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Abstract—This paper addresses state estimation where domain
knowledge is represented by non-linear inequality constraints.
To cope with non-Gaussian state distribution caused by the
utilisation of domain knowledge, a truncated unscented particle
filter method is proposed in this paper. Different from other
particle filtering schemes, a truncated unscented Kalman filter is
adopted as the importance function for sampling new particles in
the proposed truncated unscented particle scheme. Consequently
more effective particles are generated and a better state esti-
mation result is then obtained. The advantages of the proposed
truncated unscented particle filter algorithm over the state-of-
the-art particle filters are demonstrated through Monte-Carlo
simulations.

I. INTRODUCTION

State estimation of dynamic stochastic systems is impor-
tant and receives wide attention in different fields, such as
automatic control, signal processing, communication systems,
econometrics and so on. The goal of state estimation is to
find an estimate of a state using a set of measurements. The
dynamics of the state and the relation between the state and
measurement are described by a state model and measurement
model respectively.

The state could be estimated from Bayesian inference, from
which the conditional probability density function (pdf) of
the state conditioned by the measurement is obtained. After
deriving the conditional pdf of the state vector by Bayesian
inference, the minimum mean square error (MMSE) or max-
imum a posterior (MAP) estimators [1] could be calculated
as the state estimation. As mentioned in [1], if the state and
measurement models are both linear and Gaussian, the famous
Kalman filter could be applied to obtain an exact solution of
the conditional pdf. However, for most real life applications,
the linear and Gaussian assumptions do not hold. Different
types of algorithms are applied in order to deal with such non-
linear and non-Gaussian models. The classical ones include the
variations of the standard Kalman filter (including extended
Kalman (EKF) or unscented Kalman filter (UKF)), and particle
filter [2].

In some real state estimation problems, the state vector
values in stochastic dynamic systems are restricted to a sub-
area of the state space. This is usually the consequence of
some physical restrictions or elicited qualitative knowledge
about the systems of interest. For instance, when a vehicle
moves on the road, its position is constrained to be within the
boundaries of the road and its speed is also generally within
the corresponding speed limits specified by the Rule of the

Road. Intuitively, because the constraints reduce the variability
of the state vector, we can incorporate the constraint-related
information into state estimation to achieve a more accurate
result.

State estimation with state constraints is in general chal-
lenging and has attracted a considerable interest. Many ap-
proaches have been developed to deal with linear and/or
equality constraints, which incorporate these constraints into
the Kalman filtering framework. The standard ones include re-
parameterizing and pseudo-measurement approaches [3] and
[4], the optimization approach [5] and truncation approaches
[6], [7] and [8]. However, the constraints may be both non-
linear and inequality for some applications. Moreover, the
state vector distribution is highly non-Gaussian due to the
introduction of these non-linear constraints, and the Kalman
filtering based methods are then not applicable. In order to
more efficiently incorporate non-linear inequality constraints,
the particle filtering approach is applied and modified to cope
with constraints.

Lang et al. in [9] developed a simple and straightforward
algorithm using the acceptance-rejection method to deal with
nonlinear inequality constraints where only the particles within
the constraint region are retained in particle filtering imple-
mentation. Although simple and straightforward, this method
is inefficient and the probability of a particle satisfying the con-
straint may be very low if the constraints are quite restrictive.
Furthermore, even if a sample is within the constraint region, it
is more likely to be an outlier which has a lower measurement
likelihood value. Shao et al. in [10] proposed a novel approach
consisting of two stages: First, a set of particle candidates is
drawn without consideration of the state constraints, while the
candidates that do not satisfy the constraints are projected into
the feasible area using a series of optimizations n the stage two.
The limitation of this method is that by applying optimizations
to force the particle to be within the feasible regions, the
resulting particles are no longer representative samples of the
posterior distribution of the state vector. So that this method
is incorrect from a statistical point of view.

In this work, we propose an elegant truncated unscented
particle filtering approach, which can deal with non-linear
inequality constraints effectively. The proposed truncated un-
scented particle filter is based on the sequential importance
sampling (SIS) method in [2]. It applies a truncated version of
the UKF as the importance function to generate new particles.
In this way, both the measurement and constraint information
are considered in the sampling procedure, and more effective
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samples are then generated for state estimation. One method
that is similar to our truncated unscented particle filter is
proposed in [11]; however, this method only considers the
first two moments of the posterior distribution. This Gaussian
approximation may lead to less accurate state estimation.

