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Abstract
Rapid reconstruction of depth images from sparsely sampled data is important for many applications in machine perception, 
including robot or vehicle assistance or autonomy. Approximate computing techniques have been widely adopted to reduce 
resource consumption and increase efficiency in energy and resource constrained systems, especially targeted at FPGA and 
solid state implementation. Whereas previous work has focused on approximate, but static, representation of data in LiDAR 
systems, in this paper we show how the flexibility of an arbitrary precision accelerator with fine-grain tuning allows a better 
trade-off between algorithmic performance and implementation efficiency. A mixed precision framework of �

1
 solvers is 

presented, with compact ADMM and PGD, for the lasso problem, enabling compressive depth reconstruction by varying the 
precision scaling in single bit granularity during the iterative optimization process. Implementing mixed precision �

1
 solvers 

on an FPGA with a pipelined architecture for depth image reconstruction across various sensing scenarios, over 74% savings 
in hardware resources and 60% in power are achieved with only minor reductions in reconstructed depth image quality when 
compared to single float precision, while over 10% saving in hardware resources and power is achieved compared to relative 
consistently reduced precision solutions.

Keywords  Compressive sensing · Depth reconstruction · Mixed precision · Alternating direction method of multipliers · 
Proximal gradient descent · Field-programmable gate array

1  Introduction

Most autonomous systems perceive the surrounding envi-
ronment via light detection and ranging (LiDAR) [1]. This 
active sensing technology computes the distance to objects 
by measuring, at each pixel, the time-of-flight (ToF) between 

emitted and reflected photons. Both the emission and detec-
tion of photons consume power, which is of considerable 
concern in sensor and processing unit design. The current 
requirements on depth and spatial LiDAR resolution, how-
ever, make its power consumption prohibitive and signifi-
cantly limit its application to resource-constrained platforms, 
including mobile devices with limited battery supply and 
physical space, drone scene mapping with SLAM [2], aug-
mented reality [3] and mobile robotics [4].

A promising paradigm to reduce power consumption in 
resource-constrained devices is approximate computing 
(AC) [5], which has been widely adopted in signal process-
ing [6], robotics [7] and machine learning [8]. One particular 
AC technique reduces the arithmetic precision of operations 
by representing numbers with fewer bits, thereby decreas-
ing the computational cost of memory and logical units. As 
a result, reduced precision (RP), as it is often known, leads 
to significant savings in energy consumption [9]. In LiDAR 
applications, a side benefit of saving energy in data processing 
is a reduction of thermal noise in the photon detection com-
ponents, which are often near the data processing unit [10].
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The iterative �1 solver Alternating Direction Method 
of Multipliers (ADMM) was adopted in [11] for paral-
lel compressive sensing (CS) of Lidar based depth image 
reconstruction, which allowed high 3D imaging frame 
rates with reduced laser power, memory use, logic cost, 
and power consumption. Alternatively, the accelerated 
proximal gradient descent (PGD) algorithm was adopted 
in [12] for a similar problem. Several other works have 
investigated the use of AC for convex optimization. In the 
context of depth reconstruction, Aßmann et al. [13] and 
Gürel et al. [14] made resource savings by reduction of 
precision, whereas Wills et al. [15] and Wu et al. [16] have 
applied approximate PGD methods to Model Predictive 
Control (MPC). Very recently, Wu et al. [17] deployed 
reduced precision on convex optimisation using ADMM 
and PGD for compressive depth reconstruction, not only 
to reduce power and resource, but also to obtain a faster 
implementation. However, in previous work, the approxi-
mate precision was fixed and pre-determined through the 
whole execution cycle.

In contrast, mixed precision computation has the poten-
tial to enable even further resource savings with overall low 
arithmetic error for either dense or sparse iterative computa-
tions [18]. Automated precision tuning can improve energy 
efficiency when employing iterative refinement [19]. How-
ever, current mixed and auto-tuned precision algorithms are 
either built for an instruction-driven architecture, or support 
only floating-point above single precision. This limits both 
the energy savings [20], and the application of approxima-
tion to smaller scale, resource-constrained platforms.

In this work, a new, mixed precision framework is pro-
posed, supporting both fixed and floating point arithmetic. 
This is applied to 3D LiDAR CS depth reconstruction using 
a parallel �1 solver of the least absolute shrinkage and selec-
tion operator (lasso) problem [13]. Specifically, by applying 
mixed precision scaling to typical �1 solvers, ADMM and 
PGD, for compressive depth reconstruction, considerable 
savings in power, logic and memory resources are achieved.

Our contributions are summarized as follows:

•	 An ADMM solver using iterative mixed precision imple-
mentation.

•	 A comparative �1 solver, PGD, with iterative mixed pre-
cision.

•	 A mixed precision framework is created for reconfigur-
able accelerator generation on an FPGA.

•	 A comparative study of both �1 solvers between the exist-
ing consistent and the new mixed precision framework is 
evaluated in terms of depth reconstruction quality, imple-
mentation cost, and power consumption.

CS depth reconstruction based on convex optimization and 
the use of precision scaling are introduced in Sect. 2. In 

Sect. 3, the proposed framework is illustrated. The results 
are demonstrated in Sect. 4 with a conclusion in Sect. 5.

