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Abstract—Raman spectroscopy has for a long time performed
as a common analytical technique in spectroscopic applications.
A Raman spectrum depends upon how efficiently a molecule
scatters the incident light (electron rich molecules often produce
strong signals) which results in difficulties for relating the
spectrum to the absolute amounts of present substances. The
spectrum is however a stable and accurate representation of the
sample measured especially considering that each molecule is
associated with a unique spectrum. State-of-the-art spectroscopic
calibration methods include the principal component regression
(PCR) and partial least squares regression (PLSR) methods
which have been proved to be efficient regression methods to
realise the quantitative analysis of Raman spectrum. In this
paper we consider the problem of Raman spectra deconvolution
to analyse the sample composition, as well as possible unknown
substances. In particular, we propose a sparse regularized model
as a complement to traditional regression methods by leveraging
the components sparsity compared to the whole chemical library
and the spectra sparsity, given that the chemical fingerprint of
each spectrum is mainly determined by the peaks. Experimental
results illustrate the effectiveness of this sparse regularized model.

I. INTRODUCTION

Raman spectroscopy is a vibrational spectroscopy based
technique which collects light radiation scattered from an illu-
minated sample. The scattered photons are shifted in frequency
due to the interaction between the incident excitation and
molecular vibrations which provides valuable identification
information. Thus a single Raman spectrum often contains
enough information about the sample composition to provide
a unique fingerprint to distinguish the sample from others.
Raman spectroscopy is commonly used in the analysis of
materials in a variety of fields, such as chemistry, semiconduc-
tors, geosciences, medicine and biosciences. For example, the
Raman spectrum has been used in the identification of artificial
diamonds, the non-destructive forensic analysis of substances,
and it is sufficiently characteristic to discriminate carcinoma
from healthy tissue cells.

Due to the plethora of molecular information which can be
obtained from Raman spectra, this technique is of value for the
identification of materials found in civilian and military envi-
ronments. As Raman is a non-contact technique for analysing
materials, it provides a series of benefits when interrogating
hazardous chemicals. Illicit, potentially dangerous, samples are

unlikely to be found as well presented pure materials therefore
it is important to be able to extract components from the
composite Raman spectra.

Although Raman spectroscopy has received extensive use
in qualitative analysis, quantitative analysis has not kept pace
with those applications. The development of quantitative Ra-
man spectroscopy is difficult as the intensity of a Raman spec-
trum is dependent upon the efficiency of the target chemical
at scattering photons which cannot be directly related to the
number of bonds. With the latest improvement in instrumen-
tation and algorithms, more and more applications are moving
towards quantitative analysis methods in Raman spectroscopy.
Existing literatures [1][2][3] have reported that direct classical
least squares (DCLS) method can give a good estimation
under the assumption that pure component spectra are not
changed when the different materials are mixed together. Other
commonly used methods include partial least squares (PLS)
and principal component regression (PCR) which are latent
variable based methods that combine regression problems with
dimension reduction techniques [3]. Some recent works in
quantitative Raman analysis were focusing on rolling out new
regression methods [4]. Also in 2010, Lyandres et al. proposed
to adapt an optimization model to estimate a prediction range
for the minimum and maximum concentrations for a given
sample [5].

In this paper we present a model to introduce the exploita-
tion of sparsities in Raman spectrum deconvolution. With this
novel model, we could simultaneously realise both qualitative
and quantitative composition analysis, and the identification of
possible unknown substances. This sparse regularized model
works as a complement to traditional Raman regression mod-
els and can be further developed to combine with other state-
of-the-art techniques. Furthermore, we associate this model
with the non-negative Direct Classical Least Squares (DCLS)
regression method in experiments to showcase its effective-
ness.

