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Sensor management with time, energy and
communication constraints

Cristian Rusu, John Thompson and Neil M. Robertson

Abstract—In this paper we present new algorithms and anal-
ysis for the linear inverse sensor placement and scheduling
problems over multiple time instances with power and com-
munications constraints. The proposed algorithms, which deal
directly with minimizing the mean squared and worst case errors
(MSE and WCE), are based on the convex relaxation approach
to address the binary optimization scheduling problems that are
formulated in sensor network scenarios. We propose to balance
the energy and communications demands of operating a network
of sensors over time while we still guarantee a minimum level of
estimation accuracy. We measure this accuracy by the MSE and
WCE for which we provide tight average case and lower bounds
analyses. We show experimentally how the proposed algorithm
perform against state-of-the-art methods previously described in
the literature.

Index Terms—linear inverse problem, sensor placement, sen-
sor scheduling, binary optimization, convex relaxation, energy
constraints, communications constraints.

I. INTRODUCTION

Sensor networks are often used to measure and monitor
physical phenomena like temperature, humidity and concen-
tration of certain pollutants in an area of interest over time
[1]. Modern wireless sensor networks may be composed
of a large number of heterogeneous sensors each with its
own (possibly limited) power supply capable of performing
measurements, processing the result and communicating it to
other neighboring sensors in the network at regular times.
In this paper we consider the situation where, without any
particular assumptions on the parameters to be estimated, the
measurements taken by the sensor network are used to solve a
linear inverse problem. In this setting, the problem of selecting
only a subset of the available sensors while ensuring a certain
level of estimation accuracy has been extensively studied in
the literature.

Sensor selection (or sensor placement) [2], [3] is of cen-
tral importance when considering the classical problem of
parameter estimation from a given set of linear measurements
that describe an operational sensor network. Given a fixed
set of potential locations, the sensor placement problem asks
where the sensors should be placed in order to maximize on
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average the estimation accuracy of the network. Once the most
informative locations are identified the sensors are placed in
their locations for the whole lifetime of the network. If we now
consider a network where each sensor has a particular energy
and communication profile and is capable of performing a
measurement with a particular quality, an interesting problem
that arises is how to schedule each sensor over time such
that the estimation accuracy of the network is never worse
than a prescribed level while we also control the energy
consumption. This is done for example to make sure that no
sensor goes off-line due to overuse. We call this the sensor
scheduling problem. In this paper we tackle both problems
and propose new heuristics to address them and provide new
theoretical insights into their behavior. Because the problems
are combinatorial in nature (they amount to mixed-integer
optimization problems) they are NP-hard to solve exactly in
general. Therefore, following previous literature, we settle on
proposing sub-optimal but numerically efficient algorithms and
comparing them with previously proposed methods.

The sensor placement (and in general the sensor manage-
ment) problems have been extensively studied in the past.
Approaches to this problem include greedy methods [4] with
submodularity based performance guarantees [5], [6], convex
optimization for experimental design [7, Chapter 7.5] [8],
[9], [10], [11], [12], [13], information theoretic criteria [14],
[15], [16] or other search heuristics [17], [18] or full search
branch-and-bound methods [19]. Several recent works have
also considered non-linear sensor networks [12], sparsity-
aware [13], [20], [21] and distributed sensing scenarios [22],
[23], correlated noise [24], estimation of continuous variables
[25] or energy constraints [26], [27] [28], [29] and scheduling
[30], [31], [32] over the network.

The contribution of this paper is two-fold.
The first contribution is to propose algorithms for the two

problems we have described: the sensor placement and the
sensor scheduling problems. Both approaches are based on
the previously introduced convex optimization approach. In
the case of the sensor scheduling problem we are able to
accommodate energy and communications constraints in order
to balance the estimation accuracy of the sensor network over
multiple time instances with its energy consumption. Solving
the proposed convex optimization process is numerically effi-
cient since it can be done in polynomial time by off-the-shelf
solvers [33]. These approaches is slower than some previously
proposed greedy methods but they have the advantage of
accommodating the energy and communication constraints of
the sensor network.

The second contribution is to provide an average analysis
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of the sensor placement problem in the case where the overall
sensor network is described by a tight frame or measurement
matrix. This analysis provides insights into the empirical
performance past and currently proposed sensor placement
algorithms. We also provide theoretical connections to other
related research fields where bounds on the eigenvalues of
sub-matrices of a given matrix have been developed.

Section II describes the measurement setup we consider;
Section III presents the previously proposed methods in the lit-
erature for the sensor placement problem; Section IV proposes
a new algorithms for the sensor placement and scheduling
problems; Section V provides a theoretical analysis of the
average estimation accuracy for the sensor placement problem
and Section VI shows the numerical results where we compare
the proposed method with the state-of-the-art methods from
the literature.

II. THE PROBLEM SETUP

Let us assume that we want to estimate a parameter vector
xt of size n that changes over t = 1, . . . , T, time instances
from n ≤ kt ≤ m linear measurements that are given by

yt = Atxt + nt, (1)

where the noise vector nt of size kt is a zero-mean i.i.d. Gaus-
sian vector with variance σ2I. The rows of the measurement
matrix At at time t are chosen from the rows of an overall
full rank measurement matrix A of size m×n. The ith row of
A corresponds to the linear measurement performed by the ith

sensor of the network. Therefore, the matrix A characterizes
the full sensor network which is made up of m elements and
the measurement matrices At are subsets of the rows from A.
Assuming kt ≥ n sensors are used at time t, the least squares
estimate are given by

x̂t = A†tyt = (AT
t At)

−1AT
t yt. (2)

With the understanding that with increased noise levels the
estimation accuracy decreases on average, in order to simplify
the exposition of the results herein we only consider the fixed
noise level σ2 = 1. We focus on a full rank measurement
matrix At ∈ Rkt×n, that represents the kt sensors that perform
linear measurements at time t, for which there are several ways
to quantify its recovery performance in (2):

1) A-optimality: mean squared error (MSE)

MSE(At) = tr((AT
t At)

−1) =

n∑
i=1

1

λi(AT
t At)

. (3)

2) E-optimality: worst case error (WCE)

WCE(At) = λ1((A
T
t At)

−1) =
1

λn(AT
t At)

. (4)

3) D-optimality: volume of the confidence ellipsoid (VCE)

VCE(At)=logdet(AT
t At)=log

(
n∏

i=1

λi(A
T
t At)

)
. (5)

We have denoted here λi(AT
t At) as the ith eigenvalue of the

symmetric positive-semidefinite matrix AT
t At and we assume

without loss of generality the ordering λ1(A
T
t At) ≥ · · · ≥

λn(A
T
t At) ≥ 0.

