
Source Localisation and Blind Source
Separation

(UDRC Summer School)

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Course Lecture Notes
and Tutorial Questions

Dr James R. Hopgood





Source Localisation and Blind
Source Separation

(UDRC Summer School)

Course Lecture Notes and Tutorial Questions

Dr James R. Hopgood
Room 2.05

Alexander Graham Bell Building
The King’s Buildings

Mayfield Road
Edinburgh

EH9 3JL
Scotland, UK

James.Hopgood@ed.ac.uk
Telephone: +44 (0)131 650 5571

Fax: +44 (0)131 650 6554
Last revision: June, 2014

School of Engineering
College of Science and Engineering

University of Edinburgh T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H



Copyright © 2014 Dr James R. Hopgood
Room 2.05
Alexander Graham Bell Building
The King’s Buildings
Mayfield Road
Edinburgh
EH9 3JL
Scotland, UK
James.Hopgood@ed.ac.uk
Telephone: +44 (0)131 650 5571
Fax: +44 (0)131 650 6554.

Major revision, June, 2014.
Last printed revision with minor corrections, 14 July, 2014.

Typeset by the author with the LATEX 2ε Documentation System, with AMS-LATEX Extensions, in
12/18 pt Times and Euler fonts.

INSTITUTE FOR DIGITAL COMMUNICATIONS,
School of Engineering,
College of Science and Engineering,
Kings’s Buildings,
Edinburgh, EH9 3JL. U.K.



Copyright Statement

This document does not contain copyright material.

The author of this document

1. holds the copyright for all lecture and course materials in this module;

2. holds the copyright for students notes, summaries, or recordings that
substantially reflect the lecture content or materials;

3. makes these materials available only for personal use by students studying this
module;

4. reserves the right that no part of the notes, tutorials, solutions, or other course
materials may be distributed or reproduced for commercial purposes without
express written consent from the author; this does not prevent students from
sharing notes on an individual basis for personal use.

These lecture notes consist of entirely original work, where all material has been
written and typeset by the author. No figures or substantial pieces of text has been
reproduced verbatim from other texts.

However, there is some material that has been based on work in a number of previous
textbooks, and therefore some sections and paragraphs have strong similarities in
structure and wording. These texts have been referenced and include, amongst a
number of others, in order of contributions:

• Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and Source
Localization,” in Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043–1063, , Springer, 2008.

DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust Localization in
Reverberant Rooms,” in Microphone Arrays by M. Brandstein and D. Ward, pp.
157–180, , Springer Berlin Heidelberg, 2001.

i



ii



Outline of Lecture Contents

1 Source Localisation 1

2 Blind Source Separation 29

i



Contents

1 Source Localisation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structure of the Tutorial . . . . . . . . . . . . . . . . . . . . 3

1.2 Recommended Texts . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Why Source Localisation? . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 ASL Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Source Localization Strategies . . . . . . . . . . . . . . . . . 6

1.4.2 Geometric Layout . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Ideal Free-field Model . . . . . . . . . . . . . . . . . . . . . 8

1.4.4 TDOA and Hyperboloids . . . . . . . . . . . . . . . . . . . . 9

1.5 Indirect time-difference of arrival (TDOA)-based Methods . . . . . . 13

1.5.1 Spherical Least Squares Error Function . . . . . . . . . . . . 13

1.5.1.1 Two-step Spherical LSE Approaches . . . . . . . . 15

1.5.1.2 Spherical Intersection Estimator . . . . . . . . . . . 16

1.5.1.3 Spherical Interpolation Estimator . . . . . . . . . . 17

1.5.1.4 Other Approaches . . . . . . . . . . . . . . . . . . 17

1.5.2 Hyperbolic Least Squares Error Function . . . . . . . . . . . 18

1.5.2.1 Linear Intersection Method . . . . . . . . . . . . . 18

1.5.3 TDOA estimation methods . . . . . . . . . . . . . . . . . . . 20

1.5.3.1 GCC TDOA estimation . . . . . . . . . . . . . . . 20

1.5.3.2 CPSD for Free-Field Model . . . . . . . . . . . . . 21

1.5.3.3 generalised cross correlation (GCC) Processors . . 21

1.5.3.4 Adaptive Eigenvalue Decomposition . . . . . . . . 22

1.6 Direct Localisation Methods . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Steered Response Power Function . . . . . . . . . . . . . . . 26

1.6.2 Conceptual Intepretation of SRP . . . . . . . . . . . . . . . . 26

ii



CONTENTS iii

2 Blind Source Separation 29

2.1 DUET Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Effect of Reverberation and Noise . . . . . . . . . . . . . . . 32

2.1.2 Estimating multiple targets . . . . . . . . . . . . . . . . . . . 32

2.2 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

July 14, 2014 – 15 : 04



List of Figures

1.1 Source localisation and blind source separation (BSS). . . . . . . . . 2

1.2 Humans turn their head in the direction of interest in order to reduce
inteference from other directions; joint detection, localisation, and
enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Recommended book chapters and the references therein. . . . . . . . 3

(a) [Huang:2008] . . . . . . . . . . . . . . . . . . . . . . . . . . 3

(b) [DiBiase:2001] . . . . . . . . . . . . . . . . . . . . . . . . . 3

(c) [Wolfel:2009] . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Ideal free-field model. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 An uniform linear array (ULA) of microphones. . . . . . . . . . . . 5

1.6 An acoustic vector sensor. . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Geometry assuming a free-field model. . . . . . . . . . . . . . . . . 8

1.8 Hyperboloid of two sheets . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Hyperboloid, for a microphone separation of d = 0.1, and a time-delay
of τij = d

4c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.10 Range and TDOA relationship. . . . . . . . . . . . . . . . . . . . . 14