2 � Background

2.1 � Parallel Depth Reconstruction

Using time-correlated single photon counting (TCSPC), 
LiDAR systems sample depth information with single 
photon precision at every pixel that can detect photon 
events [21–24]. The round trip time of a photon, ToF, and 
thus the distance travelled by each photon, can be accurately 
measured. To improve the signal-to-noise ratio, it is com-
mon to increase the sampling size by accumulating many 
photon events in a histogram. Recent advancements in solid-
state photon count arrays [10, 25, 26] enable high resolution 
LiDAR imaging. However, as the number of photon count 
pixels N, i.e., the resolution of the depth image, increases so 
does the number of raw histogram measurements.

For high resolution LiDAR, it can therefore be challeng-
ing to store and process these raw histogram measurements 
in real-time.

To address this large data volume, [11] has applied com-
pressive sensing [27, 28] to depth imaging and devised a strat-
egy that processes patches of the depth image independently 
and in parallel, achieving real-time reconstruction. The frame-
work proposed in [11], named checkerboard compressive 
depth sensing (CBCS), is illustrated in Fig. 1. It uses a random 
pattern of illumination (structured light) that is reflected from 
the scene and acquired by photon pixels in a block-based man-
ner. Each block is reconstructed by solving two lasso prob-
lems [29]: one for reconstructing a quantity called the depth-
sum, xQ ∈ ℝ

nB , where nB is the number of pixels in block 
B, and one for reconstructing a quantity called the photon 
count intensity, xI ∈ ℝ

nB . Specifically, given yQ ∈ ℝ
mB (resp. 

yI ∈ ℝ
mB ) compressive measurements of the depth-sum (resp. 

photon count intensity), xQ and xI are recovered by solving
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Figure 1   Parallel Depth Reconstruction [13].
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where A ∈ {0, 1}mB×nB is a known binary matrix that encodes 
the active pixels in each block for each measurement in yQ 
or yI , and F ∈ ℝ

nB×nB is a sparsifying matrix, e.g. a DCT 
matrix, that we assume is invertible. 𝜆 > 0 is a regularisation 
parameter, and ‖ ⋅ ‖2 and ‖ ⋅ ‖1 are, respectively, the �2 - and 
�1-norms. After recovering these quantities, the final depth 
image at block B is computed by dividing xQ by xI point-
wise: xD = xQ.∕xI ∈ ℝ

nB . The work in [11] also proposed 
a post-processing strategy to remove blocking effects. The 
problems in (1) are ubiquitous in signal processing and can 
be solved efficiently via ADMM [30] and PGD [31].

2.2 � Mixed Precision and Tuning

Mixed precision combines the accelerated and less resource 
intensive processing of lower precision with the greater 
accuracy of higher precision arithmetic. It is normally 
deployed for iterative refinement using floating point data 
formats [32, 33], for example using three levels of preci-
sion [34]. Customized precision tuning instruments have 
been employed based on specific input sets [19]. Such pre-
cision scaling has gained increasing interest for computa-
tion-intensive applications, such as deep learning, saving 
computation and data storage [35] using both floating point

where S is the sign, M the mantissa, and E the exponent; 
and fixed point

where S is the sign, I the integer value as sum of 2b , and F 
the fraction value as the sum of 2−b from each bit position b 
depending on the 2’s complement format [36].

Different arithmetic types yield different dynamic ranges. 
Floating point with nonlinear binary representation uses less 
bits, while fixed point enables simpler binary operations but 
requires more bits. Hence, the various precisions in both 
floating and fixed point affect not only the algorithm’s perfor-
mance, but also the embedded implementation.

By adjusting the combination of mixed precision arith-
metic at compile-time, static precision tuning is performed 
once during the system design phase [34]. Such a tuning 
process can be considered as part of wider hardware/soft-
ware co-design approaches, profiling the application data 
and code to compare with empirical measurement before 

(1)minimize
xQ

1

2
‖‖yQ − AxQ

‖‖
2

2
+ �‖‖FxQ‖‖1

(2)minimize
xI

1

2
‖‖yI − AxI

‖‖
2

2
+ �‖‖FxI‖‖1 ,

(3)−1S ×M × 2E-127,

(4)−1S × (I + F),

running the system. On the other hand, dynamic precision 
tuning is invoked multiple times during the execution of the 
algorithm at run-time, which can incur some overhead [19].

We develop a framework for CS depth reconstruction, 
using ADMM and PGD to solve lasso. Its key aspect is the 
mixed precision design of both the arithmetic data type 
and the binary bit width, appropriate to the performance 
requirements of the sensing environment. This provides an 
alternative to our earlier work [17], which used constant 
precision, and results in a significantly more energy efficient 
implementation.

3 � Mixed Precision Framework

Optimization-based algorithms for lasso are iterative, with 
the same sequence of steps occurring at each iteration. Tra-
ditionally, all computations are performed with the same 
precision. Here, instead, we consider the case in which dif-
ferent iterations use different precision. We focus firstly on 
ADMM, secondly on PGD. Then, we present the design flow 
of our mixed precision accelerator.

