

The optimisation problem then is to minimise (2) such that (1) is maximised,
i.e. solve the following eigen-decomposition problem: (XMX� + εI)A = XHX�D,
obtaining the eigenvectors A and the eigenvalues on the diagonal matrix D. The
effect is to obtain a lower dimensional shared space between the source and
target domains. Consequently under the new representation A�X, the marginal
distributions of the two domains are drawn closer to each other.

3.2 Sample-Based Adaptation with TransGrad

We propose a sample-based transformation to perform a finer PDF adaptation
of the source domain. We assume that the transformation from the source to the
target domain is locally linear, i.e. a sample’s feature vector x from the source
domain is mapped to the target space by

G2
i (x) = x + αbi, (3)

where the f dimensional vector bi represents a local offset in the target domain
and α is a translation regulator. In order to impose as few assumptions as pos-
sible, we shall model the unlabelled target data, Xtrg by a mixture of Gaussian
probability density functions p(x) =

∑K
k=1 wkp(x|λk) whose parameters are

denoted by λ = {wk,µk, Σk, k = 1, · · · ,K} where wk, µk and Σk denote the
weight, mean and covariance matrix of Gaussian component k respectively, K
denotes the number of Gaussians and p(x|λk) = N (µk, Σk).

We formulate the problem of finding an optimal translation parameter bi as
one of moving the point x to a new location G2(x) = x + αbi to increase its
likelihood as measured using p(x|λ).

Using the Taylor expansion, in the vicinity of x, the likelihood of the p(x +
αbi) can be expressed as:

p(x + αbi|λ) = p(x|λ) + α(∇xp(x|λ))�bi (4)

We wish to maximise the p(x + αbi|λ) with respect to the unknown parameter
bi. The learning problem then can be formulated as

max
bi

{p(x|λ) + α(∇xp(x|λ))�bi}

s.t. bi�bi = 1 (5)

The Lagrangian of Eq. 5 is

p(x|λ) + α∇xp(x|λ))�bi − α′′(bi�bi − 1) (6)
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Setting the gradient of Eq. 6 with respect to bi to zero

∇xp(x|λ) − γbi = 0 , (7)

where γ is considered as TransGrad’s step size parameter and is equal to 2α′′
α .

Clearly, the source data-point x should be moved in the direction of maximum
gradient of the function p(x|λ). Therefore, bi is defined as

bi = ∇xp(x|λ) =
K∑

k=1

wkp(xsrc |λk)Σ−1
k (x − µk) (8)

In practice, equation 3 translates xsrc using the combination of the trans-
lations between xsrc and µk, weighted by the likelihood of G2(xsrc) given the
model parameters λk.

3.3 Conditional Distribution Adaptation with TST

In order to adapt the class-conditional distribution mismatch between the corre-
sponding clusters of the two domains, we introduce a set of linear class-specific
transformations. To achieve this, one can assume that a Gaussian Mixture Model
fitted to the source classes can be adapted in a way that it matches to target
classes. While the general GMM uses full covariance matrices, we follow Reynolds
et al. [19] and use only diagonal covariance matrices. This way, the complexity of
the estimation system becomes linear in f . In our experiments, we further sim-
plify the model for this step of the pipeline by using only one Gaussian model
per class.

In order to adapt the class conditional distributions one can start with an
attempt to match the joint distribution of the features and labels between cor-
responding clusters of two domains. However, as explained in Sect. 1, labelled
samples are not available in the target domain. We thus use posterior proba-
bility of the target instances to build class-based models in the target domain.
We restrict our class-based adaptation method to a translation and scale trans-
formation (abbreviated as TST). This approximation makes the computational
cost very attractive.

The proposed adaptation is introduced by means of a class-based transfor-
mation Gyi(X) which aims to adjust the mean and standard deviation of the
corresponding clusters from the source domain, i.e., each feature j of each sam-
ple xi is adapted as follows

Gyi(xi
j) =

xi
j − Esrc [xj , y

i]
σsrc

j,yi

σtrg
j,yi + Etrg

Λsrc
[xj , y

i],∀i = 1: nsrc , (9)

where Esrc [xj , y
i] is the joint expectation of the feature xj and labels yi, and

σsrc
j,yi is the standard deviation of feature xj of the source samples labelled as yi,

defined by

Esrc [xj , y
i] =

∑nsrc

i=1 xi
j1[y](yi)

∑nsrc

i=1 1[y](yi)
. (10)
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Here 1[y](yi) is an indicator function2.
An estimation of the target join expectation is thus formulated as

