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> Scenario with sensor array and far-field sources:

il .>> O =l
O—— x3[n]
O—— z3[n]

O—— xp(n]
» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector

» data model:
x[n] =
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Narrowband Source Model Strathclyde
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» Scenario with sensor array and far-field sources:

siln] @ >>> DT =l

O ol

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so, ...SRg;

» data model:

R
x[n] = s1[n] - s1 + s1[n] -s2 + -+ + sg[n] -sp = Zsr[n] - Sy
r=1
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Steering Vector Strathclyde

Engineering

» A signal s[n] arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n] sln — 7o g[n — 7]
xll[n] _ s[n — 71 _ [n — 7] 5[] o—e 25(2)S(2)
:L’M_l[’rl] S[’n—TM_l] 5[71—7']\/[,1]

> if evaluated at a narrowband normalised angular frequency €2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay g,

e~ I8
e_jTlﬂi
ay.0, = a9(2)|,—pivs =

eI 182
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Data and Covariance Matrices ”s"{"rS‘E'rfc

Engineering

» A data matrix X € CM*L can be formed from L measuremé
X=[x[n] x[n+1] ... xn+L—-1] ]

» assuming that all x,,[n], m = 1,2,... M are zero mean, the
(instantaneous) data covariance matrix is

1
R = &{x[n]x"[n]} ~ EXXH

where the approximation assumes ergodicity and a sufficiently
large L;

» Problem: can we tell from X or R (i) the number of sources and
(ii) their orgin / time series?

» w.r.t. Jonathon Chamber’s introduction, we here only consider the
underdetermined case of more sensors than sources, M > K, and
generally L > M.
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SVD of Data Matrix Strathclyde
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» Singular value decomposition of X:

X = |U > VH

» unitary matrices U = [uy...upy] and V = [vy...v];

» diagonal X contains the real, positive semidefinite singular values
of X in descending order:

or 0 0 0 0
D — 0 g9
0
0 0 om O 0

with o1 > 09> -+ >0y > 0.
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Singular Values e

Strathclyde
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> If the array is illuminated by R < M linearly independent so#
the rank of
the data matrix is
rank{X} = R
> only the first R singular values of X will be non-zero;
» in practice, noise often will ensure that rank{X} = M, with
M — R trailing singular values that define the noise floor:

1 T
0.8 i
0.6 i

S

0.4 B
0.2 b

0 @ Q @ o o

1 2 3 4 5 6 7 8 9 10

ordered index m

> therefore, by thresholding singular values, it is possible to estimate
the number of linearly independent sources R.
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» If rank{X} = R, the SVD can be split:
0 Vi
-l 5 s, |

» with Uy € CM*E and VI € C#*E corresponding to the R
largest singular values;

» U, and V! define the signal-plus-noise subspace of X:

R
X = g amumv E amumv
m=1

» the complements U,, and V,I;I,
viu, =0 , v,vii=

define the noise-only subspace of X.



Overview E&SVD Narrowband Source Separation Broadband Poly PEVD Apps Simulations Conclusion

SVD via Two EVDs ”s"{"rS’E'ri'c

Engineering

» Any Hermitian matrix A = A™ allows an eigenvalue
decomposition
A = QAQ"
with Q unitary and the eigenvalues in A real valued and positive
semi-definite;
» postulating X = UXVH therefore:

xx!t = (uzvi)vziul) = vuaut (1)
xix = (vtul)yuzvl) =vavt (2)

» (ordered) eigenvalues relate to the singular values: \,, = 02 ;
> the covariance matrix R = %XX has the same rank as the data
matrix X, and with U provides access to the same spatial

subspace decomposition.
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Narrowband MUSIC Algorithm Sirathclyde

Engineering

» EVD of the narrowband covariance matrix identifies
signal-plus-noise and noise-only subspaces
As 0 ] [ Ul ]
0 A, || UH
» scanning the signal-plus-noise subspace could only help to retrieve
sources with orthogonal steering vectors;
» therefore, the multiple signal classification (MUSIC) algorithm
scans the noise-only subspace for minima, or maxima of its

R-[U. U]|

reciprocal
1

R [Ty
n ;823112

Swusic(9) /[dB]
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Narrowband Source Separation ”s“{",;‘i'ﬁ'c

Engineering

> Via SVD of the data matrix X or EVD of the covariance matrix
R, we can determine the number of linearly independent sources
R;

» using the subspace decompositions offered by EVD/SVD, the
directions of arrival can be estimated using e.g. MUSIC;