3.1 � Mixed Precision ADMM

We consider the following reformulation of the problem 
in (1 and 2):

where we define A ∶= AF−1 ∈ ℝ
m×n . Each iteration of 

ADMM [30] applied to (5) consists of

where 𝜌 > 0 is the augmented Lagrangian parameter, 
In ∈ ℝ

n×n the identity matrix, u ∈ ℝ
n a dual variable, and 

S�(⋅) the soft-thresholding operator applied component-
wise: for v ∈ ℝ , S�(v) = v − � when v ≥ � , S�(v) = v + � 
when v < −𝜆 , and S�(v) = 0 otherwise. If the parameter � is 
constant throughout the iterations, the matrix A⊤A + 𝜌In and 
its inverse can be precomputed. This can be done efficiently 
via the matrix inverse lemma [37],

(5)
minimize

x,z

1

2
��y − Ax��

2

2
+ �ADMM‖z‖1

subject to x − z = 0 ,

(6)xk+1 =
(
A⊤A + 𝜌In

)−1[
A⊤y + 𝜌(zk − uk)

]

(7)zk+1 = S�ADMM∕�

(
uk + xk+1

)

(8)uk+1 = uk + xk+1 − zk+1 ,

(9)
(
A⊤A + 𝜌In

)−1

=
1

𝜌
In −

1

𝜌2
A⊤

(
Im +

1

𝜌
AA⊤

)−1

A
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and by computing the inverse of the m × m matrix in (9) via 
its Cholesky decomposition, Im + (1∕𝜌)AA⊤ = LL⊤ , where 
L ∈ ℝ

m×m is lower triangular. The quantity g ∶= A⊤y can 
also be pre-computed. In our context, such pre-computations 
have the additional benefit of avoiding unnecessary accuracy 
loss when using mixed precision during the iterations. The 
resulting algorithm (with fixed precision) is shown in Algo-
rithm 1, from which we can see that each iteration requires 
O(n + m2) arithmetic operations. Step 4 of Algorithm 1 dif-
fers from (7) in that it uses over-relaxation, parameterized by 
0 < 𝛼 < 2 , which can improve convergence [30].

5

Algorithm 2 implements Algorithm 1 using mixed pre-
cision. It takes as input the constant vector g = A⊤y and 
matrix H = A⊤L⊤

−1
L−1A , and the maximum number of 

iterations kmax . At each iteration k, the algorithm recasts 
the constants g and H and the variables zk and uk to the 
precision required at the current iteration. In software 
such a function is implemented conceptually as a data type 
cast, while in hardware it is implemented through data 
path trimming, where the extra data path are unconnected 
between mismatched bit-width.

These variables are then used by the mixed precision func-
tion ∗ mixiter , described in Algorithm 3, which performs the 
same steps as each iteration of Algorithm 1, but with precision 
specified by lk . This variable represents the index to a set of static 
functions, each of which is written for a predefined precision, 
e.g., floating point with 32 bits or fixed point with 30 bits. Each 
of these functions uses the precomputed constants � , 𝛼̂ ∶= 1 − 𝛼 , 
� , 𝜌̂ ∶= 1∕𝜌 , and � ∶= �ADMM∕� . The initial index l0 is found 
based on the maximum � representing the precision loss given a 
certain threshold. This process is described in Sect. 3.2. During 
the iterations, lk is modified to meet the demanding finer accuracy 
of the algorithm, increasing its precision and changing the ele-
mentary bit width gradually. We fixed the number of iterations to 
kmax = 5 , determined empirically, as no further improvement on 
reconstruction of depth has been observed beyond this point [17]. 
In the particular case of parallel computation using small blocks, 
4 × 4 pixels, ADMM converges in very few iterations.

3.2 � Mixed Precision PGD

We now consider the application of proximal gradient descent 
(PGD) to (1). Each of those problems can be written as

where A ∶= AF−1 ∈ ℝ
m×n . Defining the convex differenti-

able function g(x) ∶= (1∕2)‖y − Ax‖2
2
 , the convex function 

h(x) = �PGD‖x‖1 , and their sum f (x) = g(x) + h(x) , PGD 
applied to (10) yields the iterative shrinkage thresholding 
(ISTA) algorithm [31, 38]:

where �k ≥ 0 is the step size at iteration k, and prox�kh(⋅) 
the proximal operator of �kh which, in this case, is the soft-
thresholding operator S�k�PGD , defined in Sect. 3.1. PGD 
converges whenever 0 < 𝛼k ≤ 1∕L , where L is the Lipschitz 
constant of the gradient of g, i.e., ∇g(x) = A⊤A . That is, L 
can be found as the maximum eigenvalue of ATA . We use a 
constant stepsize: �k = � = 1∕L.

10

(10)minimize
x

1

2
��y − Ax��

2

2
+ �PGD‖x‖1 ,

(11)
xk+1 = prox𝛼kh(x

k − 𝛼k∇g(x
k))

= S𝛼k𝜆PGD

(
xk − 𝛼kA

⊤Axk + 𝛼kA
⊤y
)
,
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The general algorithm is described in Algorithm 4. It 
takes as input the matrix A, the vector g ∶= A⊤y , the regu-
larizer constant �PGD , and the maximum number of itera-
tions kmax . After computing the stepsize � , it precomputes 
the vector g� ∶= �g , the matrix W ∶= 𝛼A⊤A , and the thresh-
old � ∶= ��PGD . Steps 2 and 3 then implement exactly (11).

