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Abstract. In the context of multi-target tracking application, the concept of variance in the number of targets estimated

in specified regions of the surveillance scene has been recently introduced for multi-object filters. This article has two main

objectives. First, the regional variance is derived for a multi-object representation commonly used in the tracking literature,

known as the multi-Bernoulli point process, in which the multi-target state is described with a set of hypothesised tracks

with associated existence probabilities. This model is exploited in multi-target applications where it can be assumed that

targets evolve independently of each other and generate sensor observations that are uncorrelated with other targets. An

illustration of the concept of regional statistics (mean and variance) in target number, and how to interpret them in the

broader context of multi-object filtering, it then provided. Possible applications include performance assessment and sensor

control for multi-target tracking.

1. Introduction

In the last decade, the field of sensor fusion has witnessed a

paradigm shift in the way that methods for tracking multiple

targets in defence-related surveillance applications are devel-

oped. Heuristic approaches for estimating multiple dynamical

objects have been developed since the 1970s, yet these meth-

ods suffer from systematic failure due to the heuristics intro-

duced for track management. A radically different approach

based on Random Finite Sets considers the problem in a uni-

fied way that enables operators to estimate the correct num-

ber of targets in challenging environments where there may be

many false alarms and the targets are not always observed. This

led to principled low computational cost approximate solutions

that could be deployed on real-time systems known as multi-

object filters [1–6].

In the multi-object filtering framework developed during

the last decade, the multi-target configuration (i.e. the mul-

tiple targets evolving in the surveillance scene) is described

by a random finite set or (simple) point process [7]. One of

the most popular approaches for multi-object filtering relies

on propagating the first moment of this point process, known

as the Probability Hypothesis Density (PHD), from which the

expected number of targets in any region of the surveillance

scene can be extracted [1, 2]. Recent work demonstrates that,

using recent developments in multi-object filtering [8–10],

the second moment of this point process can be computed as

well in order to provide uncertainty on the expected number

of targets in any region [11]. The concept of regional variance

is introduced and illustrated in [11] for the PHD filters, which

are based on multi-target representations through Poisson and

i.i.d. point processes.

Bernoulli and multi-Bernoulli point processes [7] are

another example of multi-target representation widely used in

the tracking literature. The Bernoulli process models a sin-

gle target with a probability distribution describing its state

(position, velocity, etc.), and an existence probability depict-

ing its credibility. A similar representation was pioneered by

Musicki’s work on the Integrated Probabilistic Data Associa-

tion (IPDA) filter [12], and later integrated to the multi-object

filtering framework as a Bernoulli point process for joint

detection and tracking filters [7, 13–17]. The extension to

multiple objects, known as the multi-Bernoulli process, has

been developed for multi-object filtering [7, 18, 19]. It has

been applied for visual tracking in images [20–25], or audio-

video fusion [26], and inspired numerous implementations

(see [27–45] for recent examples). In a more general con-

text, (multi-)Bernoulli filters have also been developed for

scenarios with unknown clutter intensity [46], sensor control

problems [15,47], tracking in sensor networks [48–50], super-

positional sensors [51, 52], distributed data fusion [53–55],

and tracking with road constraints [56]. Recent developments

introduced track labelling in multi-Bernoulli processes and

enable closed-form solutions to multi-target tracking problems

assuming target independency [57–62].

The increasing level of interest for the modelling of multiple

targets through Bernoulli processes motivates a study for its

statistical and analytical properties. One of the main objective

of this article is to derive the regional variance for a generic

(multi-)Bernoulli process, a novel statistical tool that has been

recently introduced and exploited for the study of the PHD

filters [11]. In complement, this article discusses and illus-

trates the concept of regional variance as a generic assessment

tool for multiple-target tracking algorithms derived within the

multi-object filtering framework.

The structure of the article is as follows: Section 2. formally

defines a point process used for the stochastic description of

population of targets, and Section 3. describes the evolution of

a target point process in the Bayesian filtering paradigm. Sec-

tion 4. describes the method to produce the regional mean and

variance in target number for a generic point process, and Sec-

tion 5. introduces the functional representation of point pro-
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cesses. Section 6. describes the construction of the regional

statistics for the Bernoulli and multi-Bernoulli processes, and

discusses the given results. Section 7. proposes an interpreta-

tion of the regional statistics for the assessment of multi-object

filters, and the article concludes in Section 8..