1.11 Quadruple sensor arrangement and local Cartesian coordinate system. 19

1.12 Calculating the points of closest intersection. . . . . . . . . . . . . . 19

1.13 Normal cross-correlation and GCC-phase transform (PHAT)
(GCC-PHAT) functions for a frame of speech. . . . . . . . . . . . . 23

(a) Cross-correlation function. . . . . . . . . . . . . . . . . . . . 23

(b) GCC-PHAT function . . . . . . . . . . . . . . . . . . . . . . 23

1.14 The effect of reverberation and noise on the GCC-PHAT can lead to
poor TDOA estimates. . . . . . . . . . . . . . . . . . . . . . . . . . 23

(a) GCC-PHAT in a reverberant environment, ρ = 08. The ground
truth of TDOA is 0.64 ms. . . . . . . . . . . . . . . . . . . . . 23

(b) GCC-PHAT in a noisy environment, SNR = 0 dB. . . . . . . 23

1.15 A typical room acoustic impulse response. . . . . . . . . . . . . . . 24

iv



LIST OF FIGURES v

1.16 Early and late reflections in an AIR. . . . . . . . . . . . . . . . . . . 25

1.17 Demonstrating nonminimum-phase properties . . . . . . . . . . . . . 25

1.18 steered beamformer (SBF) response from a frame of speech signal.
The integration frequency range is 300 to 3500 Hz (see Equation 1.84).
The true source position is at [2.0, 2.5]m. The grid density is set to
40 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.19 An example video showing the SBF changing as the source location
moves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.20 GCC-PHAT for different microphone pairs. . . . . . . . . . . . . . . 28

2.1 W-disjoint orthogonality of two speech signals. Original speech signal
(a) s1[t] and (b) s2[t]; corresponding STFTs (c) |S1 (ω, t)| and (d)
|S2 (ω, t)|; (e) product of the two spectrogram |S1 (ω, t)S2 (ω, t)|. . 30

2.2 Illustration of the underlying idea in degenerate unmixing estimation
technique (DUET). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

(a) Histogram of two sources in an anechoic environment. . . . . 31

(b) time-frequency (TF)-mask for each source. . . . . . . . . . . 31

2.3 DUET for multiple sources. . . . . . . . . . . . . . . . . . . . . . . 32

2.4 The time-frequency representation (TFR) is very clear in the anechoic
environment but smeared around by the reverberation and noise. . . . 33

(a) An anechoic environment. . . . . . . . . . . . . . . . . . . . 33

(b) A reverberant environment. . . . . . . . . . . . . . . . . . . . 33

(c) A noisey environment. . . . . . . . . . . . . . . . . . . . . . 33

2.5 Flow diagram of the DUET-GCC approach. Basically, the speech
mixtures are separated by using the DUET in the TF domain, and the
PHAT-GCC is then employed for the spectrogram of each source to
estimate the TDOAs. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 GCC function from DUET approach and traditional PHAT weighting.
Two sources are located at (1.4, 1.2)m and (1.4, 2.8)m respectively.
The GCC function is estimated from the first microphone pair
(microphone 1 and microphone 2). The ground truth TDOAs are
0.95 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Acoustic source tracking and localisation. . . . . . . . . . . . . . . . 34

(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

July 14, 2014 – 15 : 04



vi LIST OF FIGURES



Acronyms

2-D two-dimensional

AED adaptive eigenvalue decomposition

AIR acoustic impulse response

ASL acoustic source localisation

AVS acoustic vector sensor

BSS blind source separation

CPSD cross-power spectral density

DUET degenerate unmixing estimation technique

FT Fourier transform

GCC generalised cross correlation

GCC-PHAT GCC-PHAT

LI linear intersection

LS least-squares

LSE least-squares estimate

LSE least squares error

ML maximum-likelihood

PHAT phase transform

PHD Ph.D. thesis

RIR room impulse response

SBF steered beamformer

SBS block stationary

SCOT Smoothed Coherence Transform

vii



viii LIST OF FIGURES

SI spherical interpolation

SRC stochastic region contraction

SRP steered response power

STFT short-time Fourier transform

SX spherical intersection

TDOA time-difference of arrival

TF time-frequency

TFR time-frequency representation

ULA uniform linear array

WDO W-disjoint orthogonality

i. t. o. in terms of



1
Source Localisation

This tutorial looks at the role of acoustic source localisation (ASL) in block stationary
(SBS), as well as how blind source separation (BSS) can be used in ASL.

1.1 Introduction
New slide

• This research tutorial is intended to cover a wide range of aspects which link
acoustic source localisation (ASL) and blind source separation (BSS). It is
written at a level which assumes knowledge of undergraduate mathematics and
signal processing nomenclature, but otherwise should be accessible to most
technical graduates.

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The
documents published on the USB stick may differ to the slides presented on
the day. In particular, there are likely to be a few typos in the document, so if
there is something that isn’t clear, please feel free to email me so I can correct it
(or make it clearer).

• The latest version of this document can be found online and downloaded at:

http://www.see.ed.ac.uk/˜jhopgoo1/Research/UDRC

• Thanks to Xionghu Zhong and Ashley Hughes for borrowing some of their
diagrams from their dissertations.

1
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2 Source Localisation

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛

☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.1: Source localisation and BSS.
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Figure 1.2: Humans turn their head in the direction of interest in order to reduce
inteference from other directions; joint detection, localisation, and enhancement.



1.2. Recommended Texts 3

(a) [Huang:2008] (b) [DiBiase:2001] (c) [Wolfel:2009]

Figure 1.3: Recommended book chapters and the references therein.

1.1.1 Structure of the Tutorial

New slide• Recommended Texts

• Conceptual link between ASL and BSS.

• Geometry of source localisation.

• Spherical and hyperboloidal localisation.

• Estimating time-difference of arrivals (TDOAs).

• Steered beamformer response function.

• Multiple target localisation using BSS.

• Conclusions.