The outline of this paper is as follows: Section II briefly
describes the general problem of state estimation with con-
straints. The concept of truncated UKF is proposed in Section
III, and Section IV presents the proposed truncated UPF idea
for state estimation. The simulation results are presented in
Section V, which show that our proposed method achieves a
better performance than the current state-of-the-art ones.

II. STATE ESTIMATION WITH CONSTRAINTS

A stochastic dynamic system with state and measurement
models described is described by

xk+1 = fk(xk, uk) + wk

zk = hk(xk) + vk
(1)

where xk ∈ Rnx represents the state vector, uk ∈ Rnu

represents the control vector, and zk is the measurement vector;
fk(·, ·) and hk(·) are linear/non-linear functions describing
state/measurement models; and wk and vk represent the state
and measurement noises, respectively, which can be described
by the corresponding pdfs p(wk) and p(vk). In this work,
wk and vk are assumed to have Gaussian distributions with
p(wk) = N(0, Qk) and p(vk) = N(0, Rk).

The aim of the state estimation is to estimate the state
vector xk of a stochastic dynamic system described in (1) based
on the measurement zk. From the conditional pdf p(xk|zk)
derived from Kalman/particle filtering schemes, the minimum
mean square error (MMSE) or maximum a posterior (MAP)
estimators for xk could be obtained.

In some applications, more information might be available
to refine the distribution of the state vector xk, such as the
physical condition which imposes a valid sub-space for the
state vector xk. As highlighted in [11], this type of information
can be represented as a general nonlinear inequality form in
many scenarios

ak ≤ Ck(xk) ≤ bk (2)

where Ck is a mapping function: Rnx → Rnc and ak, bk ∈
Rnc .

After introducing the constraint in (2), the conditional pdf
p(xk|zk) is modified to be pC(xk|zk) as:

pC(xk|zk) ∝
{

p(xk|zk)
0

if xk ∈ Ck
otherwise (3)

where Ck is the feasible region defined as:

Ck = {xk :, xk ∈ Rnx , ak ≤ Ck(xk) ≤ bk} (4)

The conditional density function pC(xk|zk) could be re-
garded as a truncation of p(xk|zk) by the feasible region
Ck. It incorporates the constraint information by setting the
probability values outside the feasible region to be zero.
With the aid of the truncated conditional pdf pC(xk|zk), the
uncertainty of the state vector xk is then reduced and a more
accurate state estimation is obtained.

III. TRUNCATED UNSCENTED KALMAN FILTER

As mentioned in [12], the truncated UKF is a filtering
method which can be applied to estimate the conditional pdf
pC(xk|zk) considering the constraint information. Truncated
UKF is divided into two steps: the first step is to apply the
traditional UKF method to estimate the mean and covariance
matrix for approximating the conditional pdf p(xk|zk), and the
second step is to estimate the Gaussian approximated truncated
probability pC(xk|zk) from p(xk|zk) by incorporating the
constraint information.

A. Unscented Kalman filter

If the state and measurement models in (1) are linear and
Gaussian, the Kalman filter could be applied to calculate the
conditional pdf and obtain the state estimation. However, in
many situations the linear and Gaussian assumptions do not
hold and some variations of the Kalman filter are proposed
to deal with the non-linear and non-Gaussian models. One
popular variation is the UKF. The UKF is based on the unscent-
ed transform (UT), which computes the first two moments of
p(xk|zk) using a set of σ−points. Compared with the extended
Kalman filter (EKF), it obtains a better estimation if the non-
linearities in state/measurement models are high.

Initially, we have the conditional pdf p(xk−1|zk−1) with the
mean x̂k−1|k−1 and covariance matrix Pk−1|k−1 at time t− 1,
a set of σ−points {χi,k−1|k−1} and corresponding weights
{ωi,k−1|k−1} could be calculated as:

χ0,k−1|k−1 = x̂k−1|k−1, ω0,k−1|k−1 =
κ

nχ + κ
(5)

χi,k−1|k−1 = x̂k−1|k−1 + (
√

(nχ + κ)Pk−1|k−1)i

ωi,k−1|k−1 =
1

2(nχ + κ)

(6)

χnχ+i,k−1|k−1 = x̂k−1|k−1 − (
√
(nχ + κ)Pk−1|k−1)i

ωnχ+i,k−1|k−1 = ωi,k−1|k−1

(7)

where nχ and κ are preset parameters, i = 1, ..., nχ, and in
total there are 2nχ + 1 σ−points. (A)i represents the i-th
column of the matrix A.