2. Point processes

In this section, we introduce the notations for point pro-

cesses used in the article and highlight their relation to Finite

Set Statistics [7]. Assume that a surveillance scene contains

objects of interest or targets, which are individually described

by a state x in some target space X ⊂ R
dx (position, veloc-

ity, etc.). Because 1) new targets may enter the scene or be

spawned from existing ones, and 2) some targets may leave

the scene or disappear by other means, the target number and

the target states may vary across time.

In the context of multi-target detection and tracking prob-

lems, an operator is interested in estimating the target num-

ber and the target states. Since both are unknown a priori,

the target population is described at any instant by a point

process Φ whose number of elements and element states are

random. A realisation of a point process Φ is a set of points

ϕ = {x1, . . . ,xN} that describes a particular state of the target

population, i.e. a multi-target configuration.

A point process Φ on X is defined formally through a mea-

surable mapping:

Φ : (Ω,F ,P)→ (EX ,BEX
) (1)

from some probability space (Ω,F ,P) to the measurable

space (EX ,BEX
), where EX is the point process state space,

i.e., the space of all the finite sets of points in X , and BEX

is the Borel σ -algebra on EX [63]. As for usual random vari-

ables, a point process Φ is more conveniently described by

the probability distribution on (EX ,BEX
) generated by P and

denoted by PΦ.

3. Multi-target Bayesian filtering

In multi-target detection and tracking problems, the opera-

tor updates their knowledge of the multi-target configuration

through successive sequences of observations zk
1:mk

produced

at discrete time step k > 0 by some sensor system observing

the scene. The target process Φk|k is a point process provid-

ing a stochastic description of the posterior distribution of the

targets in the state space at time k, based on the measurement

history up to time k.

The usual single-object Bayesian paradigm is generalisable

to the multi-object framework [7]. The law of the filtered state

PΦk|k is updated through sequences of prediction steps and data
update steps. The full multi-target Bayes’ filter is then found

to be [7]:

PΦk|k−1
(dξ ) =

∫
Tk|k−1(dξ |ϕ)PΦk−1|k−1

(dϕ), (2)

PΦk|k(dξ |zk
1:m) =

Lk(zk
1:m|ξ )PΦk|k−1

(dξ )∫
Lk(zk

1:m|ϕ)PΦk|k−1
(dϕ)

, (3)

where Tk|k−1 is the Markov transition kernel between time

steps k−1 and k, and Lk is the multi-measurement/multi-target

likelihood at time step k.

4. Regional statistics: mean and variance in target number

While a point process is fully characterized by its probability

distribution PΦ, i.e. its realisations in the process state space

EX , an alternative description is available through the point

patterns it produces in the target state space X . For any Borel

set B ∈ BX , where BX is the Borel σ -algebra on X , the

counting measure

NΦ(B) = ∑
x∈Φ

1B(x) (4)

counts the number of targets falling inside B according to

the point process Φ [63]. Using the well-defined statistical

moments of the integer-valued random variables NΦ(B) for

any B ∈ BX , one can define the moment measures of the point

process Φ.

For any regions B,B′ ∈ BX , the first and second moment

measures μ(1)
Φ , μ(2)

Φ are defined by

μ(1)
Φ (B) = E [NΦ(B)] (5a)

=
∫ (

∑
x∈ϕ

1B(x)

)
PΦ(dϕ) (5b)

= ∑
n�0

∫ (
∑

1�i�n
1B(xi)

)
PΦ(dx1:n), (5c)

and

μ(2)
Φ (B,B′) = E

[
NΦ(B)NΦ(B′)

]
(6a)

=
∫ (

∑
xi,x j∈ϕ

1B(xi)1B′(x j)

)
PΦ(dϕ) (6b)

= ∑
n�0

∫ (
∑

1�i, j�n
1B(xi)1B′(x j)

)
PΦ(dx1:n), (6c)

where x1:n = {x1, . . . ,xn}, E is the expectation operator, and 1B
is the indicator set function defined by

∀x ∈ X ,1B(x) =

{
1, x ∈ B

0, x /∈ B
(7)

The first moment measure μ(1)
Φ (B) provides the expected

number of targets or mean target number inside B, while

μ(2)
Φ (B,B′) denotes the joint expectation of the target number

inside B and B′. Similarly to usual random variables, the vari-
ance varΦ of the point process Φ [63] in any region B ∈ BX is

defined by

varΦ(B) = μ(2)
Φ (B,B)−

[
μ(1)

Φ (B)
]2

. (8)

Take notice that the variance is a function, but not a measure,

on the Borel σ -algebra BX . It does not necessarily admit a
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density, in general, even if μ(2)
Φ and μ(1)

Φ do. For this reason,

this article and the previous work on the regional statistics for

PHD filters [11] adopt a measure-theoretical approach to the

study of point processes covered in [10]. In particular, we study

a point process Φ through its first moment measure μ(1)
Φ rather

than its first moment density or Probability Hypothesis Den-

sity, even though the latter choice is more common in recent

studies [7, 61, 62].