1.2 Recommended Texts
New slide• Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and Source

Localization,” in Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043–1063, , Springer, 2008.

• Chapter 8: DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust
Localization in Reverberant Rooms,” in Microphone Arrays by M. Brandstein
and D. Ward, pp. 157–180, , Springer Berlin Heidelberg, 2001.

July 14, 2014 – 15 : 04



4 Source Localisation

• Chapter 10 of Wolfel M. and J. McDonough, Distant Speech Recognition, Wiley,
2009.

IDENTIFIERS – Hardback, ISBN13: 978-0-470-51704-8

Some recent PhD thesis on the topic include:

• Zhong X., “Bayesian framework for multiple acoustic source tracking,” Ph.D.
thesis, University of Edinburgh, 2010.

• Pertila P., “Acoustic Source Localization in a Room Environment and at
Moderate Distances,” Ph.D. thesis, Tampere University of Technology, 2009.

• Fallon M., “Acoustic Source Tracking using Sequential Monte Carlo,” Ph.D.
thesis, University of Cambridge, 2008.

1.3 Why Source Localisation?

New slide A number of blind source separation (BSS) techniques rely on knowledge of the
desired source position, for example:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source localisation (ASL) techniques rely
on BSS. This tutorial will look at the connections and dependencies between ASL and
BSS, and discuss how they can be used together. The tutorial will cover some classical
well known techniques, as well as some recent advances towards the end.

In particular, the following topics will be considered in detail:

• hyperboloidal (TDOA) based localisation methods;

• TDOA estimation methods;

• steered response power (SRP) based localisation methods;

• computationally efficient SRP methods such as stochastic region contraction
(SRC);

• multi-target detection and localisation using BSS algorithms such as degenerate
unmixing estimation technique (DUET);
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Figure 1.4: Ideal free-field model.

Figure 1.5: An ULA of microphones.
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6 Source Localisation

Figure 1.6: An acoustic vector sensor.

1.4 ASL Methodology

New slide • In general, most ASL techniques rely on the fact that an impinging wavefront
reaches one acoustic sensor before it reaches another.

• Most ASL algorithms are designed assuming there is no reverberation present,
the free-field assumption; the performance of each method in the presence of
reverberation will be considered after the techniques have been introduced.

• Typically, this acoustic sensor is a microphone; this tutorial will primarily
consider omni-directional pressure sensors, and therefore many of the
techniques discussed will rely on the fact there is a TDOA between the signals
at different microphones.

• Other measurement types include:

– range difference measurements;

– interaural level difference;

– joint TDOA and vision techniques.

• Another sensor modality might include acoustic vector sensors (AVSs) which
measure both air pressure and air velocity. Useful for applications such as sniper
localisation.

1.4.1 Source Localization Strategies

New slide This section is based on



1.4. ASL Methodology 7

DiBiase J. H., H. F. Silverman, and M. S. Brandstein, “Robust Localization
in Reverberant Rooms,” in Microphone Arrays by M. Brandstein and
D. Ward, pp. 157–180, , Springer Berlin Heidelberg, 2001.

Existing source localisation methods can loosely be divided into three generic
strategies:

1. those based on maximising the SRP of a beamformer;

• location estimate derivded directly from a filtered, weighted, and sum
version of the signal data received at the sensors.

2. techniques adopting high-resolution spectral estimation concepts (see Stephan
Weiss’s talk);

• any localisation scheme relying upon an application of the signal
correlation matrix.

3. approaches employing TDOA information.

• source locations calculated from a set of TDOA estimates measured across
various combinations of microphones.

Spectral-estimation approaches See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the presence of noise
and reverberation.

SBF approaches Computationally intensive, superior performance to TDOA-based
methods. However, possible to dramatically reduce computational
load.

1.4.2 Geometric Layout

New slideSuppose there is a:

• sensor array consisting of N microphones located at positions mi ∈ R3, for
i ∈ {0, . . . , N − 1}, and

• M talkers (or targets) at positions xk ∈ R3, for k ∈ {0, . . . ,M − 1}.

The TDOA between the microphones at position mi and mj due to a source at xk can
be expressed as:

T (mi, mj, xk) , Tij (xk) =
|xk −mi| − |xk −mj|

c
(1.1)

July 14, 2014 – 15 : 04



8 Source Localisation
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Figure 1.7: Geometry assuming a free-field model.

where c is the speed of sound, which is approximately 344 m/s. More precisely, in air,
the speed of sound is given by:

c = 331.4 + 0.6Θ m/s (1.2)

where Θ is the temperature in Centigrade or Celsius. Hence, for instance, at a
temperature of 21 Celsius, then c = 344 m/s.

The distance from the target at xk to the sensor located at mi will be defined by Dik,
and is called the range. It is given by the expression

Dik = |xk −mi| (1.3)

Hence, it follows that

Tij (xk) =
1

c
(Dik −Djk) (1.4)

1.4.3 Ideal Free-field Model
New slide • In an anechoic free-field acoustic environment, as depicted in Figure 1.4, the

signal from source k, denoted by sk(t), propagates to the i-th sensor at time t
according to the expression:

xik(t) = αik sk(t− τik) + bik(t) (1.5)

where bik(t) denotes additive noise. Note that, in the frequency domain, this
expression is given by:

Xik (ω) = αik Sk (ω) e−jω τik +Bik (ω) (1.6)

On the assumption of geometrical room acoustics, which assumes high
frequencies, a point sound source of single frequency ω, at position xk in free
space, emits a pressure wave P(xk,mi), t(ω) at time t and at position mi:

P(xk,mi)(ω, t) = P0
exp [jω(r/c− t)]

r
(1.7)
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where c is the speed of sound, t ∈ R is time, and r = |xk −mi|, which can be
seen to equate to Dik.

• The additive noise source is assumed to be uncorrelated with the source signal,
as well as the noise signals at the other microphones.