Notice that these performance indicators are related as
we have MSE(At) ≤ nWCE(At), while maximizing the
VCE(At) we also maximize the denominator of the MSE(At)
in (3) – but we do not also control the numerator term in
(3). Among all the measurement matrices of the same size,
and for the same Frobenius norm, these performance measures
are minimized for α−tight frames, i.e, measurement matrices
At ∈ Rkt×n that obey AT

t At = αI, for which we have the
exact results

MSE(At) =
n

α
=

n2

‖At‖2F
, WCE(At) =

1

α
=

n

‖At‖2F
,

VCE(At) =
1

αn
=

(
n

‖At‖2F

)n

,

(6)

since we have that ‖At‖2F = nα. Higher Frobenius norm (and
therefore also higher α) of the measurement matrix is equiv-
alent to increasing on average the SNR of the measurements
and therefore should lead to better recovery performance in
general – for example MSE(βAt) = β−2MSE(At), β ∈ R.
Furthermore, since tight frames minimize these criteria then
for any non-tight measurement matrix these values are lower
bounds.

To achieve low error indicators, in terms of the eigenvalues
of AT

t At our goal is twofold:
• first, increase the smallest eigenvalue

λn(A
T
t At)� 0, (7)

• second, group all eigenvalues such that

λi(A
T
t At) ≈ λj(AT

t At), ∀i 6= j, (8)

i.e., the measurement matrix At behaves approximately as a
tight frame with high Frobenius norm.

Given a measurement matrix A ∈ Rm×n that represents
a sensor network of m elements, our goal is to choose a
subset of measurements At ∈ Rkt×n from A such that we
optimize the MSE(At), WCE(At) or the VCE(At) over all
the time instances t = 1, . . . , T, while we also balance the
energy consumption of the network.

III. THE SENSOR MANAGEMENT PROBLEM

We defined now the sensor management problem for a
single time instance, i.e., T = 1. Given a network of m sensors
where each is capable of a linear measurement the sensor
management problems asks which (and how many) sensors
need to be activated in order to guarantee a fixed, given,
performance measure (for example, the estimation accuracy
in terms of MSE). An equivalent formulation can be made for
example by fixing the number of sensor k to activate while
we minimize any of the performance measures (3), (4) or (5).

We consider that the full network of m sensors is rep-
resented by A ∈ Rm×n, i.e., each linear measurement is
represented by a row aTi , i = 1, . . . ,m. The selected sensors
are denoted in the measurement matrix

A1 =
[
ai1 ai2 . . . aik

]T ∈ Rk×n, (9)
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a subset of rows of A indexed in the set I = {i1, . . . , ik}
of size k ≥ n, such its performance in terms of MSE(A1)
or WCE(A1) is below a given threshold γ or, alternatively, a
maximum given number of sensors k is activated. Notice that
in order to optimize MSE(A1), WCE(A1) or VCE(A1) we
need to verify spectral properties of

AT
1 A1 =

∑
i∈I

aia
T
i = AT diag(z)A ∈ Rn×n, (10)

where z ∈ {0, 1}n with zi = 1 if i ∈ I and zero otherwise.
There are several approaches in the literature to deal

with the sensor management problem. Although there are
algorithms for to the sensor management problem that use
search techniques [17], [18] or cross-entropy optimization
[16], we mainly distinguish two major approaches based on
convex optimization and greedy methods and we discuss them
separately in the next two subsections.

A. Convex relaxation approach

In this formulation, the sensor selection problem is relaxed
to a convex optimization [7, Chapter 7.5][8] program as

maximize/minimize
z∈[0,1]m

f(A, z)

subject to 1T z = k.
(11)

The goal is to construct a binary solution z that selects k sen-
sors such that zi indicates whether the ith sensor is selected or
not. The objective function can be adapted to any of the perfor-
mance measures in (3) (4) (5). For example, when considering
the VCE(A1) we maximize f(A, z) = logdet(AT diag(z)A)
since the logarithm of the determinant is concave while for
the MSE(A1) we minimize f(A, z) = tr((AT diag(z)A)−1)
since the trace of the inverse is convex. In order to reach
a convex optimization problem the hard binary constraint
z ∈ {0, 1}m is relaxed to z ∈ [0, 1]m. Unfortunately, the
problem in (11) does not produce binary solutions z in general,
just sub-unitary entries as the relaxation dictates. A rounding
procedure, and usually also a local search, follow.

A similar approach called SparSenSe is proposed in [12]
where the same core optimization problem minimizes the MSE
by selecting a few sensors given a maximum accepted level
of MSE (not a fixed number of activated sensors). Again, a
rounding procedure and potentially a local search can follow.

B. Greedy methods approach

FrameSense [6] proposes to activate the sensors in the
network according to a greedy procedure. For example, to
minimize MSE in this fashion, given a measurement matrix
A1 as in (9) a greedy scheme asks how to choose a new
measurement aTj from the given full set A ∈ Rm×n such that

j = argmin
j∈{1,...,m}\I

MSE(Ã1), with ÃT
1 =

[
AT

1 aj
]
, (12)

and then adds the measurement to the active set

I ← I ∪ {j}. (13)

As we have showed in (6), α−tight frames A provide the
best performance and therefore FrameSense uses a greedy

procedure to remove sensors from the network one-by-one
such that the resulting sensors behave as a tight frame. To
do this, FrameSense minimizes the frame potential FP(A) =∑m

i=1

∑m
j=1(a

T
i aj)

2 = ‖ATA‖2F which has been show to
achieve its minimum value exactly for α−tight frames [34]
(in this case its minimum value is nα2). The authors choose
to minimize this quantity because they are able to prove its
submodularity, i.e., FP(A) is well suited for minimization with
greedy approaches [35]. This approach is interesting because
in general the performance indicators (3) and (4) are not
submodular functions under the activation of new sensors and
therefore greedy methods do not seem particularly well suited
for the sensor management problem.