Algorithm 5 implements Algorithm 4 using mixed pre-
cision. Both algorithms have the same inputs and initiali-
zation, except that Algorithm 5 now also initializes the 
function pointer with index lk , which specifies a static func-
tion ∗ mixiterlk (⋅) that performs the main computations of 
PGD with a given precision. The order of these functions, 
which are accessed via lk , determines the sequence of pre-
cisions, maintained through combined search of various 
bit widths based on the precision loss of the precomputed 
parameters and a post-search fine tuning. As in mixed pre-
cision ADMM, all the relevant variables in Algorithm 5 are 
cast to the required precision and then used in the ∗ mixiter 
function indexed by lk . castc only demonstrates the arith-
metic precision transformation at the software level, and 
is not an overhead in hardware design at the appropriate 
precision. In this work, we only consider mixed precision 
within the same arithmetic type. As in mixed precision 
ADMM, we set the maximum number of iterations of PGD 
to kmax = 5.

3.3 � Mixed Precision Accelerator

We developed the semi-automated framework illustrated in 
Fig. 2 based on the Matlab and Xilinx Vivado toolsets. It 
quickly prototypes an approximate accelerator with mixed-
precision arithmetic on reconfigurable platforms. To support 

mixed precision design, we created an approximate generic 
linear algebra library calling third-party arithmetic types, 
which are based firstly on a customized floating-point 
library FloatX [32] and secondly on the Xilinx fixed-point 
library [39]. The library was established with C++ tem-
plates in the header only, which allows later specific arith-
metic type allocation. Its major features are:

•	 General (non-symmetric) real value operations.
•	 Arbitrary bit width floating- and fixed-point arithmetic.
•	 Basic vector/matrix algebra arithmetic (addition, subtrac-

tion, multiplication, division, inversion).
•	 Triangular factorization (LU, and Cholesky decomposition).
•	 Orthogonal factorization (QR decomposition).

Based on the approximate linear algebra library, a user-
defined kernel, which indicates the specific portion of signal 
processing application to be the target for approximation, is 
considered as input in Fig. 2. By compiling the input source, 
a list of various iterative functions are created using different 
arithmetic precisions, as expressed in both Algorithms 3 and 
6. The source compiler is developed based on the Matlab 
MEX compiler API where the Design Space Exploration 
(DSE) with precision adaptation is evaluated based on the 
input pre-computed data.

The quantization effect of the data from single-precision 
floating point (32 bits, called full precision in the later con-
text of this paper) to reduced precision is considered as the 
criterion for precision scaling. Specifically, the normalized 
absolute difference is used for floating point (FP) arithme-
tic while the absolute difference is adopted for fixed point 

DSE

Kernel (.cpp)

Source 
Compila�on

Precision 
Adapta�on

Synthesis
High-Level 
Synthesis

Accelerator 
Genera�on

Accelerator 
(.vhd)

Approximate 
Linear Algebra 

Library

Figure 2   Mixed Precision Design Flow.
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(FXP) arithmetic due to the different functional relationships 
between the binary representations and decimal values. The 
most representative values, the maximum and minimum of 
those pre-computed parameters, are picked for the numeri-
cal analysis.

To measure the effects of different FP quantizations, we 
use the normalized absolute difference

where � ∈ ℝ
n is a vector and ‖ ⋅ ‖1 the �1-norm. To measure 

the effects of different FXP quantizations, we simply use the 
absolute difference

We guarantee that in either (12) or (13), we always have 
� ≤ � = 5 × 10−3 . Different arithmetic types will yield dif-
ferent such � . Using exhaustive search, we select the bit 
width of different parts in the binary arithmetic format for 
either FP or FXP as the smallest that satisfies � ≤ � . The 
representation with that bit width is then indexed by l0 in 
Algorithms 2 and 5.

The kernel with chosen precision is adopted for both the 
integer and fraction part representations to achieve a rela-
tively close reconstruction performance to full precision, 

(12)� =
��� − castc(�)

��1
‖�‖1

,

(13)� = ‖‖� − castc(�)
‖‖1 .

where heuristic fine tuning is performed at the DSE stage. 
The accelerator is generated with a Hardware Description 
Language (HDL) by calling Xilinx High-Level Synthesis 
(HLS) tools within the Matlab Framework. With combined 
algorithm evaluation and hardware implementation in a 
loop, it can quickly prototype mixed precision design on 
reconfigurable platforms.

4 � Evaluation

Both �1 solvers, ADMM and PGD, using either floating (FP) 
or fixed-point (FXP) arithmetic, are illustrated and evalu-
ated for compressive depth reconstruction on two synthetic 
and two real underwater sensing datasets. Reconstruction 
of the depth image using dSparse [13] (a non-compressive 
approach with oversampling) with full, single floating 
point (FP 32 bits) precision is adopted as a benchmark for 
comparison.