• The TDOA between the i-th and j-th microphone is given by:

τijk = τik − τjk = T (mi, mj, xk) (1.8)

1.4.4 TDOA and Hyperboloids

New slideIt is important to be aware of the geometrical properties that arise from the TDOA
relationship given in Equation 1.1:

T (mi, mj, xk) =
|xk −mi| − |xk −mj|

c
(1.9)

• This defines one half of a hyperboloid of two sheets, centered on the midpoint
of the microphones, vij =

mi+mj

2
. A generic diagram for the hyperboloid of

twosheets is shown in Figure 1.8 and Equation 1.13. Equivalently, as shown in
Sidebar 1:

(xk − vij)
T Vij (xk − vij) = 1 (1.10)

where

τ = c T (mi, mj, xk) , Vij =
I3 − 4

τ2
µijµ

T
ij

τ 2 − |µij|2
and µij =

mi −mj

2
(1.11)

• For source with a large source-range to microphone-separation ratio, the
hyperboloid may be well-approximated by a cone with a constant direction angle
relative to the axis of symmetry. The corresponding estimated direction angle,
φij for the microphone pair (i, j) is given by

φij = cos−1

(
c T (mi, mj, xk)

|mi −mj|

)
(1.12)

KEYPOINT! (Hyperboloid of two sheets). General expression for a Hyperboloid of
two sheets is given by:

x2

a2
+
y2

b2
+
z2

c2
= −1 (1.13)

�

An example of the resulting hyperboloid for a typical case is shown in Figure 1.9,
where the two-dimensional (2-D) equation is simplified in Sidebar 2. This case is for
a microphone separation of d = 0.1, and a time-delay of τij = d

4c
.

July 14, 2014 – 15 : 04



10 Source Localisation

Figure 1.8: Hyperboloid of two sheets

Figure 1.9: Hyperboloid, for a microphone separation of d = 0.1, and a time-delay of
τij = d

4c
.
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Sidebar 1 Hyperboloids

Consider again Equation 1.1, but change the coordinate system to the center of the
microphone pairs, such that:

xk = x +
mi + mj

2
(1.14)

such that:

xk −mi = x− mi −mj

2︸ ︷︷ ︸
µ

and xk −mj = x +
mi −mj

2︸ ︷︷ ︸
µ

(1.15)

The normalised-TDOA, which α = c τijkis the actual TDOA multiplied by the speed
of sound (equivalent to a range) across these two microphones can then be expressed
as

α = |x− µ| − |x + µ| (1.16)

To show this is a hyperboloid, consider multiplying both sides by |x− µ| + |x + µ|
and dividing by τ such that:

|x− µ|+ |x + µ| = 1

α
(|x− µ|+ |x + µ|) (|x− µ| − |x + µ|) (1.17)

=
1

α

(
|x− µ|2 − |x + µ|2

)
(1.18)

|x− µ|+ |x + µ| = −4µTx

α
(1.19)

Adding Equation 1.16 and Equation 1.19 gives:

2 |x− µ| = α− 4µTx

α
(1.20)

Squaring both sides again gives:

4xTx− 8µTx + 4µTµ = α2 − 8µTx +
16

α2
xTµTµTx (1.21)

xTx + µTµ =
α2

4
+

4

α2
xTµµTx (1.22)

xT
(
I3 −

4

α2
µµT

)
x =

α2

4
− |µ|2 (1.23)

finally giving:

xTVx = 1 where V =
I3 − 4

α2µµ
T

α2

4
− |µ|2

(1.24)

which is the equation of an arbitrary orientated hyperboloid. The principal directions
of the hyperboloid are the eigenvectors of the matrix V. Since V is rank-one, it is
straightforward to show that the axis of symmetry is µ =

mi−mj

2
.

July 14, 2014 – 15 : 04



12 Source Localisation

Sidebar 2 Hyperboloids Example

Continuing from the derivation in Sidebar 1, suppose the microphones are at positions
mi =

[
d
2

0 0
]T and mj =

[
−d

2
0 0

]T such that µ =
[
d
2

0 0
]T . Hence,

Equation 1.24 becomes:

V =
I3 − 4

α2µµ
T

α2

4
− |µ|2

(1.25)

=
1

α2

4
− d2

4

I3 −
4

α2

d24 0 0
0 0 0
0 0 0

 (1.26)

=
4

α2 − d2

1− d2

α2 0 0
0 1 0
0 0 1

 (1.27)

This then gives the equation of the hyperboloid as:

xTVx = 1 (1.28)

xT

1− d2

α2 0 0
0 1 0
0 0 1

x =
α2 − d2

4
(1.29)

(
1− d2

α2

)
x2 + y2 + z2 =

α2 − d2

4
(1.30)

x2(
α
2

)2 −
y2 + z2

1
4

(d2 − α2)
= 1 (1.31)

Note that the maximum TDOA will occur when the source is on the line through the
two microphones, and outside of the microphones. In this case, the maximum observed
delay will be τij = d

c
or α = d. Hence, d2 − α2 ≥ 0.

Writing r2 = y2 + z2, which are points in the x − y plane on circles of radius r, this
can alternatively be written as:

r =
1

2

√
d2 − α2

√(
2x

α

)2

− 1 (1.32)

There is no solution for x < α
2

.
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1.5 Indirect TDOA-based Methods
New slide

KEYPOINT! (Executive Summary). This section considers techniques which
employ TDOA information directly. The section is broadly split into two sections;
localising the source given TDOAs, followed by techniques for estimating TDOAs.

This is typically a two-step procedure in which:

• Typically, TDOAs are extracted using the generalised cross correlation (GCC)
function, or an adaptive eigenvalue decomposition (AED) algorithm.

• A hypothesised spatial position of the target can be used to predict the expected
TDOAs (or corresponding range) at the microphone.

• The error between the measured and hypothesised TDOAs is then minimised.