The remainder of this paper is organized as follows. In
section two, based on traditional regression methods we intro-
duce the sparse regularized models to better identify chemical
mixture components and estimate their concentrations. In
addition, a novel model is proposed to extract the spectra of
unknown substances from the mixture spectrum. In section



three, we conduct Raman spectra deconvolution experiments to
illustrate how the model works. Conclusions and future work
are presented in section four.

II. SPARSE REGULARIZED RAMAN SPECTROSCOPY

Let y ∈ RN be the Raman spectrum of a chemical mixture;
X = (x1, x2, ..., xm), with xi ∈ RN represents the spectrum
of the i − th mixture component; C = (c1, c2, ..., cm) is the
relative concentrations vector for the chemical components,
with ci ≥ 0. The model of the mixture y can then be
generalized as the combination of X with an extra term e:

y = Θ(X,C) + e (1)

where Θ is the operator which represents the interaction
between all components, and e ∈ RN is the residual spectrum.
In practice, Θ could be general linear superposition, or non-
linear combination due to chemical interactions.

Taking the linear superposition model as an example, the
operator Θ performs as the weighted linear combination of all
elements in X, i.e. Θ(X,C) =

∑m
i=1 xi ∗ ci, then we have the

mixing process:

yN×1 = XN×mCm×1 + eN×1 (2)

The vector e represents the difference between the linear
combination of the spectra and the observed spectrum y, due to
any accuracies in the model Θ or the presence of any foreign
substances. For all the experiments in the rest of the paper,
we simply employ this linear superposition model.

A. Sparse Regularized Chemical Composition Analysis

We now consider the problem of identifying the chemical
composition from the mixture spectrum y ∈ RN and quantita-
tively estimating the concentrations of all components. Given
that y follows the general mixing process (1), we assume that
all the components xi are chosen from a Raman Spectra library
D = (d1, d2, ..., dND

) ∈ RN×ND . Also, we assume in the
remainder of the paper that all spectra in the library are well
preprocessed without much loss of quantitative information
[6][7]. Then by instantiating the combination model Θ, the
mixture components can be estimated by minimizing eT e
subject to appropriate constraints.

The general model to solve the simultaneous qualitative
identification and quantitative analysis problem is:

argmin
Ĉ

‖y −Θ(D, Ĉ)‖22

= {Ĉ | ∀ĉi ∈ ĈND×1 : ĉi ≥ 0}
(3)

where ĉi is the absolute concentration of the i-th chemical
in D. The sample components are identified as supp(Ĉ)
which is the support of Ĉ. Thus the resultant X in (1) is
a subset of D which corresponds to the spectra with non-
zero concentrations, and the relative concentrations can be
computed by normalizing the corresponding elements in Ĉ.

Given the fact that Ĉ is likely to be highly sparse, i.e. only
very few chemicals in the library are the true components in

the mixture, we propose to extend the general model (3) by
imposing the sparse regularization:

min
Ĉ
‖y −Θ(D, Ĉ)‖2 + λ‖Ĉ‖p

s.t. ĉi ≥ 0 for i = 1, 2, ..., ND

(4)

where λ is the coefficient to control the trade-off between
fitting the data and variable sparsity; p is often between 0 and 2
to give an appropriate solution. The smaller the p, the better Lp

norm measures the sparsity. With the Lp regularized objective
function in (4), the sparsity of Ĉ is formulated as a penalty
term, and the sparse regularized model is thus better able to
distinguish chemical components. We thus have the model (4)
which coincides with the non-negative Lasso (least absolute
shrinkage and selection operator) model in compressed sensing
techniques [8][9]. In particular, for p = 0 in (4), we have an
equivalent model:

min
Ĉ
‖y −Θ(D, Ĉ)‖2

s.t. ‖Ĉ‖0 ≤ z
ĉi ≥ 0 for i = 1, 2, ..., ND

(5)

which finds the combination of elements in D that best
approximates y with a limited number of components. The
coefficient z bounds the number of components and it has a
similar effect to the λ in (4).