With the aid of the σ−points {χi,k−1|k−1}i=0,...,2nχ and
corresponding weights {ωi,k−1|k−1}i=0,...,2nχ , the mean x̂k|k
and covariance matrix Pk|k of p(xk|zk) could be derived by
the prediction and correction steps of the UKF algorithm:

Predictions:

The first two moments of p(xk|zk−1) could be predicted
as:

x̂k|k−1 = E(xk|zk−1) ≈
2nχ∑
i=0

ωi,k−1|k−1χi,k|k−1 (8)

Pk|k−1 = E((xk − x̂k|k−1)(xk − x̂k|k−1)
T |zk−1)

≈
2nχ∑
i=0

ωi,k−1|k−1(χi,k|k−1 − x̂k|k−1)(χi,k|k−1 − x̂k|k−1)
T

+Qk−1

(9)



where χi,k|k−1 for every i is predicted from the state model
as f(χi,k−1|k−1,uk).

Corrections:

After receiving the measurement zk, the state prediction
results could be updated as:

x̂k|k = x̂k|k−1 +Kk|k(zk − ẑk|k−1) (10)

Pk|k = Pk|k−1 −Kk|kPz,k|k−1K
T
k|k (11)

where Kk|k = Pxz,k|k−1(Pz,k|k−1)
−1 is the filter gain and we

have the following definitions:

ẑk|k−1 ≈
2nχ∑
i=0

ωiZi,k|k−1 (12)

Pz,k|k−1 ≈
2nχ∑
i=0

ωi(Zi,k|k−1−ẑk|k−1)(Zi,k|k−1−ẑk|k−1)
T+Rk

(13)

Pxz,k|k−1 ≈
2nχ∑
i=0

ωi(χi,k|k−1 − x̂k|k−1)(Zi,k|k−1 − ẑk|k−1)
T

(14)
Zi,k|k−1 = h(χi,k|k−1) (15)

In this way, the mean x̂k|k and covariance Pk|k of p(xk|zk)
are updated from the time instance k − 1. p(xk|zk) could
then be described by these first two moments as a Gaussian
distribution denoted as N(xk|, x̂k|k, Pk|k).

B. Importance sampling based truncated probability estima-
tion

No constraint information is taken into account for the
traditional UKF framework. When the feasible region Ck is
considered, according to the definitions in (3), the truncated
conditional pdf pC(xk|zk) could be calculated as:

pC(xk|zk) ∝
{

ξ−1
k p(xk|zk)
0

if xk ∈ Ck
otherwise (16)

where ξk is a normalizing constant calculated as:

ξk =

∫
Ck

p(xk|zk)dxk (17)

As mentioned in [11], a sampling based method could be
applied to estimate the mean and covariance of the truncated
conditional pdf pC(xk|zk), which can then be approximated
by a Gaussian distribution. The sampling could be directly
applied on p(xk|zk) (approximated by N(xk|, x̂k|k, Pk|k) from
the UKF procedure) and the obtained samples within the con-
straint region Ck are kept while other samples are discarded;
however, we notice that sometimes the probability of obtaining
a valid sample is low. The mean and covariance thus can
not be estimated accurately by a limited number of samples.
In order to solve this problem, we refer to the importance
sampling technique. The samples are not obtained directly
from p(xk|zk), but from another importance function q(xk)
whose volume should be largely within the constrained region
Ck. In this work, q(xk) is chosen as a Gaussian distribution
with the mean being the projection of x̂k|k (the mean estimated

by the UKF scheme as in (10)) into the nearest point in the
feasible region, and the covariance being Pk|k which is the
same as the one calculated from the UKF scheme.