• Accurate and robust TDOA estimation is the key to the effectiveness of this class
of ASL methods.

• An alternative way of viewing these solutions is to consider what spatial
positions of the target could lead to the estimated TDOA.

In the following subsections, two key error functions are considered which can be
optimised in a variety of methods.

1.5.1 Spherical Least Squares Error Function

New slide
KEYPOINT! (Underlying Idea). Methods using the least squares error (LSE)
function relate the distance or range to a target, relative to each microphone, in terms
of the range to a coordinate origin and the time-difference of arrival (TDOA) estimates
at each microphone.

• Suppose the first microphone is located at the origin of the coordinate system,
such that m0 =

[
0 0 0

]T .

• The range from target k to sensor i can be expressed as the range from the target
to the first sensor plus a correction term:

Dik = D0k +Dik −D0k (1.33)
= Rs + c Ti0 (xk) (1.34)

whereRsk = |xk| is the range to the first microphone which is at the origin. This
is shown in Figure 1.10.
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Figure 1.10: Range and TDOA relationship.

• In practice, the observations are the TDOAs and therefore, given Rsk, these
ranges can be considered the measurement ranges.

Of course, knowing Rsk is half the solution, but it is just one unknown at this
stage. The measurements can be as

D̂ik ≡ R̂s + c T̂ij (1.35)

• The source-sensor geometry states that the target lies on a sphere centered on the
corresponding sensor. Hence,

D2
ik = |xk −mi|2 (1.36)

= xTk xk − 2mT
i xk + mT

i mi (1.37)

= R2
s − 2mT

i xk +R2
i (1.38)

where Ri = |mi| is the distance of the i-th microphone to the origin.

• Define the spherical error function for the ith-order-microphone as the
difference between the squared measured range and the squared spherical
modelled range values. Using Equation 1.34 and Equation 1.38, this spherical
error function can be written as:

εik ,
1

2

(
D̂2
ik −D2

ik

)
(1.39)

=
1

2

{(
Rs + c T̂i0

)2

−
(
R2
s − 2mT

i xk +R2
i

)}
(1.40)

= mT
i xk + cRs T̂i0 +

1

2

(
c2T̂ 2

i0 −R2
i

)
(1.41)
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• Concatenating the error functions for each microphone gives the expression:

εik = Axk − (bk −Rskdk)︸ ︷︷ ︸
vk

(1.42)

≡
[
A dk

]︸ ︷︷ ︸
Sk

[
xk
Rsk

]
︸ ︷︷ ︸

θk

−bk (1.43)

where

A =

 mT
0

...
mT

N−1

 , d = c

 T̂00
...

T̂(N−1)0

 , bk =
1

2

 c2T̂ 2
00 −R2

0
...

c2T̂ 2
(N−1)0 −R2

N−1

 (1.44)

• The least-squares estimate (LSE) can then be obtained by forming the
sum-of-squared errors term using J = εTi εi which simplifies to:

J(xk) = (Axk − (bk −Rsk dk))
T (Axk − (bk −Rsk dk)) (1.45a)

J (xk, θk) = (Skθk − bk)
T (Skθk − bk) (1.45b)

• Note that as Rsk = |xk|, these parameters aren’t in fact independent. Therefore,
the problem to be solved can either be formulated as:

– a nonlinear least-squares problem in xk as described by Equation 1.45a;
– a linear minimisation subject to quadratic constraints:

θ̂k = arg min
θk

(Skθk − bk)
T (Skθk − bk) (1.46)

subject to the constraint

θk ∆θk = 0 where ∆ = diag [1, 1, 1, −1] (1.47)

The constraint θk ∆θk = 0 is equivalent to

x2
sk + y2

sk + z2
sk = R2

sk (1.48)

where (xsk, ysk, zsk) are the Cartesian coordinates of the source position.

1.5.1.1 Two-step Spherical LSE Approaches

New slide
KEYPOINT! (Constrained least-squares). To avoid solving either a nonlinear or a
constrained least-squares problem, it is possible to solve the problem in two steps,
namely:

1. solving a LLS problem in xk assuming the range to the target, Rsk, is known;

2. and then solving for Rsk given an estimate of xk in terms of (i. t. o.) Rsk.

This approach is followed in the spherical intersection (SX) and spherical
interpolation (SI) estimators as shown below.
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• In both approaches, the range estimate is assumed known, so that the LSE can
be expressed as:

J (xk) = εTi εi = (Axk − vk)
T (Axk − vk) (1.49)

Assuming an estimate of Rsk, denoted by R̂sk, this can be solved as

x̂k = A† vk = A†
(
bk − R̂skdk

)
where A† =

[
ATA

]−1
AT (1.50)

Note that A† is the pseudo-inverse of A.

Again, recall that the only observations are the TDOAs, {T̂i0, i ∈ {0, N − 1}}, and
that while Rsk is assumed known, clearly it is an unknown parameter. The differences
between the following spherical estimation techniques essentially reduce to how the
unknown range is dealt with. These are covered in the following subsections.

1.5.1.2 Spherical Intersection Estimator

New slide This method uses the physical constraint that the range Rsk is the Euclidean distance
to the target.

• Writing R̂2
sk = x̂Tk x̂k, it follows that:

R̂2
sk =

(
bk − R̂skdk

)T
A†TA†

(
bk − R̂skdk

)
(1.51)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0 (1.52)

where the individual terms follow through expanding Equation 1.51. These
terms are given by:

a = 1−
∥∥A†dk∥∥2

, b = 2bkA
†TA†dk, and c = −

∣∣A†bk∥∥2
(1.53)

• The unique, real, positive root of Equation 1.52 is taken as the SX estimator of
the source range. Hence, the estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.
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1.5.1.3 Spherical Interpolation Estimator

New slide The SI estimator again uses the spherical LSE function, but rather than using the
physically intuitive solution of constraining the target range relative to the origin to
be the actual distance so that Rsk ≡ |xk|, it is estimated in the least-squares sense.