Since monitoring spatial phenomena can be modeled in
the context of Gaussian processes, a greedy method with
submodularity properties was proposed in [36] to solve the
sensor placement problem with near-optimal results. Using
the same information theoretic approach the authors propose
a branch-and-bound method that guarantees the construction
of the optimal solution.

Another proposed greedy strategy is to add each sensor
one by one according to the maximal projection onto the
minimum eigenspace of a defined dual observation matrix [4].
The method is computationally efficient and very successful
in selecting the most informative sensors because it takes into
account all eigenvalues of the observation matrix to encourage
the two desirable properties (7) and (8).

Greedy approaches to the sensor selection problem face
some difficulties. For example, as also pointed out in [4], we
have some hard limitations for the eigenvalues of ATA when
adding measurements one by one.
Result 1. Given a positive semidefinite matrix ATA with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn then ATA + aaT has
eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn and we have the interlacing
property

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µn ≥ λn. (14)

Proof. A proof is given in [37, Chapter 4]. �
This is one of the reasons given in [4] that the goal to

increase all the eigenvalues λi with each new measurement. If
the eigenvalues become too concentrated, greedy algorithms
may run into some difficulties.
Result 2. Assume ATA has n eigenvalues λ1 ≥ · · · ≥ λn ≥ 0
in arithmetic progression, i.e, λi = λ1+(i−1)r, i = 2, . . . , n
with r < 0, then the largest eigenvalue µ1 of ATA + aaT ,
where a ∈ Rn is a new measurement, obeys

µ1 ≥ (λ1 + (n− 1)r)(1 + aT (ATA)−1a). (15)

Proof. See Appendix A. �
This result shows that as the eigenvalues become more

concentrated (a highly desired property) they might exhibit a
repelling property with regard to the largest eigenvalue when
new measurements are added. This is turn means that though
ATA behaves as a tight frame we have that ATA+aaT may
no longer behave as such and therefore, for the latter matrix,
the performance criteria such as MSE or WCE do not decrease
significantly.
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IV. THE PROPOSED OPTIMIZATION TECHNIQUES FOR
SENSOR SELECTION

Given a sensor network, we expect the best accuracy to be
achieved if all its sensors are activated. Therefore, we will
express the MSE and WCE performance of A1 relative to the
overall performance of the full network A.
Result 3. Given the measurements A ∈ Rm×n and any
new measurement a ∈ Rn then the new measurement matrix
ÃT

1 =
[
AT

1 a
]
∈ Rn×(m+1), improves all performance mea-

sures, i.e., MSE(Ã1) ≤ MSE(A1), WCE(Ã1) ≤ WCE(A1),
VCE(Ã1) ≥ VCE(A1) and equality holds only when a =
0n×1. Equivalently, the performance measures are monotoni-
cally decreasing functions with the number of measurements.
Proof. See Appendix B. �

Therefore, we introduce the reference (lowest MSE) perfor-
mance of the full network as

γ0 = tr((ATA)−1). (16)

We will impose estimation accuracy levels γ = ργ0 where
ρ ≥ 1. Naturally, with larger ρ we will select fewer sensors
from the network (allowing larger mean squared error) and
vice-versa. When ρ = 1 the only feasible solution is to
select the full sensor network. We next describe the proposed
optimization methods for the minimization of the MSE (the
extensions to the minimization of the WCE and maximization
of the VCE follow immediately and they are omitted for
brevity).

A. A single time instance

Since most of the previous work (including the papers
discussed in Section III) deals with a single time instance, we
propose the first optimization technique in the same scenario.

We assume we are given a network of sensors and the
goal is to select the most informative subset of sensors from
the network (i.e., the subset of sensors that achieves some
level of accuracy or mean squared error). This formulation is
equivalent to asking where sensors need to be placed (from a
fixed set of possible locations) such that the resulting network
achieves a minimum level of prescribed accuracy.

In order to select a reduced subset of sensors from a full
sensor network such that the MSE is below a prescribed value,
again based on convex optimization ideas, we propose to
solve a series of convex problems in the spirit of iteratively
reweighted `1 (IRL1) [38] as

minimize
z∈[0,1]m

wT z

subject to tr((AT diag(z)A)−1) ≤ ργ0,
(17)

where wi = (zi + ε)−1, i = 1, . . . ,m, composes the weights
vector w ∈ Rm. The performance level ρ > 1 is given and
fixed.

B. Energy constraints over multiple time instances

In the previous formulation, a particular sensor in the
network is either selected or not (or equivalently, we place
a sensor in a particular place or not) for the whole lifetime

Algorithm 1 – Sensor management by `1 minimization.
Input: The sensing matrix of the network with m sensors
A ∈ Rm×n, the total number of time instances T , the
maximum allowed error ρ > 1, the regularization parameter
λ > 0, the vector of sensing costs s ∈ Rm

+ and the matrix of
communication costs C ∈ Rm×m

+ .
Output: The scheduling table Z ∈ {0, 1}m×T for the sensor
activations at each time step such that the energy constraints
are satisfied.

Initialization:
1. Set initial weights wt = 1 and initial all-zero solution

zt = 0m×1 for t = 1, . . . , T , i.e., Z = 0m×T .
2. Initialize sets N = ∅ indexing sensors that are not

selected and K = ∅ indexing sensors that are selected.
3. Establish the best MSE performance γ0 by (16).

Iterations:
1. Set Zprev ← Z.
2. Update weights according to wij = (zij + ε)−1.
3. Solve (17) when T = 1 and (19) or (20) for T > 1

with ργ0 to obtain the current estimate Z.
4. Update the sets N = {n | Z(n) ≤ ε} and K =

{k | Z(k) ≥ 1− ε}.
5. If iterative process has converged, i.e., ‖Z−Zprev‖2F ≤

ε, then K = K ∪ {argmax
k

Z(k), k /∈ K}.
6. If solution is binary, i.e., |N |+ |K| = mT , then stop

otherwise go to step 1 of the iterative process.

of the network. In some situations this scenario is realistic
while in others it may not be a proper approach. Consider for
example a scenario where sensors are placed in an observation
field where each sensor has its own energy supply and com-
munications capabilities. If we choose the most informative
sensors and disregard their other constraints we end up with
a solution that will never activate certain sensors, which are
wasted in the network.