It has been proven that solving the Lp (0 ≤ p < 1) mini-
mization problem is strongly NP-hard [10]. However, if ND

is small enough, the model (5) can be implemented directly
with an exhaustive search for all possible combinations in the
feasible space. Otherwise, the commonly used compromise is
to solve:

min
Ĉ
‖y −Θ(D, Ĉ)‖2 + λ‖Ĉ‖1

s.t. ĉi ≥ 0 for i = 1, 2, ..., ND

(6)

With appropriate Θ, the model (6) can often be transformed
to a convex programming problem which can be solved by
conventional algorithms, such as interior-point methods, and
a number of state-of-the-art approaches. The choice of λ is
justified by finding the sparsest possible Ĉ within acceptable
level of residual spectrum intensity. The model (6) is especially
suitable when we are trying to resolve the Raman signals in
a large database.

To summarise, the sparse regularized model stands as a
natural complement to the Raman regression models. For a
small Raman library, model (5) can accurately retrieve the
composition information, while for a large Raman library,
model (6) can be the substitute to rapidly obtain solutions with
certain accuracy. Compared with simple regression models,
both qualitative and quantitative Raman applications could
benefit from extra sparse constraints given the appropriate
interaction model Θ.

B. Sparse Regularized Extraction of Unknown Substances

Another problem worth considering is that there may exist
unknown substances in the chemical mixture which could



Fig. 1. Illustration of the approximation of f when Θ(D, •) stands for the
vector space span{d1, d2, ..., dND

}.

not be found in the Raman library. We cannot expect to
fully identify the unknown substances. However, the combined
unknown substances are likely to contribute a non-negative
spectrum that is independent of the library D. The spectrum
contribution from unknown substances is denoted as f ∈ RN

in the remainder of the paper. For a mixture spectrum y ∈ RN ,
we associate the chemicals combination model based on (1):

y = f + Θ(X,C) + e (7)

This model assumes that the spectrum f mainly lies in
the difference between y and Θ(X,C). Due to the signal
sparsity of Raman spectra, i.e. the Raman signals are mainly
characterised by their peaks, we select an f which has the
minimum overall energy and distinct peaks. We then introduce
the following model to distinguish the f from (7):

min
f,Ĉ
‖f‖p̃ + λ̃‖f + Θ(D, Ĉ)− y‖2

s.t. f ≥ 0

ĉi ≥ 0 for i = 1, 2, ..., ND

(8)

where 1 ≤ p̃ ≤ 2, and λ̃ is a positive tuning parameter.
Typically, for linearly combined components and p̃ = 2

in (8), f is approximately orthogonal to the vector space
span{d1, d2, ..., dND

} as shown in Fig. 1 and subject to the
non-negativity constraint. To have a sparser estimation for f ,
we can further penalize the objective function by decreasing
p̃. In practice we find that p̃ = 2 is an effective configuration
for resolving f .

The estimation for the parameter λ̃ is also crucial for (8).
Small λ̃ yields very sparse f with energy focused in peaks
rather than across the spectrum, while large λ̃ gives small
residual spectrum e but more sidelobes in f . In the Raman
scenario, we hope to find the f which is sparse enough but
also with bounded residual spectrum. Thus we can compute
the ‖e‖2 values for a range of λ̃ to generate a ‖e‖2− λ̃ curve,
and the f corresponds to the “knee point” of the ‖e‖2−λ̃ curve
which is a balance point, where the cost to alter the parameter
λ̃ is no longer worth the expected performance benefit. Then,

as depicted in Fig. 3, the point can be approximated by fitting
the curve to two line segments with minimum fitting errors
and selecting the intersection point.

III. EXPERIMENT AND RESULTS

The model is developed in response to a DSTL (Defence
Science and Technology Laboratory) challenge in which we
aim to realise the Raman spectra deconvolution with a number
of chemical mixtures and library spectra. To evaluate the
effectiveness of the sparse regularized model in the qualitative
and quantitative Raman analysis, in this section, we first use
a typical mixture to illustrate the work flow for this challenge
and demonstrate how to pull out unknown substances from
the given mixture, and then verify the developed models by
comparing them to the standard DCLS regression method
using simulated data without unknown substances.