Consider again the spherical error function:

εik = Axk − (bk −Rsk dk) (1.54)

Substituting the LSE from Equation 1.50 into this expression gives:

εik = A
[
ATA

]−1
AT
(
bk − R̂skdk

)
− (bk −Rsk dk) (1.55)

Defining the projection matrix as PA = IN−A
[
ATA

]−1
AT , then this may be written

as:
εik = RskPAdk −PAbk (1.56)

Minimising the LSE using the normal equations gives:

Rsk =
(
dTk P

T
A PAdk

)−1
dTkP

T
APAbk (1.57)

However, the projection matrix is symmetric and idempotent, such that PA = PT
A

and PAPA = PA. This means that the sum-of-squared errors simplifies to:

Rsk =
(
dTk PAdk

)−1
dTkPAbk (1.58)

or alternatively, since the quantity in the inverse is a scaler,

Rsk =
dTkPAbk
dTk PAdk

(1.59)

Substituting back into the LSE for the target position given in Equation 1.50 gives the
final estimator:

x̂k = A†
(
IN − dk

dTkPA

dTk PAdk

)
bk (1.60)

This approach is said to perform better, but is computationally slightly more complex
than the SX estimator.

1.5.1.4 Other Approaches

New slideThere are several other approaches to minimising the spherical LSE function defined
in Equation 1.45.

• In particular, the linear-correction LSE solves the constrained minimization
problem using Lagrange multipliers in a two stage process.

• For further information, see: Huang Y., J. Benesty, and J. Chen, “Time
Delay Estimation and Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp. 1043–1063, ,
Springer, 2008.
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18 Source Localisation

1.5.2 Hyperbolic Least Squares Error Function

New slide

KEYPOINT! (Underlying Concept). Suppose that for each pair of microphones i and
j, a TDOA corresponding to source k is somehow estimated, and this is denoted by
τijk. One approach to ASL is to minimise the total error between the measured TDOAs
and the TDOAs predicted by the geometry given an assumed target position.

• If a TDOA is estimated between two microphones i and j, then the error between
this and modelled TDOA is given by Equation 1.1:

εij(xk) = τijk − T (mi, mj, xk) (1.61)

where the error is considered as a function of the source position xk.

• The total error as a function of target position

J(xk) =
N∑
i=1

N∑
j 6=i=1

(τijk − T (mi, mj, xk))
2 (1.62)

• Unfortunately, since T (mi, mj, xk) is a nonlinear function of xk, the minimum
LSE does not possess a closed-form solution.

1.5.2.1 Linear Intersection Method

New slide

KEYPOINT! (Underlying Concept). The linear intersection (LI) algorithm works by
utilising a sensor quadruple with a common midpoint, which allows a bearing line to
be deduced from the intersection of two cones which approximate the hyperboloid.
The spatial position that minimises the distance between these bearing lines a the point
of nearest intersection is considered the target position.

• Given the bearing lines, it is possible to calculate the points sij and sji on two
bearing lines which give the closest intersectionas illustrated in Figure 1.12. This
is basic gemoentry, and for a detailed analysis, see [Brandstein:1997].

• The trick is to note that given these points sij and sji, the theoretical TDOA,
T (m1i, m2i, sij), can be compared with the observed TDOA.

This will then lead to a weighted location estimate, where the weights are related
to the likelihood of the target position given the observed TDOA.
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mj1 mj2

mj4

mj3

yj

xj

zj

aj

bj

gj

I’j

Figure 1.11: Quadruple sensor arrangement and local Cartesian coordinate system.

mi

x (m)mj

Ii

Ij

sij

sji

dij

Figure 1.12: Calculating the points of closest intersection.
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1.5.3 TDOA estimation methods
New slide Two key methods for TDOA estimation are using the GCC function and the AED

algorithm.

GCC algorithm most popular approach assuming an ideal free-field movel. It has the
advantages that

• computationally efficient, and hence short decision delays;

• perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

• fail when room reverberation is high;

• focus of current research is on combating the effect of room
reverberation.

AED Algorithm Approaches the TDOA estimation approach from a different point
of view from the traditional GCC method.

• adopts a reverberant rather than free-field model;

• computationally more expensive than GCC;

• can fail when there are common-zeros in the room impulse
response (RIR).

Note that both methods assume that the signals received at the microphones arise as
the result of a single source, and that if there are multiple sources, the signals will first
need to be separated into different contributions of the individual sources.

1.5.3.1 GCC TDOA estimation

New slide The GCC algorithm proposed by Knapp and Carter is the most widely used approach
to TDOA estimation.

• The TDOA estimate between two microphones i and j is obtained as the time
lag that maximises the cross-correlation between the filtered versions of the
microphone outputs:

τ̂ij = arg max
`
rxi xj [`] (1.63)

where the signal received at microphone i is given by xi[n], and where xi should
not be confused with the location of the source k, which is denoted by xk =
[xk, yk, zk]

T .
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• The cross-correlation function is given by

rxi xj [`] = F−1
(
Ψx1x2

(
ejωTs

))
(1.64)

= F−1
(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))
(1.65)

=

∫ π
Ts

− π
Ts

Ψx1x2

(
ejωTs

)
ej`ωT dω (1.66)

=

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ej`ωT dω (1.67)

where the cross-power spectral density (CPSD) is given by

Px1x2
(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
(1.68)

The CPSD can be estimated in a variety of means. The choice of the filtering
term or frequency domain weighting function, Φ

(
ejωTs

)
, leads to a variety of

different GCC methods for TDOA estimation. In Section 1.5.3.3 , some of the
popular approaches are listed, but only one is covered in detail, namely the phase
transform (PHAT).