In this section we also deal with a scenario where our
goal is to schedule how sensor from a network are selected
over multiple time instances such that at each time instant
we guarantee a certain level of accuracy (e.g., the MSE is
below a threshold) while we also balance the energy and
communications constraints of the sensors.

We consider that we deal with m sensors to be scheduled
over T time instances and therefore we introduce the binary
scheduling table

Z =
[
z1 z2 . . . zT

]
∈ {0, 1}m×T , (18)

and we denote the scheduler at time t by zt ∈ {0, 1}m, i.e.,
the columns of Z, we denote zij the (i, j)th entry of Z and
we denote zi the entries of zt. We next propose two ways to
construct this scheduling table.

Implicit energy constraints can be used to ensure that over
the T time instances we do not selected the same sensors each
time. Therefore, we propose the following regularized convex
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optimization problem

minimize
Z∈[0,1]m×T

T∑
t=1

wT
t zt + λmax

(
W

T∑
t=1

zt

)
subject to tr((AT diag(zt)A)−1) ≤ ργ0

T∑
t=1

zt ≥ 1,

(19)

where W ∈ Rm×m is a diagonal matrix whose entries are
positive and describe the cost of using any one sensor relative
to the others. We also add an explicit constraint to ensure that
each sensor is selected at least once over all T time instances.
The regularization then penalizes the repeated use of the same
sensor. For example, if sensor i has no energy constraints then
we set Wii = 0 while if Wii = 1 and Wjj = 2 is interpreted
as the fact that the jth sensor has half of the energy supply of
the ith sensor.

An explicit energy constraint can be used to formulate
the same problem when energy profiles of the sensors are
available. Consider for example the following regularized
convex optimization problem

minimize
e≥0, Z∈[0,1]m×T

T∑
t=1

wT
t zt + λg(e)

subject to tr((AT diag(zt)A)−1) ≤ ργ0
T∑

t=1

zt ≥ 1, diag(s)Z1 ≤ e0 + e,

(20)

where e0 ∈ Rm with (e0)i denoting the reference amount of
energy available to the ith sensor and s ∈ Rm

+ denoting the
cost of using the ith sensor once (the cost of sensing and
processing). The power profiles c and the reference upper
power values e0 are supplied by the user. Deviations from
e0 are penalized in the proposed optimization problem. The
regularization function g(e) can be chosen to be either an `2
penalty g(e) = ‖e‖2 or an `∞ penalty g(e) = ‖e‖∞.

Finally, another energy constraint may deal with the cost of
each sensor to transmit its measurement to a centralized node
where the data from the full network is processed. Throughout
this paper we have assumed this centralized model. In a
simple scenario, each sensor is able to communicate directly
to the central processing node. In this case, the cost of
communication can be integrated into the cost of sensing
denoted by s in (20). Otherwise, depending on the network
topology, the energy constraint in (20) can be modified to

(diag(s) +C)Z1 ≤ e0 + e. (21)

We have denoted by C ∈ Rm×m
+ the communication cost of

all the sensors. The entry Cij ≥ 0 expresses the cost incurred
by the ith sensor in order to convey data from the jth sensor
to the central node. When the ith sensor has a direct link to
the central processing node then on the ith row of C has only
one non-zero entry, namely Cii.

To clearly illustrate this constraint, an example network
topology of nine sensors is given in Fig. 1 and its associated

15 1 

40 42 

41 

25 

27 

26 

M 100 

16 

28 

Fig. 1. An example of network topology consisting of m = 100 sensors and
a master node M. In the scenarios we consider each sensor has a dual role:
it can perform a linear measurement and/or forward data from other sensors.
To avoid routing issues, we consider a single (possible multi-hop) predefined
path from each sensor to the master.

cost matrix is C ∈ R100×100 whose entries are for sensors 1
to 15:

CT =

 . . .
diag(c1:15) 015×11 c27115×1 015×73

. . .

 , (22)

while for sensors 16 to 25 we have:

CT=

 . . .
010×15 diag(c16:25) c26110×1 c27110×1 010×73

. . .

, (23)

and so on. The non-zero values Cij are interpreted as the cost
of transmitting data from the ith to the jth sensor. The ith line
of C denotes the total cost of the sensor network to transmit
data from the ith sensor to the master node.

C. The proposed optimization procedure

Based on the convex optimization problems described we
now propose a method for the sensor selection problem. The
full procedure is depicted in Algorithm 1. The method keeps
track of two sets N and K that contain indices of the solution
Z that are set to zero and one, respectively. The procedure
terminates only when each entry of Z has been allocated to
either N or K (see step 4 of Algorithm 1). Usually, convex
optimization approaches to the sensor management problem
relax the hard binary constraint and therefore the solutions
are not binary in general. As such, a rounding procedure
usually follows. In our case, the proposed method deals with
the rounding problem internally in step 5 of Algorithm 1: if
the algorithm has converged and the solution Z is not binary
then take the largest entry from Z that is not in K and round
it to one (and add it to K).

V. ANALYSIS OF SENSOR SELECTION

The proposed optimization problems are semidefinite pro-
grams (SDPs) with binary constraints used in an iterative
fashion and therefore their analysis in terms of the optimality
of the solution is difficult. In this section we explore several
alternative ways to analyze (on average and worst case) the
performance of sensor management solutions.
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A. Results for a tight sensor network

For the purpose of understanding the behavior of the sensor
selection problem, in this section we focus only on sensor
networks that are characterized by tight measurement matrices
A. This choice is not restrictive in general, in fact, it is optimal
if we consider also the possibility of using the full sensor
network, as discussed in Section II.
Result 4. Assume we are given a sensor network represented
by measurements in the α−tight frame A ∈ Rm×n. Selecting
a subset of n ≤ k ≤ m sensor measurements from A
which we denote A1 = {aTi }i∈K ∈ Rk×n with AT

1 A1 =∑
i∈K aia

T
i where K = {i1, . . . , ik}, |K| = k then we have

E[MSE(A1)]=
mn

(k − n+ 1)α
,E[WCE(A1)]≥

m

(k − n+ 1)α
,

E[VCE(A1)] = log

(
n!
( α
m

)n( k

k − n

))
.