Etrg [xj , y] ≈ Etrg
Λsrc

[xj , y] =

∑ntrg

i=1 xi
jPΛsrc

(y|xi)
∑ntrg

i=1 PΛsrc
(y|xi)

(11)

and we propose to estimate the standard deviation per feature and per class
using

σtrg
j,yi =

√
∑ntrg

n=1(x
n
j − Etrg

Λsrc
[xj , yi])2PΛsrc

(yi|xn)
∑ntrg

n=1 PΛsrc
(yi|xn)

. (12)

In other words, in a common TTL problem, the joint expectation of the
features and labels over source distribution, Esrc [xj , y

i], is not necessarily equal
to Etrg [xj , y

i]. Therefore, one can argue that if the expectations in the source
and target domains are similar, then the model Λ learnt on the source data
will generalise well to the target data. Consequently the less these distributions
differ, the better the trained model will perform.

Since the target expectation Etrg
Λsrc

[xj , y
i] is only an approximation based on

the target’s posterior probabilities, rather than the ground-truth labels (which
are not available in the target set), there is a danger that samples that would
be miss-classified could lead to negative transfer. To alleviate this, we follow
Arnold et al.’s [16] suggestion and smooth out the transformation by applying
the following:

G3
yi(xi

j) = (1 − θ)xi
j + θGyi(xi

j), (13)

with θ ∈ [0, 1].

3.4 Iterative Refinement of the Conditional Distribution

Matching the marginal distributions does not guarantee that the conditional
distribution of the target can be approximated to that of the source. To our
knowledge, most of the recent works related to this issue [7,20–22] are Inductive
TL methods and they have access to some labelled data in the target domain
which in practice makes the posteriors’ estimations easier.

Instead, our class-specific transformation method (TST), reduces the differ-
ence between the likelihoods P (G3

y(xsrc)|y = c) and P (x|y = c) by using the
target posteriors estimated from a model trained on gradually modified source
domain (Eq. 13). Hence, these likelihood approximations will not be reliable unless
we iterate over the whole distribution adaptation process and retrain the classifier
model using G3

y(xsrc).

3.5 Stopping Criterion

In order to automatically control the number of the iterations in our pipeline,
we introduce a domain dissimilarity measure inspired by sample selection bias
corrections techniques [4,23].
2 Equations (10) and (11) rectify equations from [16], as we discussed in [17].
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Many of the sample selection bias techniques are based on weighting samples
xsrc

i using the ratio w(xsrc
i ) = P (xtrg

i )/P (xsrc
i ). This ratio can be estimated using

a classifier that is trained to distinguish between source and target domains, i.e.,
samples are labelled as either belonging to class src or trg . Based on this idea,
we use this classification performance as a measure of dissimilarity between two
domains, i.e., if it is easy to distinguish between source and target samples, it
means they are dissimilar. The intuition is that if the domain dissimilarity is
high, then more iterations are required for achieving a better match between the
domains.

3.6 Algorithm and Computational Complexity

The proposed method is illustrated in Fig. 2 and Algorithm 1. Its computational
cost is as follows, where n is the size of the dataset, f is its dimensionality and
K is the number of GMM components:

Fig. 2. The Transductive Transfer Machine (TTM).

1. MMD: O(n2) for constructing the MMD matrix, O(nf2) for covariance com-
putation and O(f3) for eigendecomposition.

2. TransGrad: O(nK) for Expectation step of GMM computation, O(nKf)
for the computation of diagonal covariance matrices and O(K) for the Max-
imisation step of the GMM computation. Once the GMM is built, the Trans-
Grad transformation itself is O(nKf).

3. TST: O(Kf) for class specific TST transformations.
4. NN classifier: zero for training and O(n2f) for reapplying the classifier.

Algorithm 1. TTM: Transductive Transfer Machine
Input: Xsrc , Ysrc , Xtrg

Output: Ytrg

1. MMD: search for the shared subspace between the two domains (Eq. 2)
2. TransGrad: adjust the marginal distribution mismatch between the two domains
(Eq. 3)
while (T < max iter) and (‖D(Gt(Xsrc), Xtrg‖) > threshold) do

3. Find the feature-wise TST transformation (Eqs. 10, 12, 13)
4. Transform the source domain clusters (Eq. 14)
5. Retrain the classifier using the transformed source

end while
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The max iter parameter is set to 10 for all the experiments, though in the major-
ity of cases, the iterations stop before that because of the criterion of Sect. 3.5.
For each of the T iterations, the classifier is re-applied and TST is computed.
Therefore, the overall complexity of our training algorithm is dominated by the
cost of training a GMM (which is low by using diagonal covariances) and iter-
atively applying a classifier. The core transformations proposed in this paper,
TransGrand and TST are O(nKf) and O(nf), respectively, i.e., much cheaper
than most methods in the literature.