The regional statistics (μ(1)
Φ (B),varΦ(B)) provide an

approximate description of NΦ(B), i.e. the number of target in

B according to the point process Φ:

• μ(1)
Φ (B) is the mean (or expected) target number within B;

• varΦ(B) quantifies the dispersion of the target number within

B around its mean value.

More details on the practical exploitation of the regional statis-

tics are provided in section 7..

5. Functional representation

Rather than relying directly on the probability distribution PΦ
to represent the point process Φ, it is possible to introduce

“characteristic” functionals with convenient properties. An

example of such a characteristic functional can be found to be

the Laplace functional LΦ [64], defined by the expectation

LΦ[ f ] = E

[
∏
x∈Φ

e− f (x)

]
(9a)

=
∫

exp

(
− ∑

x∈ϕ
f (x)

)
PΦ(dϕ). (9b)

The expression of different statistical quantities for a given

point process Φ can be found by functional differentiation

of LΦ. For this purpose, we use an appropriate restriction of

the Gâteaux differential, named the chain differential [65],

for which it exists a composition rule. The chain differential

δF(h;η) of a functional F , (evaluated) at function h in the

direction (or increment) η , is defined as

δF(h;η) = lim
n→∞

F(h+ εnηn)−F(h)
εn

, (10)

where {ηn}n�0 is a sequence of functions ηn converging

(pointwise) to η , {εn}n�0 is a sequence of positive real num-

bers converging to zero, if the limit exists and is identical for

any admissible sequences {ηn}n�0 and {εn}n�0.

Using the chain differential we find that the first and second

moment measures in any regions B,B′ ∈ BX can be recovered

from the Laplace functional LΦ when differentiating once or

twice in the point f = 0 as follows

μ(1)
Φ (B) =− δ (LΦ[ f ];1B)| f=0 , (11)

μ(2)
Φ (B,B′) = δ 2(LΦ[ f ];1B,1B′)

∣∣
f=0

. (12)

It is also possible to simplify the Laplace functional by con-

sidering the test function f =− logh. The resulting functional

G with argument h is called the Probability Generating Func-

tional (PGFl) and is found to be

GΦ[h] = LΦ[− logh], (13)

where h is a test function, i.e., a real-valued function belonging

to the space of bounded measurable functions on X , such that

0 � h(x)� 1 and 1−h vanishes outside some bounded region

of X [64].

The PGFl GΦ[h] also characterises the point process Φ and

can be expressed as

GΦ[h] = E

[
∏
x∈Φ

h(x)

]
(14a)

=
∫ (

∏
x∈ϕ

h(x)

)
PΦ(dϕ). (14b)

The first moment measure μ(1)
Φ of the point process Φ can

now be recovered via the differentiation of the PGFl GΦ as

follows:

μ(1)
Φ (B) = δ (GΦ[h];1B)|h=1 , (15)

for any subset B in BX . However, the variance cannot be

directly recovered from the PGFl, and still requires the gener-

ality of the Laplace functional to be calculated.

6. Regional statistics for Bernoulli and multi-Bernoulli
point processes

6.1 Bernoulli point process

A Bernoulli process [7, 14] is an elementary point process Φ
whose number of elements is at most one. A realisation ϕ is

either:

• The empty set /0, with probability 1−Pe,

• A single object within some infinitesimal neighbourhood

dx ∈ BX , with probability Pe ps(dx).
Consequently, the probability of existence 0 � Pe � 1 and the

spatial distribution ps on (X ,BX ) fully characterise the pro-

cess Φ. In the context of target tracking, a Bernoulli provides a

natural description for a potential target or track. The probabil-

ity of existence Pe denotes the confidence of the operator in the

track, and the spatial distribution ps the information acquired

by the operator about the state of the potential target.