(24)
Proof. See Appendix C. �

For example, when k = m and α = m we know by (6) that
MSE(A1) = MSE(A) = nm−1 but we have the different
estimate E[MSE(A1)] = n(m − n + 1)−1 > MSE(A). Still,
the gap between the two decreases as m increases in a regime
where m� n. For some choice of n,m and α, this effect can
be seen in Fig. 2. It is clear from the figure that the largest
differences are for low k (on the same order with n) while the
gap closes for k approaching m. As we will also see from the
results section, the largest differences between the performance
of the methods we analyze are for low values of k. Indeed,
even past research [4] has shown by numerical experimentation
that most of the sensor selection methods proposed in the
literature perform similarly in the regime k � n.

Also, Result 4 shows that the MSE(A1) and WCE(A1)
decrease on average linearly with the number of selected
sensors. Dependencies with the other dimensions are also
linear and intuitive: increasing the number of parameters to
estimate (n) and the total number of available sensors (m)
leads to worse performance; increasing the energy, essentially
the signal to noise ratio, of the measurement matrix (α)
improves performance. Furthermore, the empirical standard
deviation around the mean MSE decreases with k showing
that the largest potential gains in MSE can be achieved only
in the regime where k ≈ n.

B. Relating sensor management to other problems

In this subsection we connect the sensor selection problem
to other fields of research. Subset selection problems have been
seen in many areas of research. For example, the problem of
selecting a subset of column from a matrix such that some
spectral guarantees are obeyed is well studied. Topics such
as column subset selection [39] and the restricted invertibility
problem [40] deal with constructing a matrix by selecting a
subset of columns from a given matrix such that the new
construction has the lowest singular value well above zero
(i.e., the new matrix is well conditioned).

We next detail some research topics closely related to the
sensor selection problem and discuss how these results apply
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Fig. 2. Expected versus empirical values of MSE(A1) constructed by
selecting k sensors from a total of m belonging to random tight frame
A ∈ Rm×n with α = m = 300 and n = 40. Empirical results are
averaged over 105 random sensor selections from A. We show the lower
limit of MSE(A1) which is MSE(A) = nm−1 by (6) and is achieved by
A1 when k = m.

in our case and to previous empirical observations from the
literature.
Techniques that minimize the condition number [41] [42]
can also be deployed for the sensor management problem.
Given constants s0, t0 ∈ R+, consider the following semidef-
inite program:

minimize
t,s, z∈[0,1]m

t− s+ λwT z

subject to sI � AT diag(z)A � tI
s0 ≤ s ≤ t ≤ t0.

(25)

Sensor selection solutions provided by this optimization prob-
lem are well suited for our purposes since the constraints
lead to the design of well invertible AT diag(z)A due to the
threshold provided by the s0 � 0 and a tight structure by
the variables s and t. Therefore, the two desired properties
are enforced (7) (8). Solving the problem in (25) (assuming
also some rounding procedure to construct a binary solution
z) guarantees the following error bounds

n

t0
≤ MSE(A1) ≤

n

s0
,

1

t0
≤WCE(A1) ≤

1

s0
. (26)

The upper bounds hold even after a rounding procedure is
applied on the solution z of (25).
Compressed sensing [43] makes use of measurement matrices
A ∈ Rm×n,m > n, that obey the restricted isometry property

(1− δk)‖z‖22 ≤ ‖AT z‖22 ≤ (1 + δk)‖z‖22, (27)

for a constant δk and any k−sparse vector z ∈ Rm. Let us
denote by A1 ∈ Rk×n any subset of k ≥ n rows from A.
Then, equivalently to (27) we have

1− δk ≤ λn(A1A
T
1 ) ≤ λ1(A1A

T
1 ) ≤ 1 + δk. (28)

In the case of random matrices obtained from a Gaussian
distribution N (0, 1/n) we have that δk ≈ 2

√
kn−1 + kn−1.

Unfortunately, these bounds (28) on the eigenvalues hold when
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Fig. 3. Average mean squared error reached by MPME [4] and the proposed
method for the estimation of a variable of size n = 40 with a sensor
network of maximum m = 100 elements. The measurement matrix is random
Gaussian and the results shown are averaged over 100 realizations.

k/n → 0 while for the sensor management problem we are
interested in the regime k ≥ n. When k ≥ n we still have

λ1(A1A
T
1 ) ≤ (1 + δk). (29)

Therefore, it follows that

MSE(A1) =

n∑
i=1

1

λi(A1AT
1 )
≥ n

λ1(A1AT
1 )

≥ n

1 + 2
√
k/n+ k/n

=
n2

(
√
n+
√
k)2
≈ n2

k
.

(30)

This is better (lower) than the simple bound in (6) since
E[‖A1‖2F ] = k/n and therefore E[MSE(A1)] ≥ n3/k by
(6). Alternatively, we can use the Marchenko-Pastur law
to show that, asymptotically, for Gaussian random matrices
whose entries are sampled from N (0, 1) and with large k
and n the MSE can be bounded. Results from non-asymptotic
random matrix theory [44, Chapter 5] can also be used here
to understand behavior of the extremal eigenvalues and bound
the MSE with high probability.
The solution to the Kadison-Singer problem [45] shows
that given a tight A ∈ Rm×n, i.e., α = 1, where δ =
max

i=1,...,m
‖aTi ‖22 is the maximum squared `2 norm of the rows of

A there exists a partition of the rows into T sets {S1, . . . , ST }
such that

σ1(ASt) =
√
λ1(AT

St
ASt) ≤

(
1√
T

+
√
δ

)2

, t = 1, . . . , T.

(31)
Therefore with T = m/k for a tight A and denoting At =
ASt

∈ R|St|×n the matrix composed of the rows from A
indexed in the set St, with |St| = k, we have

λ1(A
T
t At) ≤

(√
k

m
+
√
δ

)4

, t = 1, . . . , T. (32)

The value δ for any measurement matrix At ∈ Rk×n can be
estimated by using the Markov inequality and a union bound
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Fig. 4. Average worst case error reached by MPME [4] and the proposed
method for the same experimental setup as Fig. 3.

to show that

P
(

max
i=1,...,k

‖aTi ‖22 ≥ cE[‖aTi ‖22]
)
≤

k∑
i=1

P(‖aTi ‖22 ≥ cE[‖aTi ‖22]) ≤
k

c
,

(33)

where E[‖aTi ‖22] = nm−1 and c = c1k, c1 ≥ 1. Therefore,
with high probability 1 − c−11 we have that δ < c1knm

−1.
Still, empirically we observe that δ is within a constant factor
of the expected value nm−1, i.e., that c = O(1), not c = O(k).