A. Experimental Setup

In this DSTL challenge, we are given the Raman spectra of
several independent mixtures and 14 library spectra without
any prior information. The mission is to find the components
in each mixture and estimate their concentrations. The desired
algorithm should work without training and be able to cope
with unknown substances which are not in the library.

B. Sparse Regularized Spectra Deconvolution

In this subsection, we consider the deconvolution problem
of a typical mixture spectrum y475×1 as shown in Fig. 2,
and denote the given Raman library as D475×14. With the
initial assumption that the mixing process Θ follows the
linear combination model (2) and all mixture components are
available in D475×14, we have y475×1 = D475×14Ĉ14×1 + e
and the reconstructed spectrum y† = D475×14Ĉ14×1.

Our first step is to make clear whether unknown substances
exist. By implementing (3), we can tell if there are foreign
chemicals in the mixture by comparing the spectra correlation
(9), which is a convenient measure to describe how close the
sample spectrum y475×1 matches the presumed mixing model,
with a certain threshold. The threshold can be adjusted in
accordance with the specific application. In this experiment,
we believe unknown substances exist if Corr(y, y†) < 0.85.

Corr(y, y†) =

∑475
i=1 ((yi − ȳ)(y†i − ȳ†))√

(
∑475

i=1 (yi − ȳ)
2
)(
∑475

i=1 (y†i − ȳ†)
2
)

(9)

where ȳ and ȳ† are the means of y and y†.
Particularly, unknown substances are likely to exist in

this mixture. Thus the reconstructed spectrum y† = f +
D475×14Ĉ14×1. We then utilize model (8) to resolve the f .
Given the p̃ value, different f can be obtained by initializing
different λ̃. Specifically, ‖e‖2 decreases rapidly with small
λ̃ and the ‖e‖2 − λ̃ curve will flatten out when λ̃ is large
enough. Due to the shape of the curve, the two line segments
approximately intersect at the “knee point” which is λ̃ = 1.2
given p̃ = 2 as shown in Fig. 3.

Subsequently, we include the derived f in the library D,
then make use of the model (5) and exhaustive search to



Fig. 2. Spectra plots for the sample spectrum y475×1 (blue), library
contribution Θ(X,C) (green) and reconstructed spectrum y† = f+Θ(X,C)
(red). The sample is a mixture of potentially dangerous chemicals that is of
interest to DSTL.

Fig. 3. Blue line shows the ‖e‖2 − λ̃ curve given p̃ = 2. Red lines show
the two line segments to fit the curve. The intersection point of red segments
marks the approximated “knee point”.

estimate the sample components and concentrations. A com-
putationally cheap alternative is to employ (6) with appropriate
λ to qualitatively identify the sample components.

Since the model (6) will always bias the magnitudes of the
entries slightly, a standard debiasing process (10) needs to
be done to eliminate the errors brought by irrelevant library
entries after we have obtained the mixture components X (as
presented in (1)) and the unknown substances contribution f .
This process is however not necessary for (5).

min
C
‖y −Θ(X,C)− f‖2

s.t. ci ≥ 0 for i = 1, 2, ...,m
(10)

where m is the number of the mixture components, C is the
fixed support found from (6).

With (10), we exclude the influences from irrelevant library
entries and give the quantitative estimation for the concentra-
tion vector C. The comparison between y, Θ(X,C) and the

TABLE I
QUANTITATIVE RESULTS

ground truth estimation

components 1st 2nd 1st 2nd

1st mixture 10% 90% 25% 75%

2nd mixture 50% 50% 58% 42%

3rd mixture 25% 75% 43% 57%

reconstructed spectrum y† is shown in Fig. 2.
In Table I, we show the quantitative results of three chem-

ical samples using (3), (8) and (5) sequentially. The sample
spectrum in Fig 2 corresponds to the 3rd mixture in this table.
The three mixtures consist of same components with different
concentrations, and the 2nd component is not in the library D.
Based on the feedback from DSTL, our estimated components
and f (in correspondence with p̃ = 2 in (8)) match the original
1st and 2nd component respectively, and the concentration
estimation also provides certain accuracies.