Following (15) and (12), one must first determine the PGFl

GΦ and the Laplace functional LΦ of the process Φ to produce

the moment measures. Since the size of a realisation ϕ is at

most one, the expressions of the PGFl (14b) and the Laplace

functional (9b) simplify and yield

GΦ[h] = 1−Pe +Pe

∫
h(x)ps(dx) (16)

LΦ[h] = 1−Pe +Pe

∫
e− f (x)ps(dx) (17)
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Using (15), we first derive the PGFl (16) once to produce the

first moment measure in any region B ∈ BX :

μ(1)
Φ (B) = δ (GΦ[h];1B)|h=1 (18a)

= Pe

∫
δ (h(x);1B)|h=1 ps(dx) (18b)

= Pe

∫
1B(x)ps(dx), (18c)

where we draw the result δ (h(x);1B)|h=1 = 1B(x) from Corol-

lary 1 in [8]. Using (12), we then derive the Laplace func-

tional (17) twice to produce the second moment measure in

any regions B,B′ ∈ BX :

μ(2)
Φ (B,B′) = δ 2(LΦ[ f ];1B,1B′)| f=0 (19a)

= Pe

∫
δ 2(e− f (x);1B,1B′)| f=0 ps(dx) (19b)

= Pe

∫
1B(x)1B′(x)ps(dx) (19c)

= Pe

∫
1B∩B′(x)ps(dx), (19d)

where we draw the result δ 2(e− f (x);1B,1B′)| f=0 = 1B(x)1B′(x)
from Appendix B-E in [11].

Note that the second moment measure (19d) evaluated at

B = B′ equals the first moment measure (18c) evaluated in B.

This is not a general result to point processes, but a specific

result of the Bernoulli process. Finally, the definition of the

variance (8) yields

varΦ(B) = μ(2)
Φ (B,B)−

[
μ(1)

Φ (B)
]2

(20a)

= μ(1)
Φ (B)

(
1−μ(1)

Φ (B)
)
. (20b)

6.2 Multi-Bernoulli point process

A multi-Bernoulli point process Φ [7, 66] is constructed

through the superposition of independent Bernoulli point pro-

cesses Φ1, . . . ,Φn, i.e. Φ = Φ1 ∪ . . .∪Φn or, in terms of the

counting measures,

NΦ(B) =
n

∑
i=1

NΦi(B). (21)

In the context of multi-target tracking, each Bernoulli process

Φi represents a hypothesised track, with associated probabil-

ity of existence Pe,i and estimated state distributed according

to ps,i. Provided that the assumption on target independency

holds – i.e. the targets evolve and generate observations inde-

pendently of each other – a multi-Bernoulli process provides

an appropriate description of the multi-target configuration.

Besides, the PGFl of the multi-Bernoulli is given by the prod-

uct of the PGFls of the Bernoulli processes [7]; using (13) the

same relation holds for the Laplace functionals and we get

GΦ[h] =
n

∏
i=1

GΦi [h] (22)

LΦ[ f ] =
n

∏
i=1

LΦi [ f ] (23)

Using (15), we first derive the PGFl (22) once to produce the

first moment measure in any region B ∈ BX :

μ(1)
Φ (B) = δ

( n

∏
i=1

GΦi [h];1B

)∣∣∣
h=1

(24a)

=
n

∑
i=1

δ (GΦi [h];1B)|h=1 ∏
1� j�n

j 	=i

GΦ j [h]|h=1, (24b)

where GΦ j [1] = 1 using (16), and thus

μ(1)
Φ (B) =

n

∑
i=1

δ (GΦi [h];1B)|h=1 (24c)

=
n

∑
i=1

μ(1)
Φi

(B). (24d)

We then move to the second moment measure. Using (12), we

derive the Laplace functional (17) twice to produce the second

moment measure in any regions B,B′ ∈ BX :

μ(2)
Φ (B,B′) = δ 2

( n

∏
i=1

LΦi [ f ];1B,1B′
)∣∣∣

f=0
(25a)

=
n

∑
i=1

δ 2(LΦi [ f ];1B,1B′)| f=0 ∏
1� j�n

j 	=i

LΦ j [ f ]| f=0 (25b)

+ ∏
1�i, j�n

i 	= j

δ (LΦi [ f ];1B)| f=0δ (LΦ j [ f ];1B′)| f=0 ∏
1�k�n
k 	=i, j

LΦk [ f ]| f=0

(25c)

where LΦ j [0] = 1 using (17), and thus

μ(2)
Φ (B,B′) =

n

∑
i=1

δ 2(LΦi [ f ];1B,1B′)| f=0

+ ∏
1�i, j�n

i 	= j

δ (LΦi [ f ];1B)| f=0δ (LΦ j [ f ];1B′)| f=0 (25d)