Therefore, all measurement matrices At at each time in-
stance t = 1, . . . , T, obey

MSE(At) =

n∑
i=1

1

λi(AtAT
t )
≥ n

λ1(AtAT
t )

≥nm
2

k2

(
1 +

√
δm

k

)−4

=
nm2

(
√
k +
√
c1n)4

≈

{
n
(
m
k

)2
, if k � n

1
(1+
√
c1)4

m2

k , if k ≈ n.

(34)

This result shows that potentially the MSE can exhibit a
quadratic decrease with the number of selected sensors k. This
is to be compared with (24) that shows a linear decrease of the
expected MSE with k. When k = m the bound in (34) matches
the optimal value of MSE in (6) for α = 1. These bounds are
also reflected in the results from Fig. 2 where we can observe
that for k ≈ n the decrease in MSE achieved by the proposed
method, with the increased number of selected sensors k,
is larger that of a random sensor selection algorithm when
k � n. These insights confirm previous experimental results
from the literature, like [4], where the methods proposed for
sensors selection differ mostly when k ≈ n and are similar
when k � n (or k ≈ m, equivalently) where even a random
selection provides good estimation accuracy (seen as low MSE
or WCE).

It is important to mention that constructing a set St such
that (31) is always obeyed is still an open problem. Heuristics
can be proposed similar to the approach presented in this paper
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Fig. 5. Comparison of average mean squared error for the estimation of a
variable of size n = 20 with a sensor network of m = 100 sensors. The
measurement matrix is a random α−tight with α = 100 and the results are
averaged over 100 realizations. We explicitly show the MSE lower bound
value nα−1 = 0.2.
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Fig. 6. Comparison of average worst case error for the same experimental
setup as Fig. 5. We explicitly show the WCE lower bound value α−1 = 0.01.

for binary optimization (especially because the bound in (32)
is a convex constraint).

The solution to the Kadison-Singer problem is also useful
in our discussion of operating a sensor network over multiple
time instances. Intuitively, result (31) essentially states that a
tight measurement matrix A can be partitioned such that the T
partitions At themselves are also approximately tight, i.e., all
the At, t = 1, . . . , T, obey (34). For example, this links with
our objective in (19) of avoiding selecting the same sensors by
partitioning the sensor set into disjoint subsets (quite a severe
constraint) while ensuring that each subset still behaves well,
i.e., similar estimation accuracy between the subsets according
to MSE.

VI. RESULTS

In this section we provide experimental numerical simula-
tions to show the performance of the proposed methods and
how they compare with state of the art approaches from the
literature. We also present extensive numerical simulations to
describe the performance of the proposed method to sched-
ule a sensor network over time while also balancing power
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Fig. 7. Total number of activation of each sensor from the m = 100 elements
of a sensing network described by a α−tight measurement matrix of size
100 × 20 with α = 100. The implicit energy constraint (19) runs with the
regularization parameter λ = 1 and the optimization takes place of T = 10
time instances and the estimation accuracy is fixed to ρ = 3. Overall there
and 342 sensors activations in the network.
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Fig. 8. Total number of activation of each sensor for the same experimental
setup as in Fig. 7 with the regularization parameter λ = 100. Overall there
and 389 sensors activations in the network.

consumption.

A. Choosing how many sensors to activate

In the first experimental setting we provide numerical evi-
dence on how the MSE and WCE evolve with the number of
selected sensors given a fixed network. In this subsection we
consider a sensor network whose measurements A ∈ Rm×n

are described by a matrix with entries scaled i.i.d. random
Gaussian from a zero mean distribution with variance one, i.e,
Aij ∼

√
mN (0, 1), i = 1, . . . ,m, j = 1, . . . , n.

Results for a network of m = 100 sensors tasked to
estimate an unknown of size n = 40 are shown in Fig.
3 and 4. We compare our proposed method with the state
of the art approach MPME [4]. As previously noted by
empirical simulations [4] and by the discussion in Section
V, the performance of the two method in terms of MSE and
WCE is similar when k � n while their is a small gap in
performance favoring the proposed method when k ≈ n. To
show the performance of the proposed method we evaluate
it for ρ ∈ (1, 10] on a fine grid. Fig. 3 and 4 provide an
empirical practical way of choosing the number of sensor to
activate while also balancing the MSE and WCE levels. Up to
k ≈ 60 sensors, the MSE and WCE shows significant decrease
while after this level each new sensor activation has important
diminishing returns. Also, to approach the performance of the
full network a large number (close to m) of sensors need to
be activated.

B. Comparisons with previous sensor selection algorithms

Following the experimental setup from [4], in this section
we compare the proposed method with previously proposed
methods from the literature. We choose to simulate a sensor
network with m = 100 elements tasked to recover an unknown
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∑m

i=1

∑T
j=1 zij for a sensor network of m = 100 elements over

T = 10 time instances. The experimental setup is such that in all six points
of the plot we have the same minimum accuracy (MSE) in an estimation task
performed by the network. The point (10, 342) corresponds to Fig. 7 and the
point (6, 389) to Fig. 8. The experimental setup is the same as in 7 but with
various values for the regularization parameter λ.

of size n = 20. Fig. 5 and 6 show the simulation results
where we compare with FrameSense [6], convex relaxation
(using the log determinant approach to minimize VCE) [8],
SparSenSe [12] and MPME [4]. All measurement matrices
used here are α−tight with α = 100. They were constructed
after projecting random Gaussian matrices on the set of tight
matrices (numerically this is done by taking the polar factor
via a singular value decomposition).

MPME [4] and the proposed method perform best, with
similar results. Just as in the previous section, the proposed
method seems to outperform MPME slightly when the number
of selected sensors k is close to n. The other methods perform
significantly worse in this regime while the performance gaps
mostly vanish when k � n. An exception to this observation
is FrameSense [6], which exhibits higher MSE and WCE even
when increasing k.

