
FAST NON-NEGATIVE ORTHOGONAL LEAST SQUARES

Mehrdad Yaghoobi and Mike E. Davies

Institute for Digital Communications, the University of Edinburgh, EH9 3JL, UK
{m.yaghoobi-vaighan, d.wu and mike.davies}@ed.ac.uk

ABSTRACT
An important class of sparse signals is the non-negative

sparse signals. While numerous greedy techniques have been
introduced for low-complexity sparse approximations, there
are few non-negative versions. Among such a large class of
greedy techniques, one successful method, which is called the
Orthogonal Least Squares (OLS) algorithm, is based on the
maximum residual energy reduction at each iteration. How-
ever, the basic implementation of the OLS is computationally
slow. The OLS algorithm has a fast implementation based
on the QR matrix factorisation of the dictionary. The exten-
sion of such technique to the non-negative domain is possi-
ble. In this paper, we present a fast implementation of the
non-negative OLS (NNOLS). The computational complexity
of the algorithm is compared with the basic implementation,
where the new method is faster with two orders of magnitude.
We also show that, if the basic implementation of NNOLS is
not computationally feasible for moderate size problems, the
proposed method is tractable. We also show that the proposed
algorithm is even faster than an approximate implementation
of the non-negative OLS algorithm.

Index Terms— Non-negative sparse approximations,
Orthogonal Least Squares, Efficient Implementations, Non-
negative Orthogonal Least Squares and QR Matrix Factoriza-
tion

1. INTRODUCTION

The signal processing with a low-dimensional model, is a
modern technique to explore signal structures. We thus need
some low-dimensional signal approximation algorithms for
this purpose. Such methods have to be fast, if the dimen-
sion of data is large/huge. There are many general purpose
sparse approximation techniques with fast implementations.
In some applications like hyperspectral data decomposition
[1] and DNA microarrays analysis [2], we further know that
non-zero coefficients of the sparse approximation are posi-
tive. In this setting, non-negative sparse approximation tech-
niques [3], often provide better solutions than the universal
techniques. Universal greedy techniques can be adapted to
such a setting by confining the solutions to the set of non-
negative coefficients. However, extension of the fast imple-
mentations of the greedy methods to the non-negative setting

is often not straightforward. An example of such extensions
to a greedy method, with a complicated coefficient update e.g.
Orthogonal Matching Pursuit (OMP), has already been pre-
sented in [4]. We here present a fast implementation of the
non-negative OLS [5] technique.

Let y ∈ Rm be a signal with the sparse representation
using a normalised linear generative model Φ ∈ Rm×n, i.e.
dictionary, where y = Φx and x is a sparse vector. At each it-
eration, OLS selects an element of dictionary, called an atom,
which maximally reduces the residual energy of the signal,
after adding the atom to the set of previously selected atoms.
It then finds the best possible representation of y using se-
lected atoms, i.e. orthogonal projection. In the other words,
the algorithm has these steps: i) selecting an atom, i.e.

i∗ = argmini min
sk+1:=sk∪{i}

‖y −Φsk+1Φ
†
sk+1

y‖2, (1)

where sk is the index set of selected atoms up to the iteration
k, Φsk+1 is the subdictionary selected by the index set sk and
† represents the More-Penrose pseudoinverse and ii) using the
Least Squares (LS) representation within the selected atoms.
As the optimisation problem (1) is computationally expen-
sive, Chen et al. [5] presented a technique, which iteratively
updates the QR factorisation of the selected subdictionary, i.e.
similar to the fast QR factorisation based OMP implementa-
tion [6]. It has an extra step in which we orthogonalise the rest
of the dictionary with respect to the selected subdictionary,
and then normalise the new dictionary. We refer the readers
to [5], for a more detailed description of the OLS algorithm.

If y is “non-negative sparse”, i.e. the representation x has
the property ‖x‖0 ≤ k, x ∈ Rn+, we intend to incorporate
the extra information and adapt OLS to the new setting. This
adaptation can be done if we combine the two steps of the
OLS and enforce the non-negativity of the coefficients, i.e.

i∗ = argmini min
sk+1 := sk ∪ {i}
α ∈ Rk+1

+

‖y −Φsk+1α‖2. (2)

We call such an implementation Basic NNOLS (BNNOLS).
The extension of the fast implementation of OLS for the non-
negative representation is not straightforward, if we want to
exactly solve NNOLS.