=
n

∑
i=1

μ(2)
Φi

(B,B′)+ ∏
1�i, j�n

i	= j

μ(1)
Φi

(B)μ(1)
Φ j

(B′). (25e)

The definition of the variance (8) then yields

varΦ(B) = μ(2)
Φ (B,B)−

[
μ(1)

Φ (B)
]2

(26a)

=
n

∑
i=1

μ(2)
Φi

(B,B)+ ∏
1�i, j�n

i 	= j

μ(1)
Φi

(B)μ(1)
Φ j

(B)−
[

n

∑
i=1

μ(1)
Φi

(B)

]2

,

(26b)

where, using (18c) and (19d), μ(2)
Φi

(B,B) = μ(1)
Φi

(B). Thus

varΦ(B) =
n

∑
i=1

μ(1)
Φ,i(B)−

n

∑
i=1

[
μ(1)

Φ,i(B)
]2

(26c)

=
n

∑
i=1

μ(1)
Φ,i(B)

(
1−μ(1)

Φ,i(B)
)
. (26d)
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Interestingly, the description of the multi-Bernoulli through

its counting measure (21) rather than its PGFl (22) provides an

alternative and more direct construction of its regional statis-

tics. Indeed, the random variable NΦ(B) being the sum of the

independent random variables NΦi(B), using the linearity of

the expectation operator yields directly the first moment mea-

sure of the compound process:

μ(1)
Φ (B) = E[NΦ(B)] (27a)

=
n

∑
i=1

E[NΦi(B)] (27b)

=
n

∑
i=1

μ(1)
Φi

(B) (27c)

Likewise, using the Bienaymé formula [67] for the variance

of the sum of independent random variables, the variance of

the superposed process is

varΦ(B) =
n

∑
i=1

varΦi(B) (28a)

=
n

∑
i=1

μ(1)
Φi

(B)
(

1−μ(1)
Φi

(B)
)
. (28b)

Note that the simplicity of the alternative approach (27), (28)

holds to the facts that 1) we have access to the expression of the

counting measure of the compound process, and 2) the expres-

sion is reduced to a sum of independent variables. Retrieving

the moment measures from any point process through the dif-

ferentiation of its Laplace functional (11), (12) is more adapted

to the study of practical multi-object filters. Indeed, under the

assumptions of the usual multi-object filters, the structure of

the multi-object Bayesian filtering equations (2), (3) allows the

explicit construction of the Laplace functional LΦk|k of the tar-

get process. In particular, this method led to the extraction of

the regional statistics for the PHD filters in [11].

Despite their obvious advantage for the construction of

multi-object filters and the extraction of regional statistics,

the applicability of the Laplace functional and the PGFl to

the study of multi-Bernoulli point processes is limited. From

(23) we see that the Laplace functional of the compound pro-

cess, built as simple product, is symmetrical with respect to

the Bernoulli processes Φi, even though these processes are

described by individual information carried by the potentially
distinct functionals LΦi . One must proceed with care when

functionals are differentiated for the derivation of a multi-

object filter based on a multi-Bernoulli target process, for the

order of the Bernoulli processes is not carried through the dif-

ferentiation of a product such as (23). Recent works [57,61,62]

have introduced the notion of labelled multi-Bernoulli process

in order to produce filters propagating specific information

about individual targets, and thus able to reconstruct track

histories.

6.3 Regional mean and variance: interpretation

Each component Φi of the multi-Bernoulli process describes

a single target with an associated probability of existence, and

this influences the expression of the expected number of tar-

get within some region B ∈ BX . For a given probability of

existence Pe, the expression of the first moment measure (18c)

shows that the expected target number is:

• Minimal if the target lies within B almost never, because∫
1B(x)ps,i(dx) = 0;

• Maximal if the target lies within B almost surely, because∫
1B(x)ps,i(dx) = 1.

The expected target number is then scaled with the probability

of existence. In particular, the extrema μ(1)
Φ (B) = 1 is reached

if and only if the target exists almost surely (Pe = 1) and it

lies inside within B almost surely. In any case, for any region

B∈BX (including, in particular, the case B=X ) the expected

target number may not exceed one.

From the expression of the variance (20b) it is straightfor-

ward to see that the variance in B is:

• Minimal (i.e. 0) if μ(1)
Φi

(B) = 0 or μ(1)
Φi

(B) = 1;

• Maximal (i.e. 0.25) if μ(1)
Φi

(B) = 0.5.