For similar MSE and WCE the computational complexities
of the methods play an important role. Although the propose
method runs in polynomial time (due to interior point solver
like [33]) greedy methods are in general preferable in terms
of computational complexity. As shown in [4], the MPME
method is best in terms of computational complexity. Still,
convex optimization approached have an edge when some
extra constraints are added to the sensor selection problem
(like, as we will see in the following section, energy and
communications constraints). Also, all methods in this paper
run without the local search mechanisms often deployed, like
in [4] or [8], since these do not supply in general any great
improvement.

C. Sensor selection with energy and communication con-
straints

To show the versatility of the convex optimization approach
to the sensor selection problem we show how to deal with
energy and communication constraints when scheduling the
usage of a sensor network over multiple time instances.

First, we show the implicit energy constraint approach, i.e.,
without any explicit information about the energy profiles
of the sensors our goal is to operate the sensor network
over T time instances such that we do not activate the same
sensors at each time. The `1/`∞ style optimization problem
(19) balances between the estimation accuracy of the sensor
network and making sure that the sensing is distributed more
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Fig. 10. Pareto curve of energy consumption versus MSE levels obtained by
(20) with λ = 103 over T = 10 time instances for a fixed sensor network of
m = 100 elements that estimate an unknown of size n = 20. The network
topology we consider is shown in Fig. 1.

evenly between the network’s sensors. Results are shown in
Fig. 7 and 8. With the larger regularization parameter λ = 100
the results in Fig. 8 show o more balanced activation of the
sensors, as opposed to the results in Fig. 7 that are obtained
for a smaller λ = 1. With higher parameters λ the sensor
scheduling problem is regularized to select less often the same
sensors (for example in Fig. 8 most sensors are selected four,
five or maximum six times as compared to Fig. 7 where several
sensors are selected in all ten time instances), but at the cost
of activating, overall, a larger number of sensors over the ten
time instances.

The almost flat envelope of Fig. 8 is typical of solutions
to convex optimization problems that involve `∞ regularized
objective functions (for details see [7, Chapter 6]). The almost
uniform activation of the sensors over time distributes the
sensing workload of the network ensuring balanced power
consumption together with increased robustness and fault
tolerance in case of any particular sensor failure. Fig. 9 shows
one of the side effects of the proposed optimization procedure:
we can reduce the frequency with which one particular sensor
is activated but at the cost of activating other (possibly many
more) sensors from the network such that it operates with the
same estimation accuracy.

Finally, we also show how the proposed algorithm can be
applied to schedule a sensor network when absolute energy
and communications costs are available. In terms of the
sensing cost, we consider it proportional to the SNR like

si = O(‖aTi ‖22), i = 1, . . . ,m, (35)

meaning that the sensing cost is proportional to the quality of
the measurement. We take the cost of the communications for
the ith sensor to be a fraction of the sensing cost

cii = O(si), i = 1, . . . ,m. (36)

We take the sensor network topology in Fig. 1 to which
we attach a Gaussian random measurement matrix. We will
consider that no reference energy levels are available, i.e.,
e0 = 0m×1, and that the energy penalty is reflected by the
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cost function g(e) = ‖e‖22 in (20). In Fig. 10 we show
the trade-off between the achievable MSE levels versus the
energy consumption of the sensor network. To achieve the
lowest levels of MSE we of course need (almost) all the
sensors to be active (almost) all the time and therefore the
energy consumption of the network is highest. Giving up some
accuracy in the MSE has a positive impact on the energy
consumption, especially at the limit of the best accuracy.
Depending on the available energy supplies, Fig. 10 shows
what levels estimation accuracy in terms of MSE are possible
with the sensor network.

Regarding the running time, although it exhibits polynomial
complexity, the proposed method is slower than some of the
state-of-the-art methods from the literature, especially the ones
based on greedy iterations. For example, for m = 100 and
n = 20, averaged over 100 realizations the MPME [4] is
computationally efficient with running times well below one
second while the proposed method take about one minute to
complete on a modern computing Intel i7 R© system. Therefore,
the proposed method is now well suited for highly dynamical
sensor network scheduling. As previously mentioned, the
advantage of convex optimization based solutions is that they
allow easy generalizations (like operating the sensor network
over multiple time instances, without repetition of sensor
selection) and allow the addition of extra constraints (like
energy and communications).

VII. CONCLUSIONS

In this paper we describe a new algorithm based on a convex
optimization approach to deal with the sensor placement and
scheduling problems. Our method is competitive against state-
of-the-art sensor management methods while it also allows to
schedule the network operations over time and with energy
and communication costs and constraints. We are also able to
show that when the sensor network measurements are given
by a tight measurement matrix then we can expect that the
mean squared error of the estimation to decrease on average
linearly with the number of active sensors. We also give a
lower bound showing a potential quadratic decrease in the
mean square error (in the best case scenario) with the number
of active sensors.

APPENDIX A
PROOF OF RESULT 2

We use the determinant lemma det(ATA + aaT ) =
det(ATA)(1 + aT (ATA)−1a) to reach

µ1 =
λ1(λ1 + r) . . . (λ1 + (n− 1)r)

µ2 . . . µn
(1 + aT (ATA)−1a)

≥λ1(λ1 + r) . . . (λ1 + (n− 1)r)

λ1 . . . (λ1 + (n− 2)r)
(1 + aT (ATA)−1a)

=(λ1 + (n− 1)r)(1 + aT (ATA)−1a).
(37)

The inequality holds when µi = λi−1, i = 2, . . . , n – the
maximum values for µi according to (14). For example, when
r = 0 all the eigenvalues of ATA are the same λ1 and we
have that µi = λ1, i = 2, . . . , n while µ1 = (1+aTA−1a)λ1.

APPENDIX B
PROOF OF RESULT 3

This qualitative result follows straight forward from the fact
that the eigenvalues of ATA are all smaller or equal than the
eigenvalues of ÃT Ã = ATA+ aaT , by Result 1.