The FP 32 ADMM or PGD solutions are considered as 
the baseline, while the identified highest accuracy in the 
pre-scheduled list is considered as the most suitable reduced 
precision solution. Both are adopted for comparisons of 
recovered image fidelity as well as implemented hardware 
clock speed, resource usage and power consumed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure  3   Short range dataset  [40]: recovered depth images using a 
dSparse, consistent FP 32 bit); and ADMM solver with b consistent 
FP 32 bit; c consistent FP 18 bit; d consistent FP 22 bit; e mixed pre-

cision from FP 18 to 22 bit for each iteration; f consistent FXP 20 bit; 
g consistent FXP 24 bit; h mixed precision from FXP 20 to 24 bit for 
each iteration.
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4.1 � Depth Reconstruction Accuracy

The Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) [41] are both considered 
as quality metrics, showing the fidelity of reconstruction and 
the perceived quality based on the pixel-wise absolute differ-
ence for normalised similarity scaling. Four different sensing 
environments are adopted to evaluate the quality of depth 
reconstruction with mixed precision: short range [40] and 
long range [42] synthetic benchmarks, and real LiDAR data 
for two very short range, underwater scenes [43]. In the short 
range scenario, the detailed mixed precision phenomenon 
is evaluated firstly against the reconstructed depth image 
quality for both PSNR and SSIM. Then mixed precision is 
applied to the other three scenarios, where the corresponding 
depth reconstruction accuracy is also evaluated.

•	 Scene 1: short range
	   By using the design flow for different scenes at different 

stand-off distances and dynamic ranges, mixed FP from 
18 to 22 bits, and FXP from 20 to 24 bits are employed 
for the short range synthetic scene with distances rang-
ing from 1.8 to 3.4 meters. Figures 3 and 4 illustrate  
the depth reconstruction accuracy against various con-
sistent and mixed precision for both �1 solvers, ADMM  
and PGD. The ground truth is set as dSparse using single 

precision floating point with 32 bits, where its PSNR and 
SSIM are infinity and 1 since the comparison is to itself.

	   The recovered depth images using the ADMM solver 
with FP arithmetic are shown in Fig. 3b–e. The PSNR 
and SSIM are 28 dB and 0.75 respectively for the base-
line FP 32 bits (Fig. 3b), while, comparatively, the worst 
(FP 18) and best (FP22) quality of the pre-scheduled con-
sistent FP precision are illustrated in Fig. 3c, with 0.15 
loss in SSIM, and Fig. 3d, with similar PSNR and SSIM. 
Increasing the bit-width is shown by → , the mixed FP 
precision (FP 18→ 22 bits) in Fig. 3e shows only 0.022 
dB loss in PSNR and 0.009 loss in SSIM. It has even 
slight better PSNR than the consistent FP 22 solution. 
Corresponding depth images recovered by using the FXP 
ADMM solver are shown in Fig. 3f and g. Similarly, the 
worst case (FXP 20) in Fig. 3f is degraded in both PSNR 
and SSIM while the best case (FXP 24) in Fig. 3h has 
even better PSNR and SSIM than the baseline in Fig. 3b. 
Using mixed precision FXP 20→ 24 bits, there is a PSNR 
loss of 0.19 dB and a 0.004 loss in SSIM.

	   Similarly, Fig. 4b–e illustrate the recovered depth 
image using the PGD solver with FP, while Fig. 4f–h are 
those using FXP. The baseline in Fig. 4b achieves the 
same SSIM as the FP baseline with slightly better PSNR. 
The worst case (FP 17) of pre-scheduled, consistent FP 
in Fig. 4c degrades in both PSNR and SSIM, while the 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure  4   Short range dataset  [40]: recovered depth images using a 
dSparse with single precision, FP 32 bit; and PGD solver with b con-
sistent FP 32 bit; c consistent FP 17 bit; d consistent FP 21 bit; e 

mixed precision from FP 17 to 21 bit for each iteration; f consistent 
FXP 18 bit; g consistent FXP 22 bit; h using mixed precision from 
FXP 18 to 22 bit for each iteration.
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best case in Fig. 4d is almost the same as the baseline. 
The worst case (FXP 18) of pre-scheduled, consistent 
FXP has even better PSNR than the baseline but is much 
worse in SSIM. Both mixed FP and FXP precision show 
minor loss in both PSNR and SSIM.

	   To further illustrate the use of mixed precision, PSNR 
and SSIM are plotted against bit width for both ADMM 
and PGD using FP and FXP representations in Figs. 5–8. 
The consistent precision, shown as a red line, refers to the 
use of the same precision over all iterative computations, 
and is compared to the use of mixed precision shown as 
blue line.

	   As shown in Figs. 5 and 6, for the ADMM solver, the 
PSNR and SSIM values using mixed precision match 
the highest, consistent precision in either FP or FXP. 
An exception is the PSNR of mixed FXP precision in 
Fig. 5b, which is gradually degraded as the bit width 
decreases.

	   Similar trends exist for the PGD solver as shown in 
Figs. 7 and 8, where all the PSNR and SSIM values for 
mixed FXP precision match those of the highest con-
sistent precision in either FP or FXP, degrading with 
decreasing bit width.

	   Summarising, from Figs. 5–8 we observe that the 
mixed precision does achieve similar fidelity of the 
reconstructed depth image when compared to the high-
est pre-scheduled precision, and to the baseline single 
floating point precision. However, there are differences 
between the FP and FXP representations during the tran-
sition from low to high precision in the pre-scheduled 
mixed precision list. The FP representation has a smooth 
transition for both PSNR and SSIM. Due to the compu-
tational uncertainty of truncating errors, the transition 
of PSNR is slightly bumpy for the FXP representation, 
but the transition of SSIM is a smooth fucntion of the FP 
representation.