1.5.3.2 CPSD for Free-Field Model

New slideFor the free-field model in Equation 1.5 and Equation 1.6, it follows that for i 6= j the
CPSD in Equation 1.68 is given by:

Pxixj (ω) = E [Xj (ω)Xj (ω)] (1.69)

= E
[(
αik Sk (ω) e−jω τik +Bik (ω)

) (
αjk Sk (ω) e−jω τkk +Bjk (ω)

)]
(1.70)

= αikαjke
−jω T (mi,mj ,xk)E

[
|Sk (ω)|2

]
(1.71)

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0 due to the noise being
uncorrelated with the source signal and noise signals.

• In particular, note that it follows:

∠Pxixj (ω) = −jω T (mi, mj, xk) (1.72)

In otherwords, all the TDOA information is conveyed in the phrase rather than
the amplitude of the CPSD. This therefore suggests that the weighting function
can be chosen to remove the amplitude information.

These equations can be converted to discrete time as appropriate.

1.5.3.3 GCC Processors

New slideThe most common choices for the GCC weighting term are listed in the table below.
In particular, the PHAT is considered in detail.
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Processor Name Frequency Function
Cross Correlation 1

PHAT
1

|Px1x2 (ejωTs)|

Roth Impulse Response
1

Px1x1 (ejωTs)
or

1

Px2x2 (ejωTs)

SCOT
1√

Px1x1 (ejωTs)Px2x2 (ejωTs)

Eckart
Ps1s1

(
ejωTs

)
Pn1n1 (ejωTs)Pn2n2 (ejωTs)

Hannon-Thomson or ML

∣∣γx1x2 (ejωTs)∣∣2
|Px1x2 (ejωTs)|

(
1− |γx1x2 (ejωTs)|2

)
where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence function is given by

γx1x2
(
ejωTs

)
=

Px1x2
(
ejωTs

)√
Px1x1 (ejωTs)Px2x2 (ejωTs)

(1.73)

The PHAT-GCC approach can be written as:

rxi xj [`] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ej`ωT dω (1.74)

=

∫ π
Ts

− π
Ts

1

|Px1x2 (ejωTs)|
|Px1x2

(
ejωTs

)
|ej∠Px1x2(ejωTs) ej`ωT dω (1.75)

=

∫ π
Ts

− π
Ts

ej(`ωT+∠Px1x2(ejωTs)) dω (1.76)

= δ
(
` Ts + ∠Px1x2

(
ejωTs

))
(1.77)

= δ(` Ts − T (mi, mj, xk)) (1.78)

• In the absence of reverberation, the GCC-PHAT (GCC-PHAT) algorithm gives
an impulse at a lag given by the TDOA divided by the sampling period.

1.5.3.4 Adaptive Eigenvalue Decomposition

New slide
KEYPOINT! (Underlying Concept). The AED algorithm adopts the real reverberant
rather than free-field model. The AED algorithm actually amounts to a blind
channel identification problem, which then seeks to identify the channel coefficients
corresponding to the direct path elements.
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(b) GCC-PHAT function

Figure 1.13: Normal cross-correlation and GCC-PHAT functions for a frame of
speech.
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(a) GCC-PHAT in a reverberant
environment, ρ = 08. The ground
truth of TDOA is 0.64 ms.

−1 0 1

x 10
−3

−0.2

−0.1

0

0.1

0.2

TDOA/sec.

P
H

A
T

−
G

C
C

 fu
nc

tio
n actual delay

(b) GCC-PHAT in a noisy
environment, SNR = 0 dB.

Figure 1.14: The effect of reverberation and noise on the GCC-PHAT can lead to poor
TDOA estimates.
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Figure 1.15: A typical room acoustic impulse response.

• Suppose that the acoustic impulse response (AIR) between source k and i is
given by hik[n] such that

xik[n] =
∞∑

m=−∞

hik[n−m] sk[m] + bik[n] (1.79)

then the TDOA between microphones i and j is:

τijk =
{

arg max
`
|hik[`]|

}
−
{

arg max
`
|hjk[`]|

}
(1.80)

This assumes a minimum-phase system, but can easily be made robust to a
non-minimum-phase system.

• Reverberation plays a major role in ASL and BSS.

• Consider reverberation as the sum total of all sound reflections arriving at a
certain point in a room after room has been excited by impulse.

Trivia: Perceive early reflections to reinforce direct sound, and can help with speech
intelligibility. It can be easier to hold a conversation in a closed room than outdoors

• Room transfer functions are often nonminimum-phase since there is more energy
in the reverberant component of the RIR than in the component corresponding
to sound travelling along a direct path.

• Therefore AED will need to consider multiple peaks in the estimated AIR.
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Figure 1.16: Early and late reflections in an AIR.

Sound
Source

Reflected Paths

Direct Path

Received
Sound

θk

Figure 1.17: In an infinitely long cylindrical tube, the reverberant energy is greater than
the energy contained in the sound travelling along a direct path, thus demonstrating the
nonminimum-phase properties of room acoustics.
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1.6 Direct Localisation Methods
New slide • Direct localisation methods have the advantage that the relationship between the

measurement and thestate is linear.

• However, extracting the position measurement requires a multi-dimensional
search over the state space and is usually computationally expensive.