» based on knowledge of the angle of arrival, beamforming could be
applied to X to extract specific sources;

» overall: EVD (and SVD) can play a vital part in narrowband
source separation;

» what about broadband source separation?
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Broadband Array Scenario

s1[n]

» Compared to the narrowband case, time delays rather than phase

shifts bear information on the direction of a source.
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Broadband Steering Vector Strathclyde
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» A signal s[n] arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n] sln — 7o g[n — 7]
xll[n] _ s[n — 71 _ [n — 7] 5[] o—e 25(2)S(2)
:L’M_l[’rl] S[’n—TM_l] 5[71—7']\/[,1]

> if evaluated at a narrowband normalised angular frequency €2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay g,

e~ I8
e_jTlﬂi
ay.0, = a9(2)|,—pivs =
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Space-Time Covariance Matrix e

Engineering

If delays must be considered, the (space-time) covariance
matrix must capture the lag 7:

R[7] = S{X[n] . xH[n — 7']}

» R|[7] contains auto- and cross-correlation sequences:

20 20 20
15 15 15
10 10 10
5 5 T T 5 T
N ° o ¢ o ? e
-2 [) 2 -2 [) 2 -2 [) 2
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o
N
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Cross Spectral Density Matrix Sirathclyde
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» z-transform of the space-time covariance matrix is given by

Rir = £{x,xl ) o—e R(z) =Y Si(2)ag,(2)ag, ()+o¥1
l

with ¥ the direction of arrival and S;(z) the PSD of the [th
source;

» R(z) is the cross spectral density (CSD) matrix;

» the instantaneous covariance matrix (no lag parameter 7)

R = 5{ang} = RJ0]
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CSD Matrix Properties Strathclyde
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» The CSD matrix R(z) is a matrix polynomial or polynomial with

matrix-valued coefficients:

R(z)= - +R 222+ R_1z' + Ry + Riz7 P + Ryz 2 + ...

> the symmetry of the cross-correlation sequences 7y, [7] = 7} [7]

is reflected in the CSD matrix R(z):

R, = R
> therefore with the parahermitian operator {-}
R(z) = RU(z7Y) = R(2)

> a matrix fulfilling R(z) = R(z) is called a parahermitian matrix.
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Polynomial Eigenvalue Decomposition

[McWhirter et al., IEEE TSP 2007]
» Polynomial EVD of the CSD matrix

» with paraunitary Q(z), s.t. Q(2)Q(z) =1,
» diagonalised and spectrally majorised A(z):

L, 10 3

IA©)

8 o

o % £

04 05 06 07 08 09 1
normalised angular frequency @ / (2x)

o o1 0z 03

» Q(z) can be FIR of sufficiently high order [Icart & Comon 2012]
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lterative PEVD Algorithms ”s"{"rS‘E'ﬁ'c
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» Second order sequential best rotation (SBR2, McWhirter 2007,
> iterative approach based on an elementary paraunitary operation:

So(z) = R(z)

Si+1(2) = Hit1(2)Si+1(2)Hiv1(2)

» H,(z) is an elementary paraunitary operation, which at the ith
step eliminates the largest off-diagonal element in s;_1(2);

> stop after L iterations:
Az)=Sc(z) . QL) =][Hix)

» sequential matrix diagonalisation (SMD) and
» multiple-shift SMD (MS-SMD) will follow the same scheme ...
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Elementary Paraunitary Operation

v

An elementary paraunitary matrix [Vaidyanathan] is defined as

H
%

H;(z)=1- vivzH + 27 tvv
» we utilise a different definition:
H;(z) = D;(2)Q;

» D;(z) is a delay matrix:

D;(z) =diag{l ... 12771 ... 1}

v

Qi(z) is a Givens rotation.
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Sequential Best Rotation Algorithm (McWhirter) ”S";‘;;:',;'cg%

Engineering

» At iteration ¢, consider S;_1(z) o—e S;_1[7]
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Sequential Best Rotation Algorithm (McWhirter) ”S"r,;‘;'.;'cg?e

Engineering

» D;(z) advances a row-slice of S;_1(z) by T

N
N
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Sequential Best Rotation Algorithm (McWhirter) ”S"r,;‘p.;'cﬁ)?:

Engineering

> the off-diagonal element at —7" has now been translated to lag
zero
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

» D;(z) delays a column-slice of S;_1(z) by T
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Sequential Best Rotation Algorithm (McWhirter)