•	 Scene 2: long range
	   Using both ADMM and PGDs, mixed FP from 16 to 20 

bits, and FXP from 30 to 34 bits are adopted for the long 
range, synthetic scene with distances ranging from 0 to 
100 meters. Figure 9 illustrates the comparisons of depth 
reconstruction. The baselines of the reconstructed depth 
image using ADMM and PGD solvers are illustrated in 
Fig. 9b and e. The PSNR using the ADMM solver is 
slightly better than the PGD solver by 0.1 dB, while the 
SSIM using the ADMM solver is slightly worse by 0.07.

Figure 5   ADMM:PSNR v.s. 
Bitwidth (Short Range Dataset).

(a) (b)

Figure 6   ADMM: SSIM v.s. 
Bitwidth (Short Range Dataset).

(a) (b)
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	   With mixed precision using the ADMM solver, there 
is a 0.2 dB loss of PSNR for FP from 18 to 22 bits and 
0.021 dB loss of PSNR for FXP from 28 to 32 bits. Using 
the PGD solver, the mixed FP precision from 18 to 22 
bits shows a slightly better PSNR than the baseline, and 
than mixed FXP precision from 30 to 34 bits. The SSIM 
with both FP and FXP mixed precision are both slightly 
worse than the baseline by about 0.006.

	   Summarising, evaluation of the use of mixed precision in 
the long range, as in the short range synthetic scenario, con-
firms the comparable fidelity of reconstructed depth image 
to both the baseline and the consistent precision solutions. 
Further evaluation on real data is now considered.

•	 Scene 3: underwater A
	   This scene has distances ranging from 27 to 39 cen-

timeters. Mixed FP from 18 to 22 bits using both the 
ADMM and PGD solvers in Fig. 10c and f, FXP from 28 
to 32 bits using the ADMM solver in Fig. 10d and FXP 
from 30 to 34 bits using the PGD solvers in Fig. 10g are 
adopted.

	   There is a slight PSNR degradation of about 0.2 dB 
using ADMM with mixed FP precision, and an almost 
identical PSNR with mixed FXP precision. SSIM is 
degraded by around 0.01 for both mixed FP and FXP 

precision using ADMM. For mixed precision using the 
PGD solver, the PSNR with both mixed FP and FXP 
precision is about 0.1 dB better than the baseline, while 
the SSIM is slightly degraded by 0.005.

•	 Scene 4: underwater B
	   This scene has distances ranging from 31.4 to 31.8 

centimeters. Mixed FP from 23 to 27 bits using ADMM 
in Fig. 11c, FP from 19 to 23 bits using PGD in Fig. 11f, 
FXP from 32 to 36 bits using the ADMM solver in 
Fig. 11d and FXP from 30 to 34 bits using the PGD 
solver are illustrated in Fig. 11g. For FP and FXP mixed 
precision using both the ADMM and PGD solvers, the 
PSNR amd SSIM are always maintained at a similar level 
to the baseline FP 32 bits.

	   Hence, from our experiments on diverse synthetic and 
real data, illustrated in Figs. 3–11, we can make the fol-
lowing observations. 

i	 The use of reduced precision in both FP and FXP 
representations leads to depth reconstruction that 
has considerable fidelity to the full precision solu-
tions.

ii	 The use of mixed precision, introduced in this paper, 
also achieves minor losses in PSNR and SSIM when 

Figure 7   PGD: PSNR v.s. 
Bitwidth (Short Range Dataset).

(a) (b)

Figure 8   PGD: SSIM v.s. 
Bitwidth (Short Range Dataset).

(a) FP (b) FTP
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(a) (b) (c) (d)

(e) (f) (g)

Figure  9   Long range dataset  [42]: recovered depth images using a 
dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit; c 
ADMM, mixed FP 16 to 20 bits; d ADMM, mixed FXP 30 to 34 bit; 

e PGD, consistent FP 32 bit; f PGD, mixed FP 16 to 20 bits; g PGD, 
mixed FXP 30 to 34 bit.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10   Underwater dataset A [44]: recovered depth images using 
a dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit; 
c ADMM, mixed FP 18 to 22 bits; d ADMM, mixed FXP 28 to 32 

bit; e PGD, consistent FP 32 bit; f PGD, mixed FP 18 to 22 bits; g 
PGD, mixed FXP 30 to 34 bit.
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compared to even the highest, fixed precision rep-
resentations, and is significantly better than the 
lower precision solutions. This shows a path to even 
greater resource savings.

iii	 The use of higher precision in the later iterations of 
�1 solvers makes a more significant contribution to 
the quality of optimization outcome, while the use 
of lower precision in the earlier iterations is either 
tolerable or can be well compensated by the later 
iteration with higher precision.

iv	 For different mixed precision �1 solver solutions, 
PGD incorporates lower precision in general than 
ADMM to achieve similar fidelity in general, since 
PGD has simpler computational operations with less 
opportunity of precision loss.

v	 Given that we can achieve similar fidelity with mixed 
precision, we anticipate that significant cost and 
power savings are achievable with a mixed strategy, 
when compared computation using fixed precision, 
whether full or even reduced through all iterations.

Having shown that the use of mixed precision is possible 
without significant degradation in quality of reconstruction, 
we now proceed to show how the use of mixed precision can 
result in further savings in hardware utilization and power 
consumption in the next section.

4.2 � �
1
 Solver Accelerators

We have designed and implemented fully pipelined archi-
tectures using single and mixed precision with FP and FXP 
arithmetic on a Xilinx Ultrascale+ ZCU106 architecture 
using Vivado 2019.1 to fast prototype our design without 
exhaustive hardware optimization.