Algorithm 1 Suboptimal Non-Negative OLS
1: initialisation: s = ∅, k = 0, x = 0, Ω = Φ and r0 = y
2: while k < K & max(ΩT rk) > 0 do
3: ι∗ ← max(ΩT rk)
4: s← s ∪ ι∗
5: xs ← argminθ>0‖y −Φsθ‖2
6: rk+1 ← y −Φsxs

7: Updating Ω = [ωi], ωi, ∀i ∈ sc, from (3)
8: k ← k + 1
9: end while

10: x|s ← xs

We here present a simple technique to extend the fast OLS
implementation in section 2, without solving an expensive op-
timisation problem in the loop. We then show that the new
implementation is significantly faster than a basic implemen-
tation of NNOLS in section 3.

2. NON-NEGATIVE OLS

Let Φk ∈ Rm×k be the k selected atoms of Φ at iteration k, in
which the columns are ordered based on the iteration number,
i.e. the jth column is the jth selected atom. We can now
generate Φ̄k ∈ Rm×(n−k) as the rest of the dictionary, i.e.
including all non-selected atoms. In each iteration of OLS,
we need to calculate a matrix Ω = [ωi]1≤i≤n−k, which is the
column-normalised version of the orthogonal part of Φ̄k to
the column span of Φk. In other words,

ωi :=
φ̄⊥i

‖φ̄⊥i ‖2
, (3)

where φ̄⊥i := (I − ΦkΦ
†
k)φ̄i. We recall that φ̄i’s with the

property φ̄⊥i = 0, will be eliminated, as they lie in the span
of Φk and there is no need to consider them in the follow-
ing iterations. Let rk = y − Φkxk be the residual error of
the representation at iteration k, and xk is the coefficient vec-
tor at this iteration. As Ω is orthogonal to the span of Φk

and normalised, we can find the direction with the maximum
residual energy reduction by simply finding the maximum of
|ΩT rk|, where | · | is the element by element absolute value
operator. The optimal direction corresponding to ωi∗ pro-
vides us the index of an atom in this iteration. If we now
consider the non-negative representation, one suboptimal ap-
proach is to: i) select an atom with positive contribution, i.e
maxi(ωT

i rk) > 0, ii) updating the coefficients using NNLS.
A pseudo code for this algorithm, which is called Suboptimal
NNOLS (SNNOLS) is presented in Algorithm 1. sc is the
complement set of s. SNNOLS method does not find the so-
lution of iterating (2). The reason is related to the fact that the
selection criteria does not consider the fact that representation
based on the selected atoms in Φk have to be positive. In the
case which we enforce an already selected atom to have a zero
coefficient value, we may have some suboptimality. We also

Algorithm 2 Fast Non-Negative Orthogonal Least Squares
1: initialisation: s = z0 = ∅, k = 0, Ω = Φ and r0 = y
2: while k < K & max(ΩT rk) > 0 do
3: (ζ, ι)← sort↓(Ω

T rk)
4: p← 1
5: pc ← 1
6: zc ← 0
7: while ∼ Terminate & p < N do
8: zt from (6)
9: z ← ψT

ι(p)rk : ψι(p) = Φ̄⊥k /‖Φ̄⊥k ‖2,
Φ̄⊥k = (I−ΨkΨT

k)φ̄ι(p)

10: Update based on Table 1
11: end while
12: s← s ∪ ι(p)
13: Update Ψ, Φ̄, Ω and R−1

14: zk+1 ← [zk; zk+1]
15: rk+1 ← rk − zk+1ψk+1

16: k ← k + 1
17: end while
18: output: x|s ← R−1zK

If Then
0 < z ≤ zt, z > zc zk+1 ← z,Terminate
0 < z ≤ zt, z ≤ zc zk+1 ← zc, p← pc,Terminate

z > zc ≥ zt p← p+ 1
zc ≥ z > zt zk+1 ← zc, p← pc,Terminate
z > zt > zc zc ← zt, pc ← p, p← p+ 1

z < 0 Terminate

Table 1. Decision rules to guarantee positivity of the coeffi-
cients.

need to consider the computational cost of SNNOLS, as it
iteratively needs to solve NNLS. The solution which we pro-
pose here is to combine the selection and coefficient update
steps to avoid such suboptimality and reduce the computa-
tional cost by not directly solving NNLS.

2.1. Fast Non-Negative OLS

If Ψk ∈ Rm×k is iteratively generated using the selected
atoms of Ω, up to the kth iteration, we can QR factorise Φk

by ΨkRk, where Ψk is orthonormal and Rk ∈ Rk×k is an
upper-diagonal matrix. The reason for such a structure for R
is the fact that Φj is orthogonal to ψp’s, for ∀p : j < p.
This QR factorisation is updating throughout the iterations as
follows: i) adding ωi∗ as the new column of Ψ, i.e.