C. Simulation Results

In this subsection, we compare the performance of the
sparse regularized regression models and the DCLS regres-
sion model using simulated data. As DCLS is incapable of
dealing with unknown components, we only consider known
substances in this experiment. To generate the simulated
instances of form (2), we randomly mix 2 to 5 candidates
from the 14 library spectra with the average residual spectrum
retrieved from our previous real data experiments. We random-
ly generate their concentrations and remove the components
which contribute less than 10 percent to the overall spectrum
intensity. Based on the linear superposition model, we then test
the DCLS regression model ( equivalent to (3) without the non-
negativity constraint) and the sparse regularized models ((5)
and (6)) with 200 randomly generated mixtures. All the spectra
in the library D are normalized, the model (5) is combined
with the exhaustive search and the λ in (6) is fixed as a typical
constant.

We borrow the definition of confusion matrix, or error
matrix [11] from the field of machine learning, and let true
positive tp be the number of mixture components which have
been correctly identified, false positive fp be the number of
incorrectly identified components, true negative tn be the num-
ber of correctly rejected library spectra and false negative fn
be the number of incorrectly rejected library spectra. In Table
II, we show the statistics of our experimental results in which
sensitivity = tp

tp+fn , specificity = tn
fp+tn , precision = tp

tp+fp ,
negative predictive value NPV = tn

tn+fn and the proportion
of true results Acc = tp+tn

tp+fp+tn+fn . Thus sensitivity rep-
resents how unlikely we are to miss the true components
in our estimation, and specificity tells us how accurate our
identifications are. The F1 score f1 = 2×tp

2×tp+fp+fn is the
harmonic mean of precision and sensitivity, and can be used
here as a single measure to evaluate the overall identification
performance. The values in this table are calculated as the



TABLE II
STATISTICAL MEASURES OF THE SIMULATIONS

DCLS
sparse regularized

non-negative
DCLS (6)

sparse regularized
non-negative

DCLS (5)

sensitivity 1 1 0.9505

specificity 0.7669 0.9605 0.9992

precision 0.4918 0.8857 0.9958

NPV 1 1 0.9882

Acc 0.8107 0.9686 0.9893

F1 score 0.6514 0.9316 0.9673

average numbers of all 200 mixtures. We can see from the
table that both DCLS and sparse regularized non-negative
DCLS models can achieve high sensitivities and negative
predictive values in this experiment, but DCLS has relatively
low precisions and specificities. It shows that the model hardly
misses suspicious identifications, but may incorrectly identify
redundant candidates. Our sparse regularized models work
better than the standard DCLS in terms of the identification
performance shown in Table II. Specifically, the combination
of the model (5) and exhaustive search can achieve overall
good performance (all measures are above 0.95 as shown in
Table II).

IV. CONCLUSION

This paper presents a sparse regularized model for Raman
spectroscopy to qualitatively identify mixture components and
quantitatively predict the concentrations. We also show how
the sparsity and non-negativity can be used to extract the
spectra of possible unknown substances from the mixture
spectrum. The experimental results illustrate its effectiveness
to distinguish mixture compositions and retrieve possible
unknown substances. Since the proposed model works as a
complement to traditional regression methods, in the future
work, we will combine the sparse regularizations with state-
of-the-art regression techniques to further increase the capa-
bility of the model. The probability model to give detection
confidences, appropriate noise cancelling and baseline shifts
correction techniques for Raman spectra are also of interest to
us.
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