1.6.1 Steered Response Power Function

New slide
KEYPOINT! (Underlying Concept). The steered beamformer (SBF) or SRP function
is a measure of correlation across all pairs of microphone signals for a set of relative
delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a spatial position x̂k
such that τ̂pk = |x̂−mp|, using the notation in Equation 1.8, is given by:

S (x̂) =

∫
Ω

∣∣∣∣∣
N∑
p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣∣∣∣∣
2

dω (1.81)

Expanding and rearranging the order of integration and summation gives:

S (x̂) =

∫
Ω

N∑
p=1

N∑
q=1

Wp

(
ejωTs

)
W ∗
q

(
ejωTs

)
Xp

(
ejωTs

)
X∗q
(
ejωTs

)
ejω(τ̂pk−τ̂qk) dω

(1.82)
Taking expectations of both sides and setting Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗
q

(
ejωTs

)
gives

E [S (x̂)] =
N∑
p=1

N∑
q=1

∫
Ω

Φpq

(
ejωTs

)
Pxpxq

(
ejωTs

)
ejωτ̂pqk dω (1.83)

=
N∑
p=1

N∑
q=1

rxi xj [τ̂pqk] ≡
N∑
p=1

N∑
q=1

rxi xj

[
|xk −mi| − |xk −mj|

c

]
(1.84)

In other words, the SRP is the sum of all possible pairwise GCC functions evaluated at
the time delays hypothesised by the target position. This is discussed in Section 1.6.2.

1.6.2 Conceptual Intepretation of SRP

New slide Equation 1.84 gives an elegant conceptual intepretation of the SBF function. Given a
candidate spatial position x̂k, the corresponding TDOA at microphones i and j can be
calculated using Equation 1.9:



1.6. Direct Localisation Methods 27

0
1

2
3

4
5

0

2

4

200

300

400

500

600

x−coordinate/m
y−coordinate/m

S
B

F
 r

es
po

ns
e

Figure 1.18: SBF response from a frame of speech signal. The integration frequency
range is 300 to 3500 Hz (see Equation 1.84). The true source position is at [2.0, 2.5]m.
The grid density is set to 40 mm.

Figure 1.19: An example video showing the SBF changing as the source location
moves.
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Figure 1.20: GCC-PHAT for different microphone pairs.

T (mi, mj, x̂k) =
|x̂k −mi| − |x̂k −mj|

c
(1.85)

Since the SBF function in Equation 1.84 is a linear combination of the GCC-PHAT
functions, then if x̂k is correct, then the GCC-PHAT functions should return a large
peak. If x̂k is incorrect, then the GCC-PHAT functions return smaller values, and
therefore the SBF function in Equation 1.84 is smaller.



2
Blind Source Localisation

This handout considers multi-target localisation using blind source separation (BSS)
techniques.

2.1 DUET Algorithm

New slide
KEYPOINT! (Summary). The degenerate unmixing estimation technique (DUET)
algorithm is an approach to blind source separation (BSS) that ties in neatly to acoustic
source localisation (ASL). Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

• DUET is based on the assumption that for a set of signals xk[t], their
time-frequency representations (TFRs) are predominately non-overlapping. This
condition is referred to as W-disjoint orthogonality (WDO), and can be stated as
follows:

Sp (ω, t) Sq (ω, t) = 0∀p 6= q, ∀t, ω (2.1)

The WDO property is clearly shown in Figure 2.1, where the spectrograms of clean
speech mixtures are sparse and disjoint. For two speech signals, the product of
the corresponding spectrograms is zero at the most area on the time-frequency (TF)
domain.

Consider taking then, a particular TF-bin, (ω, t), where source p is known to be active.
The two received signals at microphones i and j in that TF-bin can be written in the

29
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Figure 2.1: W-disjoint orthogonality of two speech signals. Original speech signal (a)
s1[t] and (b) s2[t]; corresponding STFTs (c) |S1 (ω, t)| and (d) |S2 (ω, t)|; (e) product
of the two spectrogram |S1 (ω, t)S2 (ω, t)|.
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Figure 2.2: Illustration of the underlying idea in DUET.

TF-domain as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

(2.2)

Taking the ratio of these expressions and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=
αip
αjp

e−jωτijp (2.3)

where, again, τijp is the time-difference of arrival (TDOA) of the signal contribution
due to source p between microphones i and j.

KEYPOINT! (Which TF-bins belong to which source?). Of course, which TF-bins
belong to which source is unknown, as the source signal and spectrum is unknown.
However, if the magnitude and phase terms of the ratio in Equation 2.3 are
histogrammed over all TF-bins, peaks will occur a distinct magnitude-phase positions,
each peak corresponding to a different source.

Hence,

τijp = − 1

ω
argHikp (ω, t) , and

αip
αjp

= |Hikp (ω, t)| (2.4)

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing parameter estimates.

3. Combine the set of local mixing parameter estimates into N pairings
corresponding to the true mixing parameter pairings.

July 14, 2014 – 15 : 04



32 Blind Source Separation

Figure 2.3: DUET for multiple sources.

4. Generate one binary mask for each determined mixing parameter pair
corresponding to the TF-bins which yield that particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the mixtures.

6. Return each demixed TFR to the time domain.

2.1.1 Effect of Reverberation and Noise
New slide A number of papers have analysed the validity of the WDO property, and anechoic

speech often satisfies this. However, while the TFR of speech is very clear in this case,
the TFR becomes smeared due to revebereration and noise.

2.1.2 Estimating multiple targets

New slide The underlying idea is shown in Figure 2.5 and Figure 2.6.

2.2 Further Topics

New slide • Reduction in complexity of calculating steered response power (SRP). This
includes stochastic region contraction (SRC) and hierarchical searches.

• Multiple-target tracking (see Daniel Clark’s Notes)
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Figure 2.4: The TFR is very clear in the anechoic environment but smeared around by
the reverberation and noise.
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Figure 2.5: Flow diagram of the DUET-GCC approach. Basically, the speech mixtures
are separated by using the DUET in the TF domain, and the PHAT-GCC is then
employed for the spectrogram of each source to estimate the TDOAs.
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Figure 2.7: Acoustic source tracking and localisation.

• Simultaneous (self-)localisation and tracking; estimating sensor and target
positions from a moving source.

• Joint ASL and BSS.

• Explicit signal and channel modelling! (None of the material so forth cares
whether the signal is speech or music!)

• Application areas such as gunshot localisation; other sensor modalities;
diarisation.
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