Ψk+1 = [Ψk ωi∗] (4)

and ii) updating Rk using the following equation,

Rk+1 =
[

Rk ν
0 µ

]
, (5)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
Average Exact Recovery

BNNOLS, M = 64

FNNOLS, M = 64

BNNOLS, M = 128

FNNOLS, M = 128

Sparsity

0 5 10 15 20 25 30 35 40 45 50

10 -2

10 0

10 2
Computational Time (Sec)

BNNOLS, M = 64

FNNOLS, M = 64

BNNOLS, M = 128

FNNOLS, M = 128

Fig. 1. Exact recovery and computation time. N = 256, M
is 64 or 128 and sparsity K is changing. The proposed tech-
nique FNNOLS is roughly 100 times faster than BNNOLS!

where ν = ΨT
k φ̄i∗ , µ = ‖φ̄⊥i∗‖2 and φ̄⊥i∗ can be easily calcu-

lated using φ̄⊥i∗ = (I −ΨkΨT

k)φ̄i∗ , i.e. no need to calculate
the pseudoinverse of Φk, comparing to the definition after (3).
This process can be interpreted as a type of Graham-Schmidt
(GS) orthogonalisation process, which is a well-known QR
factorisation technique [7]. With the new setting, we can
rewrite the OLS algorithm as follows: In the first iteration,
we do not need any orthogonalisation and we have φ1 = ψ1

and R1 = [1]. In the kth iteration, k ≥ 1, let the best ap-
proximation of y, using Φk, be

∑k
i=1 xiφi =

∑k
i=1 ziψi. In

the k + 1 iteration, we have,

k+1∑
i=1

ziψi =
k∑
i=1

ziψi + zk+1ψk+1

=
k∑
i=1

xiφi + zk+1ψk+1.

We recall that ψi’s are orthogonal and choosing a new ele-
mentary function ψk+1 does not change the optimal value of
the best representation zi, ∀i : i < k + 1, calculated up to
the previous iteration k. This is obviously not true for xi’s as
Φk+1 is not orthogonal.

As ψk+1 lives in the span of the non-redundant set
{φj}j∈[1,k+1], ψk+1 =

∑k+1
j=1 γjφj for some unique γj’s.

Fig. 2. Computation time for the fixed N = 256 and K =
24 and 32.

We can then have,

k+1∑
i=1

ziψi =
k∑
i=1

xiφi +
k+1∑
j=1

zk+1γjφj

=
k∑
i=1

(xi + zk+1γi)φi + zk+1γk+1φk+1.

As zk+1γk+1 is always positive, we only need to assure that
xi + zk+1γi ≥ 0 or

zk+1 ≤ zt :=

{
mini,γi<0

∣∣∣xi

γi

∣∣∣ ∃i, γi < 0
+∞ Otherwise .

(6)

In OLS, we only need to keep zi’s in the memory and
calculate xi’s at the end of algorithm [8]. To assure that
xi’s are all non-negative, zi’s should comply the condition
of (6). We then choose the atom that the corresponding zk+1,
or shrunk by the upper-bound of (6), has the largest value.
We therefore need to track the record of the best possible
value for z, if z = ωT

i∗rk does not comply with (6). If
(ζ, ι) = sort↓(ΩT rk), where sort↓ is the sorting operator in a
descent order, ζ is the sorted coefficients with corresponding
indices ι. A pseudocode of the fast non-negative orthogonal
least square is presented in Algorithm 2. In this algorithm, z
is the current candidate, starting with z = ζ(p), p = 1, in an
internal loop in the kth iteration, we make the decision based
on the rules of Table 1, to guarantee that the coefficients xi’s
will remain non-negative throughout iterations. We also need
to calculate R−1 at the last iteration, which would be expen-
sive. We thus can iteratively generate R−1 using the following
update rule,

R−1
k+1 =

[
R−1
k −R−1

k ν

µ

0 1
µ

]
. (7)

Fig. 3. Computation time for the fixed M = 128 and K =
64 and 96.

where ν and µ were defined after (5). For the fast implemen-
tation of this algorithm, we have to also efficiently calculate
γ. It is not difficult to show that γ is the last column of R−1

k+1,

i.e., γ = [−R−1
k ν

µ ; 1
µ], which is kept in the memory.