4 Experimental Evaluation

4.1 Datasets and Feature Extraction

USPS, MNIST, COIL20 and Caltech + office are four benchmark datasets widely
adopted to evaluate computer vision and pattern recognition algorithms.

USPS dataset consists of 7,291 training images and 2,007 test images of
size 16 × 16 [24]. MNIST dataset has a training set of 60,000 examples and a
test set of 10,000 examples of size 28 × 28. USPS and MNIST datasets follow
very different distributions but they share 10 classes of digits. We followed the
settings of [12] for USPS→MNIST using their randomly selected samples com-
posed of 1,800 images in USPS as the source data, and 2,000 images in MNIST
to form the target data and also switch source-target pairs to get another dataset
MNIST→USPS. The images were rescaled to 16×16 pixels, and each represented
by a feature vector encoding the gray-scale pixel values. Hence the source and
target data can share the same feature space.

COIL20 contains 20 objects classes with 1,440 images [25]. The images of each
object were taken 5 degrees apart as the object is rotated on a turntable and
each object has 72 images. Each image is 32 × 32 pixels with 256 gray levels. In
our experiments, we followed the settings of [12] and partitioned the dataset into
two subsets. COIL1 and COIL2: COIL1 contains all images taken with objects in
the orientations of [0◦, 85◦] ∪ [180◦, 265◦] (quadrants 1 and 3); COIL2 contains
all images taken in the orientations of [90◦, 175◦] ∪ [270◦, 355◦] (quadrants 2
and 4). In this way, subsets COIL1 and COIL2 follow different distributions.
One dataset, COIL1→COIL2, was constructed by selecting all 720 images in
COIL1 to form the source data, and all 720 images in COIL2 to form the target
data. Source-target pairs were switched to form another dataset COIL2→COIL1.
Following Long et al. [12], we carried out a pre-processing l2-normalisation on
the raw features of MNIST, USPS, COIL1 and COIL2 datasets.

CALTECH+OFFICE [26,27] is composed of a 10-class sampling of four
datasets; Amazon (images downloaded from online merchants), Webcam (low-
resolution images by web camera), DSLR (high-resolution images by a digital
SLR camera) and Caltech-256. For the settings we followed [26]: 10 common
classes are extracted from all four datasets: Back-pack, Touring-bike, Calcula-
tor, Head-phones, Computer-keyboard, Laptop, Computer-monitor, Computer-
mouse, Coffee-mug and Video-projector. Each dataset is assumed as a different
domain and there are between 8 and 151 samples per category per domain, and
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2533 images in total. We followed the feature extraction and experimental set-
tings used in previous works [26,27]. Briefly, SURF features were extracted and
the images encoded with 800-bins histograms with the codebook trained from
a subset of Amazon images. The histograms were then normalised and z-scored
to follow a normal distribution in each dimension. We further performed experi-
ments on CALTECH+OFFICE where DeCAF features are used as descriptors.
DeCAF features are extracted by first training a deep conventional model in a
fully supervised setting using a state-of-the-art method [28]. The outputs from
the 6th Neural Network layer was used as the visual features, leading to 4096
dimensional DeCAF features.

The second column in Table 2 shows the baseline dissimilarity measure
(Sect. 3.5) between the two transfer domains.

4.2 Experiments and Results

We coin the iterative version of all our proposed algorithms as Transductive
Transfer Machine (TTM) where TTM0 refers to when we have an iterative
version of TST, TTM1 is the combination of the MMD and TST and finally
TTM2 is the TTM1 with a further intermediate sample-wise marginal adap-
tation (TransGrad). We have evaluated the performance of these three meth-
ods and compared the performance with two state-of-the-art approaches [12,26]
using the same public datasets and the same settings as those of [12,26]. Further
comparisons with other transductive transfer learning methods such as Transfer
Component Analysis [29], Transfer Subspace Learning [30] and Sampling Geo-
desic Flow (SGF) using the Grassmann manifolds [31] are reported in [12,26].