» the off-diagonal element at —7" has now been translated to #8
zero
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> the step D;(2)S;_1(z)D;(z) has brought the largest off-diagonal
elements to lag 0.
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

> Jacobi step to eliminate largest off-diagonal elements by Q;
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Sequential Best Rotation Algorithm (McWhirter) [RSsries

Engineering

» iteration ¢ is completed, having performed

Si(z) = QiDi(2)Si-1(2)Di(2)Qi(2)
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SBR2 Qutcome —
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> At the ith iteration, the zeroing of off-diagonal elements achieved
during previous steps may be partially undone;

» however, the algorithm has been shown to converge, transfering
energy onto the main diagonal at every step (McWhirter 2007);

» after L iterations, we reach an approximate diagonalisation

A(z) = §"(2) = Q(2)R(x)Q(2)

with

» diagonalisation of the previous 3 x 3 polynomial matrix ...
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30 30 30
20 20 20
10 10 10

: 20 0 0 20 0 0 20 40

lag 7
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SBR2 Example — Spectral Majorisation Sirathclyde
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» The on-diagonal elements are spectrally majorised
20 T T T T

1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalised angular frequency Q / (2r)
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SBR2 — Givens Rotation ”s"{"rZ‘E'rfc

Engineering
» A Givens rotation eliminates the maximum off-diagonal element
once brought onto the lag-zero matrix;

» note |: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!
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Engineering
» A Givens rotation eliminates the maximum off-diagonal element
once brought onto the lag-zero matrix;

» note |: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!
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Sequential Matrix Diagonalisation (SMD) ”s"{",;‘{i:'c

Englneering
> Main idea — the zero-lag matrix is diagonalised in every ste
» initialisation: diagonalise R[0] by EVD and apply modal matrix to

all matrix coefficients — Sy;
» at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:

> an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix has to applied at all lags — more costly than
SBR2.



Overview E&SVD Narrowband Source Separation Broadband Poly PEVD Apps Simulations Conclusion

Sequential Matrix Diagonalisation (SMD) ”s"{",;‘{i:'c

Englneering
> Main idea — the zero-lag matrix is diagonalised in every ste
» initialisation: diagonalise R[0] by EVD and apply modal matrix to
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
» because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge.
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Multiple Shift SMD (SMD) oA

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step;

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
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SBR2/SMD/MS-SMD Convergence Shrathelyde

Engineering

» Measuring the remaining normalised off-diagonal energy
over an ensemble of space-time covariance matrices:

0 T T
— —o— SBR2
a8 —#— SMD
=2 5 MS-SMD H

—6— C-MS-SMD
gﬁ — — -95% conf. intervals
= -10
(<]
=
<]
= -15-
=
&
& -20F
"? ~
o
= a
o _o51 \\O\ oo ,z\\@\ Nl
=l ~ =, R
o) ~ T hs
B2 S Te—
= =301 ~ol 4
= -351 o 4
—40 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

iteration index @
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SBR2/SMD/MS-SMD Application Cost 1

» Ensemble average of remaining off-diagonal energy vs. orde
of paraunitary filter banks to decompose 4x4x16 matrices:

0 T
. —— SBR2
m ——%— SMD
= MS-SMD
™~ -5 : : —6— C-MS-SMD ||
£
—
=
3 —10f 1
=
=}
&
£ 157 1
<
B
o]
= —20f 1
[
= =
= 3
= 5| b 1
g - 6’2
=0
&
_30 i i i e
0 5 20 25

10 15
paraunitary filter bank order
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SBR2/SMD/MS-SMD Application Cost 2 ”s"?,;'{'.:'ci‘%

Engineering

» Ensemble average of remaining off-diagonal energy vs. order
of paraunitary filter banks to decompose 8x8x64 matrices:

510810 M{ B} /[dB]

= = =SMDv2

= SMD

_30 L= T T ! ! ! ! ! ! ! !
10 15 20 25 30 35 40 45 50 55 60

paraunitary filter bank order
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[Alrmah, Weiss, Lambotharan, EUSIPCO (2011)]

» Based on the polynomial EVD of the broadband covariance matrix

R(z) %MQ"—(ZE[ Aséz) AnO(z) ] [ gn((z)) ]
Q) > ’

A(z)

» paraunitary Q(z), s.t. Q(2)Q(z) =1,

» diagonalised and spectrally majorised A(z):

» 0 x|

s W
2 Y 2
o 10 ©

8 8
IA@

8 o8
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PMUSIC cont’d

» Idea —- scan the polynomial noise-only subspace @, (z) with
broadband steering vectors

F(z,ﬁ) = 5ﬂ(z)Qn(z)Qn(z)aﬂ(z)
» looking for minima leads to a spatio-spectral PMUSIC
Spss—music(V, Q) = (T(z,9)|,—cin) '

» and a spatial-only PMUSIC

Sps_nusic (V) = <27r 7{ T(2,9)|,_.0 dQ) o =10

with Ty[7] o—e I'(2,9).