3. SIMULATIONS

We investigate the runtime of the algorithms on a single core
of an Intel core 2.6 GHz processor. In the first experiment,
we randomly generated Φ with 256 atoms and 64 or 128 rows
using i.i.d. Gaussian random variables, followed by column
normalisation. y was generated using a Gaussian-Bernoulli
model, i.e. uniformly random support and Normal distribu-
tion for the non-zero coefficients. We repeated the simula-
tions 100 times, using proposed FNNOLS and BNNOLS and
different sparsity levels. The correct recovery of the support
and computational time are shown in Figure 1. While the
exact recoveries are very similar, proposed method is signif-
icantly faster. The difference is more obvious for large k’s,
where we can get a computation gain of 100.

In the second experiment, we used the same method to
generate the dictionary, but we fixed N = 256, to investigate
the computation time as a function of M . Here, K = 24 or
32 and M is between 32 and 196. The computational time is
plotted in Figure 2. The computational time is slowly increas-
ing with M . We can observe that the difference in computa-
tions is not significant for different K’s using the fast tech-
nique, while it is noticeable using the basic implementation.

We then fixed M = 128 and changed N from 128 to
512 and similarly repeated each simulation 100 times. The
sparsity was set to be 64 or 96, and the results are shown in
Figure 3. The computational cost is slowly increasing w.r.t.
the parameter N in FNNOLS, while it is increasing faster for
the BNNOLS. However, the difference between the compu-

Fig. 4. Exact recovery and computation time. Comparison be-
tween SNNOLS and FNNOLS. N = 1024, M = 512 spar-
sity K is changing.

tational time of the fast and basic implementations are con-
siderable, where we yield a gain of 1000 times acceleration,
using the FNNOLS algorithm!

We also presented an approximate NNOLS technique,
called the SNNOLS, which can be seen as an intuitive exten-
sion of the fast OLS implementation to the non-negative do-
main. As we can see, the computational time of SNNOLS is
also low, which means that we can compare it with FNNOLS
in a larger dimension setting. We then chose M = 512,
N = 1024 and changed the sparsity level K from 32 to 80
and averaged the simulations, with the random settings which
explained before, over 500 trials. We have plotted the ex-
act support recovery (top panel) and the algorithms run-time
(bottom panel) in Figure 4. While the exact recoveries are
very similar, the computational times are slightly different.
For the example, the computational time of SNNOLS is 25%
higher than FNNOLS for K = 80. The similarity between
the exact recovery of two algorithms is an interesting fact,
which needs more investigation.

4. CONCLUSION

A significantly faster implementation for the non-negative
orthogonal least square algorithm was proposed here. The
new implementation is based on the recursive generation of
a QR factorisation of the dictionary and it allows us to use
FNNOLS in a broader application. We also presented an
algorithm which approximately solve the OLS problem in a
non-negative setting, which is called SNNOLS. This algo-
rithm performs similarly in the exact recovery of the sparsity
support, when the dictionaries are randomly generated, but
it is slightly slower than FNNOLS. The performance of the
proposed techniques, i.e. FNNOLS and SNNOLS, have to

be investigated, using other types of dictionaries. The com-
putational complexity analysis of the FNNOLS is also an
interesting subject, which we left for the future work.

Acknowledgment
The authors acknowledge the support of EPSRC and the
MOD University Defence Research Collaboration in Signal
Processing, through the grant number EP/K014277/1.

REFERENCES

[1] Y Qian, S Jia, J Zhou, and A Robles-Kelly, “Hyper-
spectral unmixing via sparsity-constrained nonnegative
matrix factorization,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 49, no. 11, pp. 4282–4297,
2011.

[2] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Re-
covering sparse signals using sparse measurement matri-
ces in compressed DNA microarrays,” IEEE Journal of
Selected Topics in Signal Processing, vol. 2, no. 3, pp.
275–285, 2008.

[3] PO Hoyer, “Non-negative sparse coding,” in Neural Net-
works for Signal Processing, 2002. Proceedings of the
2002 12th IEEE Workshop on. 2002, pp. 557–565, IEEE.

[4] M. Yaghoobi, D. Wu, and M.E. Davies, “Fast non-
negative orthogonal matching pursuit,” IEEE Signal Pro-
cessing Letters, vol. 22, no. 9, 2015.

[5] S. Chen, S.A. Billings, and W. Luo, “Orthogonal least
squares methods and their application to non-linear sys-
tem identification,” International Journal of Control, vol.
50, no. 5, pp. 1873–1896, 1989.

[6] B.K. Natarajan, “Sparse approximate solutions to linear
systems,” SIAM Journal of Comput, vol. 24, no. 2, pp.
227–234, 1995.

[7] G.H. Golub and C.F. Van Loan, Matrix computations,
Johns Hopkins University Press Baltimore, 1996.

[8] T Blumensath and ME Davies, “On the difference be-
tween orthogonal matching pursuit and orthogonal least
squares,” Tech. Rep., 2007.