Table 2 shows a comparison between our methods and the state-of-the-art
methods. As one can note, all the transfer learning methods improve the accu-
racy over the baseline. Furthermore, our TTM methods generally outperform
all the other methods. The main reason for that is that our methods com-
bine three different adaptation techniques which jointly implement a complex
transformation that would be difficult to determine in a single step. The order in
which these transformations are applied, global (MDD)+ sample-based (Trans-
Grad)+ conditional (TST), is important because neither MMD nor TransGrad
take class labels into account. TST achieves better results if it is applied to
data in which the difference between source and target domains is not too large,
as it uses estimates of PΛsrc

(y|x) based on classifiers learnt on the (adapted)
source domain. If the marginals were far off the desired solution, the classifier
could generate poor estimates of PΛsrc

(y|x), leading to poor transfer. Similarly,
the TransGrad transformation is less constrained than MMD, which is why it
is important that it is applied after MMD. These three steps complement each
other, as each applies transformations of a different nature.

Table 2 shows that in most of the tasks our methods give the best results.
The average performance accuracy of TTM2 on 12 transfer tasks is 56.20%,
which is an improvement of 1.32% over the best performing previous method
JDA [12]. JDA also benefits from jointly adapting the marginal and conditional
distributions but their approach has the global and class specific adaptations
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along each other at each iteration which in practice these two might cancel the
effect of each other hence limiting the final model from being well fitted into
the target clusters. While in JDA the number of iterations is fixed to 10, in our
algorithm we based this number on a sensible measure of domain dissimilarity.

GFK [26] performs well on some of the Office + Caltech experiments but
poorly on the others. The reason is that the subspace dimension should be small
enough to ensure that different sub-spaces transit smoothly along the geodesic
flow, which may not be an accurate representation of the input data. JDA and
TTM perform much better by learning an accurate shared space.

For a comparison using state-of-the-art features, in Table 3 we present further
results using Deep Convolutional Activation Features (DeCAF) features [32]. We
followed the experimental setting in [26] for unsupervised domain adaptation for
Caltech + office dataset, except that instead of using SURF, we used DeCAF. In
this set of experiments we compared our TTM method with methods that adapt
the classifiers hyperplanes or using auxiliary classifiers, namely; the Adaptive
Support Vector Machines (SVM-A) [7], Domain Adaptation Machine (DAM) [33]
and DA-M2S [34]. DAM was designed to make use of multiple source domains.
For a single source domain scenario, the experiments were repeated 10 times by
using randomly generated subsets of source and target domains and the mean
performance is reported in Table 3.

Table 2. Recognition accuracies with Nearest Neighbour classifiers on target domains
using TTL algorithms. The datasets are abbreviated as M: MNIST, U: USPS, C:
Caltech, A: Amazon, W: Webcam, and D: DSLR.

TTL Domain NN GFK JDA TTM0 TTM1 TTM2

Experiment Dissimilarity Baseline (PLS, (1NN) (TST+ (MMD+ (TransGrad+

PCA) [26] [12] NN) TTM0) TTM1)

M→ U 0.984 65.94 67.22 67.28 75.94 76.61 77.94

U→ M 0.981 44.70 46.45 59.65 59.79 59.41 61.15

COIL1→ 2 0.627 83.61 72.50 89.31 88.89 88.75 93.19

COIL2→1 0.556 82.78 74.17 88.47 88.89 88.61 88.75

C→ A 0.548 23.70 41.4 44.78 39.87 44.25 46.76

C→ W 0.78 25.76 40.68 41.69 41.02 39.66 41.02

C→ D 0.786 25.48 41.1 45.22 50.31 44.58 47.13

A→ C 0.604 26.00 37.9 39.36 36.24 35.53 39.62

A→ W 0.743 29.83 35.7 37.97 37.63 42.37 39.32

A→ D 0.85 25.48 36.31 39.49 33.75 29.30 29.94

W→ C 0.752 19.86 29.3 31.17 26.99 29.83 30.36

W→ A 0.717 22.96 35.5 32.78 29.12 30.69 31.11

W→ D 0.51 59.24 80.89 89.17 85.98 89.17 89.81

D→ C 0.78 26.27 30.28 31.52 29.65 31.25 32.06

D→ A 0.790 28.50 36.1 33.09 31.21 29.75 30.27

D→ W 0.471 63.39 79.1 89.49 85.08 90.84 88.81
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Table 3. Results on Caltech + office dataset using DeCAF features. The methods are
abbreviated as: M0: Baseline (no transfer), M1: SVM-A [7], M2: DAM [33], M3: DA-
M2S (w/o depth) [34], M4: JDA (1NN) [12] and M5: TTM (NN).