From a sample set {xc,ik }i=1,...,N drawn from q(xk) in
the constraint region Ck, the approximate mean x̂ck|k and
covariance P c

k|k of pC(xk|zk) could be estimated as:

x̂ck|k =
1

N

N∑
i=0

xc,ik wc,i
k (18)

P c
k|k =

1

N

N∑
i=0

(xc,ik − x̂ck|k)(x
c,i
k − x̂ck|k)

Twc,i
k (19)

where ωc,i
k = N(xc,ik |, x̂k|k, Pk|k)/q(xi

k) taking into account
that p(xk|zk) is approximated by N(xk|, x̂k|k, Pk|k) from the
UKF procedure.

By applying a standard unscented Kalman filter fol-
lowed by an importance sampling based method for trun-
cated conditional probability estimation, the truncated UKF
scheme estimates the mean x̂ck|k and covariance P c

k|k of
pC(xk|zk), which is approximated by a Gaussian distribution
NC(xk|, x̂c

k|k, P
c
k|k). It inherits the advantages of the UKF

for coping with highly nonlinear models and incorporates the
constraint information in an efficient way.

IV. TRUNCATED UNSCENTED PARTICLE FILTER

Due to the fact that the distribution is truncated by the con-
straints, the pC(xk|zk) may not be accurately represented by
a single Gaussian distribution as estimated from the truncated
unscented Kalman filter. In order to represent the conditional
pdf in a better way, the particle filtering scheme is applied.

The particle filtering scheme is rooted in Monte-Carlo
sampling, which approximates a pdf pC(xk|zk) by a set of
weights and particles {xik, ωi

k}i=1,...,N as:

pC(xk|zk) ≈
N∑
i=0

ωi
kδ(xk − xik) (20)

The particle filtering scheme adopts a sequential impor-
tance sampling method to estimate {xi

k, ω
i
k}i=1,...,N from

the weights and samples at k − 1. An importance function
q(xk|xi

k−1, zk) is applied to generate the i-th particle xi
k and

the corresponding weight ωi is then updated as in [2]. Unlike
the generic particle filter in [2] which generates particles from
the importance function solely determined by the state model,
the unscented particle filtering (UPF) scheme proposed in
[13] applies a UKF to estimate the importance function for
generating each particle. The estimated importance function
is a local approximation of the optimal importance function,
given the assumption that the state and measurement models
are both linear and Gaussian in a local region nearby each
particular particle. By applying the UKF framework to esti-
mate the importance function, the measurement information
is incorporated into the particle sampling procedure and the
generated particles are more likely from the region with high
measurement likelihood.

However, for the traditional UPF, the constraint information
is not taken into account. In order to make use of the constraint



information, instead of the UKF, the truncated UKF discussed
in Section III is applied to obtain the importance function and
a corresponding truncated UPF scheme is derived. The proce-
dure of the truncated UPF scheme for estimating pC(xk|zk) is
outlined as Table I.

Here p(zk|xk) and p(xk|xk−1) in Table I represent the mea-
surement likelihood function and the state transition function
respectively, which are determined by the state and measure-
ment models in (1). Ci is the normalization factor considering
the constraint on xk, which is estimated as:

Ci =

∫
p(xk|xi

k−1)Ck(xk)dxk (21)

and it can be estimated from the Monte-Carlo integration as
[11], which is similar to the procedure of estimating the mean
and covariance of the truncated distribution.

The truncated UPF scheme applies the truncated UKF as
the importance function to take both the measurement and
constraint information into account in the particle sampling
procedure. In this way, a more accurate representation of
the truncated conditional density function pC(xk|zk) can be
obtained.

V. SIMULATIONS

A vehicle is simulated to move on a bending road segment.
The boundaries of the road are defined by two arcs centered at
the origin of a Cartesian coordinate system with radius of r1
= 96m and r2 = 100m, respectively. The vehicle dynamics are
described by a state model driven by white noise acceleration:

xk = F · xk−1 +G · wk (22)

where

F =

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , G =

T
2/2 0
T 0
0 T 2/2
0 T

 (23)

and xk = [xk ẋk yk ẏk]
T . The variables (xk, yk) repre-

sent the position of the vehicle and (ẋk, ẏk) represents the
velocities. T is the sampling interval and assumed to be 1
second. wk = (w1

k, w
2
k)

T is a 2 × 1 vector representing the
process noise. Each component of wk follows a Gaussian
distribution with zero mean and a standard deviation of 10.
The road boundaries are considered as the state constraints,
which are non-linear inequality described by

r1 ≤
√
x2
k + y2k ≤ r2 (24)

The vehicle is tracked by a range and bearing sensor
modeled as:

zk =

[√
x2
k + y2k

arctan( yk

xk
)

]
+ vt (25)

where vt is a Gaussian noise vector with mean [0, 0]T and

covariance matrix R =

[
5 0
0 0.001

]
.