[f 2
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Engineering
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Simulation | — Toy Problem Strathclyde

Engineering

» Linear uniform array with critical spatial and temporal samplit

» broadband steering vector for end-fire position:
ar2(2) = [1 PR z_MH]T
> covariance matrix
1 2L ML
R() = aa(anp() = |
M |
» PEVD (by inspection)
Q(2) = Tpprdiag{l 2~' ... =M} A(z) =diag{10 --- 0
» simulations with M =4 ...
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Simulation | — PSS-MUSIC ”s"?’;ﬁ?ﬁ'cﬁ%

Engineering

Spss (9, €)/[dB]

Saisr (0, ') /[dB]
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Simulation Il Strathclyde
. . S
» M = 8 element sensor array illuminated by three sources;
» source 1: ¥; = —30°, active over range () € [3—”; |;
» source 2: Y9 = 20°, active over range ) € [3; 7;
> source 3: 3 = 40°, active over range Q) € [F; IZ]; and

0 s

NIE

-90 -60 -30 0 20 40 60 90

/(]

» filter banks as innovation filters, and broadband steering vectors
to simulate AoA;
» space-time covariance matrix is estimated from 10 samples.
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Simulation Il — PSS-MUSIC s B
(a)

Spss(V,e’*?) /[dB]

40 [1] T {
20 i ! A"AI‘r"y"\‘l“1“"Mmi‘l‘{i‘ﬁ‘\‘ll!w-z:t*—‘ ~

Sar(9,¢’?)/[dB]
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PS-MUSIC Comparison gr,;:v.:’ﬁ’?l

Engineering

» Simulation | (toy problem): peaks normalised to unity:

T T
g [[— — - AF-MUSIC (Q = 7/2) 7 SN ]
2 —— AF-MUSIC (integrated)| / \
£ 08 PS-MUSIC (SBR2) / \ 7
& — — — PS-MUSIC (ideal) / \
w 0.6 / \ -
bl , \
Q
£ 04r 7 \ 4
g ’ )
N

Z 0.2 ‘ N 8
E o S

0 - = = | | | e

87 88 89 90 91 92 93

¥/o

» Simulation II: inaccuracies on PEVD and broadband steering
vector

sources
— — — AF-MUSIC
PS-MUSIC

rmalised spectrum / [dB]
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Conclusions ”s"{"rZ‘E'rfc

Engineering

» We have considered the importance of SVD and EVD for
narrowband source separation;

» narrowband matrix decomposition real the matrix rank and offer
subspace decompositions on which angle-of-arrival estimation
alhorithms such as MUSIC can be based;

» broadband problems lead to a space-time covariance or CSD
matrix;

» such polynomial matrices cannot be decomposed by standard
EVD and SVD;

» a polynomial EVD has been defined;

> iterative algorithms such as SBR2 can be used to approximate the
PEVD;

> this permits a number of applications, such as broadband angle of
arrival estimation;

» broadband beamforming could then be used to separate
broadband sources.
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» Papers included on the USB drives:
1. J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Foster:
“An EVD Algorithm for Para-Hermitian Polynomial Matrices,”
IEEE Transactions on Signal Processing, 55(5): 2158-2169, May

2007.

2. S, Redif, J.G. McWhirter, and S. Weiss: “Design of FIR
Paraunitary Filter Banks for Subband Coding Using a Polynomial
Eigenvalue Decomposition,” IEEE Transactions on Signal
Processing, 59(11): 5253-5264, Nov. 2011.

3. P. Baxter and J.G. McWhirter: “Blind signal separation of
convolutive mixtures,” Proc. 37th Asilomar Conference on Signals,
Systems and Computers, 1: 124-128, November 2003.

> If interested in trying the PEVD and its iterative algorithms
yourself, please e-mail:
e Jamie Corr (jamie.corr@strath.ac.uk), or
e Stephan Weiss (stephan.weiss@strath.ac.uk)

» coming soon: Matlab-compatible toolbox with PEVD algorithms.
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