A quantitative analysis can also be made for the perfor-
mance indicators. For the VCE we can use the determinant
inversion lemma

det(ATA+ aaT ) =det(ATA)(1 + aT (ATA)−1a)

≥det(ATA),∀ a ∈ Rn.
(38)

For the MSE we can use the matrix inversion lemma

tr((ATA+ aaT )−1) =tr((ATA)−1)− ‖(ATA)−1a‖22
1 + aT (ATA)−1a

≤tr((ATA)−1),∀ a ∈ Rn.
(39)

In the case of the WCE we can bound the least singular value.
Given a matrix A ∈ Rm×n and a row a ∈ Rn then for
extended matrix ÃT =

[
AT a

]
∈ Rn×(m+1) we have(

λ−1/2n (ATA)− ‖(ÃT Ã)−1a‖22
1− aT (ÃT Ã)−1a

)−2
≥λn(ÃT Ã). (40)

To show this we start by defining the smallest singular value

σ−1min(A)=

√
λ−1n (ATA)=‖A−1‖2=

√
λ1((ATA)−1).

(41)
We use the fact that ATA = ÃT Ã − aaT and use the
Sherman-Morrison-Woodbury formula (ATA)−1 = (ÃT Ã−
aaT )−1 = (ÃT Ã)−1 + (ÃT Ã)−1aaT (ÃT Ã)−1

1−aT (ÃT Ã)−1a
to reach

σ−1min(Ã) ≥ σ−1min(A) − ‖(ÃT Ã)−1a‖22
1−aT (ÃT Ã)−1a

. Result (40) follows
directly from this last inequality.

In the special case of an invertible matrix A ∈ Rn×n and
a row a ∈ Rn then for extended matrix ÃT =

[
AT a

]
∈

Rn×(n+1) we have

λn(A
TA)≤λn(ÃT Ã)≤

(
1 + ‖aTA−1‖22

)
λn(A

TA). (42)

To show this we start by developing

Ã =

[
A
aT

]
=

[
A

aTA−1A

]
=

[
I

aTA−1

]
A. (43)

We know that σmin(XY) ≤ ‖X‖2σmin(Y) by the Courant-
Fischer-Weyl min-max principle. Coupled with the fact that
the matrix

[
I (aTA−1)T

]T
has all singular values 1 expect

for the largest which is
√
1 + ‖aTA−1‖22 we reach the result.

The final inequality follows from

1 + ‖aTA−1‖22 ≤ 1 + σ−2min(A)‖a‖22. (44)

The equality holds when we choose a to be any multi-
ple of the right singular vector associated with σmin(A).
Overall the inequalities become σmin(A) ≤ σmin(Ã) ≤(√

1 + ‖aTA−1‖22
)
σmin(A) ≤

√
σ2
min(A) + ‖a‖22. To-

gether with Result 1 we ultimately have that

σmin(Ã) ≤ min

{√
σ2
min(A) + ‖a‖22, σn−1

}
. (45)
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APPENDIX C
PROOF OF RESULT 4

We will use results presented in [46] to prove theorems
about the expected characteristic polynomials of matrices that
are changed by rank 1 updates. Consider first that for the
α−tight frame AT =

[
a1 a2 . . . am

]
∈ Rn×m and given

any vector u such that ‖u‖2 = 1 we have that

E[(uTaavg)
2] =

1

m

m∑
i=1

(uTai)
2

=
1

m
uT

(
m∑
i=1

aia
T
i

)
u =

α‖u‖22
m

=
α

m
,

(46)

where we have defined the average frame vector aavg =
1√
m

∑m
i=1 ai.

If we denote by pAT
1 A1

(x) the characteristic polynomial of
AT

1 A1 then the characteristic polynomial of AT
1 A1 + aaT is

pAT
1 A1+aaT (x) = det(xI− (AT

1 A1 + aaT ))

=det((xI−AT
1 A1)− aaT )

=det(xI−AT
1 A1)(1− aT (xI−AT

1 A1)
−1a)

=pAT
1 A1

(x)

(
1−

n∑
i=1

(uT
i a)

2

x− λi(AT
1 A1)

)
,

(47)
where λi(AT

1 A1) are the eigenvalues of AT
1 A1 corresponding

to eigenvectors uj . If we choose any a ∈ {ai}mi=1,i/∈K and use
(46) to can show that

E[pAT
1 A1+aaT (x)] =E[pAT

1 A1
(x)]

(
1−

n∑
i=1

αm−1

x− λi(AT
1 A1)

)
=E[pAT

1 A1
(x)]− α

m
E[pAT

1 A1
(x)]′.

(48)
Starting from an empty (all zeros) matrix AT

1 A1, i.e.,
K = ∅, that has the characteristic polynomial p(0)

AT
1 A1

(x) =

p0n×n
(x) = xn after adding k rank 1 updates of the type aaT

leads to the matrix AT
1 A1 with the expected characteristic

polynomial is

E[p(k)
AT

1 A1
(x)] =E[p(k−1)

AT
1 A1

(x)]− α

m
E[p(k−1)

AT
1 A1

(x)]′

=a(k)n xn + · · ·+ a
(k)
1 x+ a

(k)
0 .

(49)

The results in (24) follow from Vieta’s formulas that relate
roots of polynomials to their coefficients. The expected value
of the VCE(A1) follows directly as the constant coefficient of
the expected characteristic polynomial since it is the product
of the roots while for the MSE(A1) we have
n∑

i=1

1

λi(AT
1 A1)

=

∏
i 6=1 λi(A

T
1 A1) + · · ·+

∏
i 6=n λi(A

T
1 A1)∏n

i=1 λi(A
T
1 A1)

.

(50)
From this it follows that

E[MSE(A1)] = −
a
(k)
1

a
(k)
0

, E[WCE(A1)] ≥ −
a
(k)
1

a
(k)
0 n

,

E[VCE(A1)] = log(a
(k)
0 ).

(51)

Notice that for k = n the expected characteristic polynomial
is an associated Laguerre polynomial n!Ln(x) [47] with
coefficients

a
(n)
i =

(−1)in!
i!

( α
m

)n−i(n
i

)
, i = 0, . . . , n. (52)

Then for k ≥ n we have the coefficients of interest

a
(k)
0 = n!

( α
m

)n( k

k − n

)
,

a
(k)
1 = −n!

( α
m

)n−1( k

k − n+ 1

)
.

(53)

Since we are dealing with positive semidefinite matrices the
expected values have to be positive and therefore once we
have written the values for a(k)0 and a(k)1 results in (24) follow
immediately from (53).
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