Following evaluation of algorithmic performance, the 
corresponding pipelined architecture has been implemented 
for either consistent or mixed precision ADMM and PGD to 
solve the twin lasso optimization problem in Eq. 1, where 

(a) (b) (c) (d)

(e) (f) (g)

Figure 11   Underwater dataset B [44]: recovered depth images using 
a dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit; 
c ADMM, mixed FP 23 to 27 bits; d ADMM, mixed FXP 32 to 36 

bit; e PGD, consistent FP 32 bit; f PGD, mixed FP 19 to 23 bits; g 
PGD, mixed FXP 32 to 36 bit.
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each iteration corresponds to a pipeline stage with either the 
same or an allocated, different precision. This strategy can 
be extended to more iterations, considering mixed precision 
between batched sub-iterations.

An example of the dataflow architecture of implemented 
accelerator using PGD �1 solver with mixed floating point 
precision is illustrated in Fig. 12. The MVMul performs the 
matrix-vector multiplication, where other VS ∗ blocks are 
vector-scalar addition, subtraction, multiplication and com-
parison. VSub implements the vector subtraction.

The datapath of exponent and mantissa are separated 
between iterative mixed precision, where the lower bit-width 
is connected to corresponding part of later higher bit-width 

pipelines. The outcomes from the twin �1 solver, xQ and 
xI , adopt a vector element-wise division to obtain the final 
depth pixels xD.

Resource utilization is derived from the Xilinx tools using 
the place and route implementation, while the power is esti-
mated using the Xilinx Power Estimator (XPE). Table 1 pre-
sents the resource and power comparisons of both consistent 
and mixed precision using the ADMM and PGD solvers for 
all scenarios, which also lists the performance of system 
reaction latency and processing speed in pixel/s given fixed 
number of pixel in a depth image. The mixed precision val-
ues correspond to the bit width variation chosen accord-
ing to the depth scaling for each of the scenes while the 

Table 1   Resource and quality metrics for consistent and mixed precision. For custom floating point, the bit width = 1+E+M and for custom 
fixed point, the bit width = 1+I+F.

Resources Precision and Performance

Scene LUT DSP Dynamic Bit Width Frequency Latency Throughput Energy

Arithmetic Index (DSP48E2) Power (W) (bits) (MHz) (ms) Pixel/s (�J/Pixel)

�ADMM FP32 1,2,3,4 20815 110 0.774 (1,8,23) 439 0.26 3.07e5 2.52
p = 8 FP27 4 21885 50 0.660 (1,6,20) 407 0.26 3.07e5 2.14
n = 16 FP23→27 4 20405 40 0.626 (1,6,16→20) 394 0.24 3.33e5 1.88

FP22 1,3 18455 25 0.577 (1,6,15) 430 0.27 2.96e5 1.95
FP18→22 1,3 16192 25 0.535 (1,6,12→15) 430 0.25 3.20e5 1.67
FP20 2 15680 25 0.541 (1,6,13) 472 0.25 3.20e5 1.69
FP16→20 2 11092 25 0.494 (1,6,9→13) 473 0.23 3.47e5 1.42
FXP36 4 9990 60 0.381 (1,23,12) 418 0.09 8.88e5 0.43
FXP32→36 4 9454 60 0.374 (1,23,8→12) 417 0.09 8.88e5 0.42
FXP34 2 9375 60 0.375 (1,26,7) 401 0.09 8.88e5 0.42
FXP30→34 2 8902 57 0.367 (1,25,4→8) 401 0.09 8.88e5 0.41
FXP32 3 8950 60 0.369 (1,21,10) 406 0.08 1.00e6 0.37
FXP28→32 3 8461 54 0.357 (1,21,6→10) 406 0.08 1.00e6 0.36
FXP24 1 6775 30 0.316 (1,13,10) 415 0.07 1.14e6 0.28
FXP20→24 1 6807 21 0.307 (1,13,6→10) 403 0.07 1.14e6 0.27

PGD FP32 1,2,3,4 16020 95 0.641 (1,8,23) 415 0.10 8.00e5 0.81
p = 8 FP23 4 14845 25 0.537 (1,6,16) 421 0.08 1.00e6 0.54
n = 16 FP19→23 4 13116 25 0.510 (1,6,12→16) 419 0.08 1.00e6 0.51

FP22 3 14115 25 0.524 (1,6,15) 469 0.09 8.88e5 0.59
FP18→22 3 12368 25 0.497 (1,6,11→15) 453 0.09 8.88e5 0.56
FP21 1 13070 25 0.506 (1,6,14) 453 0.09 8.88e5 0.57
FP17→21 1 11663 25 0.484 (1,6,10→14) 453 0.08 1.00e6 0.48
FP20 2 12020 25 0.496 (1,6,13) 473 0.09 8.88e5 0.56
FP16→20 2 11092 25 0.473 (1,6,9→13) 469 0.08 1.00e6 0.47
FXP36 4 7520 80 0.380 (1,23,12) 417 0.01 8.00e6 0.048
FXP32→36 4 6162 80 0.368 (1,23,8→12) 412 0.01 8.00e6 0.045
FXP34 3 5860 80 0.366 (1,21,12) 407 0.01 8.00e6 0.045
FXP30→34 3 5537 80 0.362 (1,21,8→12) 408 0.01 8.00e6 0.044
FXP32 2 5425 80 0.361 (1,27,4) 428 0.01 8.00e6 0.045
FXP28→32 2 5060 68 0.329 (1,23→27,4) 400 0.01 8.00e6 0.04
FXP22 1 5330 20 0.300 (1,12,9) 378 0.008 1.00e7 0.03
FXP18→22 1 4151 20 0.283 (1,12,5→9) 359 0.008 1.00e7 0.028
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consistent precision cases are those of the highest bit width 
in the mixed precision combination.