C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W

M0 85.70 66.10 74.52 70.35 64.97 57.29 60.37 62.53 98.73 52.09 62.73 89.15

M1 83.54 81.72 74.58 74.36 70.58 96.56 85.37 96.71 78.14 91.00 76.61 83.89

M2 84.73 82.48 78.14 76.60 74.32 93.82 87.88 96.31 81.27 91.75 79.39 84.59

M3 84.27 82.87 75.83 78.11 71.04 96.62 86.38 97.12 77.60 91.37 78.14 83.31

M4 89.77 83.73 86.62 82.28 78.64 80.25 83.53 90.19 100 85.13 91.44 98.98

M5 89.98 86.78 89.17 83.70 89.81 81.36 80.41 88.52 100 82.90 90.81 98.98

Note that in Table 3 the baseline without any transformation using DeCAF
features and NN classifier is significantly better than the results of Table 2, simply
because DeCAF features are better than SURF. As one can see our TTM method
outperforms the other state-of-the-art approaches in most of the cases, gaining
on average 2.10% over the best performing state-of-the-art method of M2S(w/o
depth).

To validate that TTM can achieve an optimal performance under a wide
range of parameter values, we conducted sensitivity analysis on MNIST→USPS,
Caltech→Amazon and Webcam→Caltech. We ran TTM with varying values of
the regulator γ of the TransGrad step, and the results are in Fig. 3(a). One
can see that for all these datasets, the performance improves as γ grows but it
plateaus when γ = 5. For this reason we used γ = 5 in all experiments in the
remaining of this paper.
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Fig. 3. Effect of different γ values and number of GMM clusters in the TransGrad
step of our framework on the final performance of the pipeline for three cross-domain
experiments. The dashed line shows the baseline accuracy for each experiment.

We also ran TTM with varying number Gaussians K in the TransGrad step
for the target GMM. Theoretically as the number of GMM components increases
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the translations get more accurate and the performance becomes more stable.
We plot the classification accuracy w.r.t. K in Fig. 3(b). Note that for K = 1,
TransGrad contributes to an improvement over the baseline, as it induces a
global shift towards the target set. But in general, for values of K smaller than
the number of classes, we do not actually expect TransGrad to help, as it will
shift samples from different classes towards the same clusters. This explains why
the performance increases with K for K > 2. Based on this result, we adopted
K = 20 in all other experiments of this paper.

We have also compared the time complexity of our TTM algorithm against
JDA [12] in the transfer task from MNIST digits dataset to USPS digits dataset.
Both algorithms were implemented in Matlab and were evaluated on a Intel
Core2 64 bit, 3 GHz machine running Linux. We averaged time measurements
of 5 experiments. The JDA algorithm took 21.38 ± 0.26 s and our full TTM
framework took 4.42 ± 0.12 s, broken down as: 0.40 ± 0.01 s to find the appro-
priate shared space using the MMD, 1.90 ± 0.06 to perform the sample-wise
marginal distribution adaptations using TransGrad and finally 2.42 ± 0.12 s to
apply the iterative conditional distribution adaptations (TST). Therefore, the
proposed TTM outperforms JDA in most of the cases requiring one fifth of its
computational time.

5 Conclusions

In this paper, we introduced transductive transfer machine (TTM), which aims
to adapt both the marginal and conditional distributions of the source samples
so that they become more similar to those of target samples, leading to an
improvement in the classification results in transfer learning scenarios.

TTM’s pipeline consists of the following steps: first, a global linear trans-
formation is applied to both source and target domain samples, so that their
expected values are matched. Then we proposed a novel method that applies
a sample-based transformation to source samples. This leads to a finer adap-
tation of their marginal distribution, taking into account the likelihood of each
source sample given the target PDF. Finally, we proposed to iteratively adapt
the class-based posterior distribution of source samples using an efficient linear
transformation whose complexity mostly depends on the number of features. In
addition, we proposed to use an unsupervised similarity measure to automat-
ically determine the number of iterations needed. Our approach outperformed
state-of-the-art methods on various datasets, with a lower computational cost.

In [3], we present a follow-up work which adds a step that automatically
selects the most appropriated classifier and its kernel parameter, leading to a
significant improvement of the results presented here.

It is worth pointing out that TTM is a general framework with applicability
beyond object recognition and could be easily applied to other domains, even
outside Computer Vision. For future work, we suggest studying combinations of
TTM with semi-supervised learning methods and feature learning algorithms.
Another exciting direction is to combine TTM with voting classification algo-
rithms (c.f. [35]).
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