Quite intuitively, it shows that the uncertainty in the expected

target number is minimal if the evidence of target presence

within B reaches one of its two extremas, and is maximal when

the absence or presence of a target within B are equally prob-

able. An interesting case arises when the target exists almost

surely somewhere in the whole state space, i.e. when Pe = 1.

In this case, the sole source of uncertainty is the localization

of the target in the surveillance scene, and the expected target

number in B is:

• Minimal if the target lies within B almost never or almost

surely, because
∫

1B(x)ps,i(dx) = 0 or
∫

1B(x)ps,i(dx) = 1;

• Maximal if the target lies within or outside of B with equal
probability, because

∫
1B(x)ps,i(dx) = 0.5.

Unsurprisingly, each component process Φi contributes inde-

pendently to the regional statistics of the compound process

evaluated in B. In particular, the uncertainties in the presence

of each target within B add together to form the global uncer-

tainty in the total target number within the same region.

7. Assessment of multi-object filters: analysis of the esti-
mation in cardinality

The study of a point process through its regional statistics pro-

duces intuitive and easily interpretable results by shifting the

focus from the abstract point process state EX to a given subset

B in BX . Suppose that B designs a region of the surveillance

scene of particular interest (e.g. the surroundings of a build-

ing), the regional variance varΦ(B) quantifies the certainty of

the filter it its own estimation of the number of targets evolv-

ing within B. As illustrated in [11], choosing smaller regions

B as the immediate surroundings of targets can provide some

insight on the ability of a filter to resolve close targets.

The objective of this section is to explain the analysis of the

variance in target number of a given multi-object filter. Note

that this analysis can be conducted in any region of interest in
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the state space. We distinguish and study four cases of means

and variances from typical multi-object filters. Note that these

results are not from actual filters but they are meant to represent

different classes of methods for multi-object estimation, i.e.

optimal, well-behaved, over-confident, and inaccurate filters.

The Kalman filter is considered as an optimal single-object

filter when the observation and motion models are linear and

Gaussian. Similarly, a multi-object filter can be thought as

being optimal when no approximations are required under

given assumptions. The Bayes’ filter is an example of optimal

multi-object filter under the assumptions that targets are inde-

pendent of each other and that each of them generates no more

than one observation per scan. The mean and variance of an

optimal multi-object filter (Figure 1a) are considered as refer-

ences for other multi-object filters. Note that the mean of the

filter is useful as it depicts the best achievable object-detection

performance, which can be very different from the ground

truth (see Figure 1a at times t = 40 and t = 80), whereas the

use of the Kalman filter mean for comparison purposes is

seldom. We can now consider sub-optimal filters, for which

approximations are made, and compare them to the optimal

filter.

We first consider a multi-object filter that is representative

of the class of filters based on realistic approximations. The

mean and variance of this filter are depicted in Figure 1b and

compared against the mean of the optimal filter. Also, the vari-

ances of these two filters can be found in Figure 1e. We can

see in Figure 1b that this filter is less reactive to object appear-

ance and disappearance. However, this performance impover-

ishment is taken into account in the variance, which is conse-

quently larger than the one of the optimal filter. This filter is

then seen as a model of well-behaved sub-optimal filter.

The mean and variance of an over-confident multi-object fil-

ter are depicted in Figure 1c. This kind of filter is characterised

by a larger error in the estimate than what is represented by the

variance. It is then not advisable to conclude on the real num-

ber of detectable targets as the actual error could be larger than,

say, the ±3σ range (see Figure 1e). It is usual to say that the

estimate of the number of targets is inconsistent.

The last typical case consists of a multi-object filter display-

ing a large variance as in Figure 1d. Whereas the mean of the

estimated cardinality is close to the one of the well-behaved

filter, the large values of the variance show that this filter relies

on stronger approximations, therefore making the estimation

less reliable.

8. Conclusion

Recent work in multi-object filtering shows that the variance in

multi-object estimators can be computed to give information

about the uncertainty in the number of targets in any partic-

ular region of the state space to aid sensor management and

resource allocation. This work computes the target-number

variance for the multi-Bernoulli distribution, a common rep-

resentation of the multi-target state estimate in the tracking

literature in which each target is represented with single-

object posterior distribution and an existence probability. An

illustration of how to interpret using the variance for perfor-

mance assessment is given through an analysis of optimal,

well-behaved, over-confident, and inaccurate filter results.
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(c) Over-confident filter
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(d) Inaccurate filter
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Figure 1: Mean and variance of the posterior distribution of

typical multi-object filters.
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