A simulated trajectory based on the state model (22) and
the corresponding measurements is plotted in Figure 1.

Fig. 1. The simulated trajectory of a vehicle moving on a bend road section
and the measured positions.

The incorporation of the state constraint information in
(24) could improve the state estimation performance and an
example is presented to illustrate it. Figure 2 shows the
comparison of the position estimation results by the truncated
UPF proposed in this work and the original UPF without con-
sidering the constraint information. 100 particles are applied
for each method. The mean square errors (MSEs) for these two
methods are also calculated. It is evident in this figure that by
incorporating the constraint information, the tracking result of
truncated UPF is always within the road boundaries and less
MSE is obtained.

Fig. 2. The comparison results of the T-UPF and standard UPF. Better per-
formance is achieved by T-UPF after incorporating the constraint information.

Next, the proposed method is compared with different
methods that are able to cope with non-linear and inequality
constraints. Methods include the acceptance-rejection method
in [9], projection method in [10] and the method proposed in
[11]. For a comprehensive analysis, 100 Monte-Carlo simula-
tions are performed to generate the vehicle trajectories and



TABLE I. THE PROCEDURE OF THE TRUNCATED UPF.

Initially, we have a set of particles and weights {xik−1, ω
i
k−1}i=1,...,N to approximate pC(xk−1|zk−1) . For each particle i, there is

an associated Gaussian distribution N(xk−1|x̂ik−1, P
i
k−1) estimated by the corresponding truncated UKF at time k-1.

I. Importance sampling:
For each particle i, the truncated UKF in Section III is applied to update N(xk−1|x̂ik−1, P

i
k−1) at k − 1 to a new distribution

N(xk|x̂ik, P i
k), from which a new particle xi

k is sampled.

II. Accept and rejection:
If the obtained sample xik is within the constraint region in (2), the sample is accepted; otherwise, it is rejected.

III. Weight computing:
The weight corresponding to the accepted particle xik is calculated as: ωi

k ∝ ωi
k−1

p(zk|xik)p(xik|x
i
k−1)

CiN(xik|x̂
i
k,P

i
k)

Finally, the weights are normalized to make
∑N

i=1 ω
i
k = 1 and pC(xk|zk) is approximated by the new weights and particles as (20).

measurements. Each method with 100 particles is applied
to obtain the position estimation results for Monte-Carlo
simulations and the corresponding MSEs are calculated. The
Mean and Standard deviation(Std) of the 100 MSEs are then
estimated for comparison. The results are summarized in Table
II,which shows that our method achieves the minimum Mean
value of the MSEs as well as the smallest Standard deviation
compared with other methods.

TABLE II. COMPARISONS OF DIFFERENT ALGORITHMS FOR
INCORPORATING THE CONSTRAINT INFORMATION

Accept
rejection [9] Projection [10] Method in [11] Proposed

Mean
(meters) 10.89 6.92 6.76 5.40

Std
(meters) 7.24 2.33 2.09 0.91

VI. CONCLUSIONS

In this work, we presented a truncated unscented particle
filtering scheme to cope with non-linear and inequality con-
straints. Particle filtering was applied to deal with the non-
Gaussian conditional pdf of the state vector due to the intro-
duction of constraints. Unlike the traditional particle filtering
methods, the proposed truncated unscented particle filtering
scheme adopts the truncated UKF as the importance function
from which particles were sampled. Both the measurement
and constraint information were incorporated to obtain a better
sampling scheme, and a more accurate state estimation result
was thus obtained. From multiple Monte Carlo simulations,
it was shown that our method achieved a better performance
than the other state-of-the-art ones.

However, domain knowledge may be represented by there
are different types of the constraints in applications. This paper
only deal with domain knowledge that can be represented by
hard constraints such as road edges. Some types of domain
knowledge cannot be expressed in this way such as speed limit.
Instead of representing as a hard constraint, it sets a probability
likelihood (in the range of [0,1]) for the state vector being in
different regions, e.g. soft constraint [14] Extending the current
algorithm to incorporate with soft constraints is the next step
of the research.
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