The resource utilization of the Look-Up-Table (LUT) and 
Digital Signal Processor (DSP) units are reduced by up to 
67% and 80% respectively for the ADMM solver using mixed 
20 to 24 bit-width fixed-point precision, and by up to 74% 
and 78% for the PGD solver using mixed 18 to 22 bit-width 
fixed-point precision. The related power consumption is sig-
nificantly reduced by up to 60% and 55% for ADMM and 
PGD solver respectively. Though some mixed fixed-point 
implementation consume more DSPs than mixed floating-
point, they are all less than using single precision floating 
point.

Hence, by adopting mixed precision with either FP or 
FXP, there are significant hardware resource and power 
savings when compared to single float precision. Given 

the similar algorithmic performance between the ADMM 
and PGD solvers, the outcomes for PGD are better than 
ADMM in all aspects, both resource utilization and power 
consumption. Due to the simplicity of the computational 
operations, the implemented PGD solver gains not only in 
hardware cost but also in throughput in pixels per second, 
and in quantified efficiency measured as energy consump-
tion per pixel.

For the hardware implementations, the quality of depth 
reconstruction is quantified against the consumed resource 
and power in Figs. 13 and 14 for both the ADMM and PGD 
solvers. Only SSIM is adopted here as it is more sensitive to 
individual range errors, though PSNR should have similar 
trend.

Overall, with an average of 1% degradation in the SSIM 
metrics for depth reconstruction shown in Figs. 3–11, the 

Figure 13   SSIM against 
Resource and Power for the 
ADMM solver: LUT is con-
sidered as the most important 
resource representing logic area 
while the power in mW is con-
sidered. The higher the SSIM 
value with less LUT and Power, 
the better.

(a)

(b)
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cost of the ADMM solver using mixed precision is reduced 
by up to 67% for Look-Up-Tables (LUT), up to 80% for DSP 
units, when compared to single precision, and reduced by 
up to 74% for LUT and 78% for DSP for the PGD solver. 
The estimated dynamic power consumption using mixed 
precision is also significantly reduced by over 60% and 55% 
for the ADMM and PGD solvers respectively compared to 
single precision, and by approximately 10% compared to the 
corresponding consistent precision.

For the same sensing scenes with similar SSIM, FXP 
mixed precision has similar resource utilization to its com-
parative consistent precision, while the cost with FP mixed 
precision is slightly lower than its comparative consist-
ent precision with reductions of up to 10% LUT. Accord-
ingly, similar phenomena occur for the power consumption 
between FXP or FP mixed precision and their comparative 

consistent precision solutions. The largest advantage of FXP 
mixed precision over FP occurs in the first short range sce-
nario, which has over 50% reduction in LUT than its corre-
sponding mixed precision accelerator with FP for both the 
ADMM and PGD solvers.

The bit-width of mixed precision varies between 18 to 
28 bits. According to Table 1 and Figs. 3–11, compared to 
mixed floating-point precision, mixed fixed-point is gener-
ally more efficient in terms of power per computation, as 
measured by μJ/Pixel. In contrast, mixed floating point uses 
less representation bits, which requires less bandwidth for  
data communication links. Both benefits are important 
depending on the design requirements.

Finally, we observe that the implemented �1 solvers are 
for processing a single block within the parallel compressive 
depth reconstruction framework. Hence, the performance 

Figure 14   SSIM against 
Resource and Power for PGD 
solver.

(a)

(b)



Journal of Signal Processing Systems	

1 3

values given in Table 1 are considered as an upper bound 
of overall real-time depth reconstruction, assuming all the 
blocks are processed in parallel.

5 � Conclusions

In this work, a mixed precision framework using both float-
ing and fixed point arithmetic has been introduced with a 
pre-computed, static schedule. It has been adopted for com-
pressive depth reconstruction design using approximate con-
vex optimization and linear algebra libraries. By adopting 
a mixed precision schedule matched to the known stand-off 
and dynamic range of the LiDAR-sensed scene, incremental 
precision scaling has been applied to the �1 solvers, ADMM 
and PGD, for depth image reconstruction lasso using convex 
optimization. The results show that iterative mixed precision 
in both floating point and fixed point enables similar per-
formance of depth reconstruction compared to single float 
precision with significant cost and power reductions using 
a pipelined architecture; greater than 70% in the best cases.

By analyzing the difference between the ADMM and 
PGD solvers using either floating point and fixed arithme-
tic, more efficient depth image reconstruction is enabled 
with the PGD solver. The benefits of the different arithme-
tic types have been demonstrated and shown to vary across 
the different scenarios. In future work, the adaptive run-
time strategies to set the mixed precision based on evalu-
ation during the iterative schedule of convex optimization 
should be explored, according to diverse dynamic sensing 
ranges and different arithmetic types.
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