
S
elf-supervised representation learning (SSRL) methods 
aim to provide powerful, deep feature learning without the 
requirement of large annotated data sets, thus alleviating 
the annotation bottleneck—one of the main barriers to the 

practical deployment of deep learning today. These techniques 
have advanced rapidly in recent years, with their efficacy 
approaching and sometimes surpassing fully supervised pre-
training alternatives across a variety of data modalities, includ-
ing image, video, sound, text, and graphs. This article 
introduces this vibrant area, including key concepts, the four 
main families of approaches and associated state-of-the-art 
techniques, and how self-supervised methods are applied to 
diverse modalities of data. We further discuss practical consid-
erations including workflows, representation transferability, and 
computational cost. Finally, we survey major open challenges in 
the field, that provide fertile ground for future work.

Introduction
Deep neural networks (DNNs) now underpin state-of-the-art 
artificial intelligence (AI) systems for analysis of diverse data 
types [1], [2]. However, the conventional paradigm has been to 
train these systems using supervised learning, where perfor-
mance has grown roughly logarithmically with annotated data 
set sizes [3]. The cost of such annotation has proven to be a 
scalability bottleneck for the continued advancement of state-
of-the-art performance, and a more fundamental barrier for the 
deployment of DNNs in application areas where data and 
annotations are intrinsically rare, costly, dangerous, or time 
consuming to collect.

This situation has motivated a wave of research in SSRL 
[4], where freely available labels from carefully designed pre-
text tasks are used as supervision to discriminatively train 
deep representations. The resulting representations can then 
be reused for training a DNN to solve a downstream task of 
interest using comparatively little task-specific annotated data 
compared to conventional supervised learning.

Self-supervision refers to learning tasks that ask a DNN to 
predict one part of the input data—or a label programmatically 
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derivable thereof—given another part of the input. This is in 
contrast to supervised learning, which asks the DNN to predict 
a manually provided target output, and generative modeling, 
which asks a DNN to estimate the density of the input data 
or learn a generator for input data. Self-supervised algorithms 

42 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2022   | 1053-5888/22©2022IEEE

Digital Object Identifier 10.1109/MSP.2021.3134634
Date of current version: 27 April 2022

Authorized licensed use limited to: University of Edinburgh. Downloaded on June 10,2022 at 13:49:09 UTC from IEEE Xplore.  Restrictions apply. 



43IEEE SIGNAL PROCESSING MAGAZINE   |   May 2022   |

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/L

O
C

A
L_

D
O

C
TO

R

differ primarily in their strategy for defining the derived labels 
to predict. This choice of pretext task determines the (in)vari-
ances of the resulting learned representation and thus how 
effective it is for different downstream tasks.

Self-supervised strategies have been leveraged successfully 
to improve sample efficiency of learning across a variety of 
modalities, from image [5]–[7], video [8], [9], speech [10], [11], 
text [12], [13], and graphs [14], [15]. Across these modalities, it 
can also be applied to boost diverse downstream tasks, includ-
ing not only simple recognition but also detection and localiza-
tion [16], dense prediction (signal transformation) [16], anomaly 
detection [17], and so on. Furthermore, some results suggest 
that self-supervised representation quality is also a logarithmic 
function of the amount of unlabeled pretraining data [16]. If 
this trend holds, then achievable performance may improve for 
“free” over time as improvements in data collection and com-
putation power allow increasingly large pretraining sets to be 
used without the need for manually annotating new data.

There are various other strategies for improving the data 
efficiency of learning, such as transfer [18], [19], semisuper-

vised [20], active, and metalearning. As discussed in this 
article, SSRL is an alternative to both conventional transfer 
and semisupervised learning pipelines; however, it can also 
be complementary to semisupervised and active learning. 

In this article, we focus on self-supervised algorithms and 
applications that address learning general-purpose features—
or representations—that can be reused to improve learning 
in downstream tasks. We introduce SSRL and review its 
application and state of the art across several modalities 
(image, text, speech, graphs, and so on), with a specific focus 
on discriminative SSRL [we exclude generative models such 
as variational autoencoders (VAEs), generative adversarial 
networks (GANs), and flows, although they can also be used 
for representation learning]. Compared to existing surveys [4], 
we provide a broader introduction to the field; a wider cover-
age of different modalities rather than focusing on images; 
highlight more practical considerations such as representation 
transferability, computation cost, and deployment strategies; 
and provide a deeper discussion of open challenges.

Background

Problem definition
In this section, we introduce the necessary notation for defin-
ing the SSRL problem. We then contrast it to other common 
learning paradigms (see Figure 1).

Supervised learning requires a labeled data set for a target 
problem we wish to solve, { , } ,D x y( ) ( )

t i
t

i
t

i
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1= =  from which we 
build a predictive model that makes estimates, ( ).y f x=t  In a 
deep learning context, the predictive model is usually com-
posed of a representation extractor function, ,hi  and a classi-
fier/regression function, , ( ) ( ( ))).g f x g h x=z z i  We train this 
predictive model by minimizing a loss function L, such as the 
negative log likelihood
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However, hi  may have hundreds of millions of parameters, 
requiring millions of labeled data points in Dt  to fit this cor-
rectly. These millions of annotated data points are not avail-
able in most applications, but many do have an essentially free 
supply of unlabeled data points; as an example, consider the 
wealth of raw audio signal data x versus the limited amount of 
transcribed speech data y in speech recognition.

Unsupervised learning techniques often learn from such 
unlabeled data by building generative models or density esti-
mators. These range from classic shallow approaches, like 
Gaussian mixtures [21], to deep methods such as VAEs and 
GANs [18]. Other common unsupervised methods, such as 
autoencoders and clustering [18], learn compact latent repre-
sentations. For example, autoencoders often optimize the fol-
lowing reconstruction objective:  

 L ( ( ( )), ),argmin g h x x
,
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where (·)hi  extracts a compact feature from the input, and  
( )gz $  uses it to reconstruct the original input.
SSRL can be seen as a special case of unsupervised learn-

ing as both schemes learn without annotations, y. Although 
conventional unsupervised methods rely on reconstruction 
or density-estimation objectives, SSRL approaches rely on 
pretext tasks that exploit knowledge about the data modality 
used for training.

Although supervised learning methods tend to learn stron-
ger features than unsupervised learning approaches, they 
require costly and time-consuming work from human anno-
tators to generate the required labels. SSRL techniques aim 
for the best of both worlds: training a powerful feature extrac-
tor using discriminative learning without the need for manual 
annotation of training examples. Given an unlabeled source 
data set { } ,D x( )

s i
s

i
M

1= =  with ,M N&  self-supervised learning 

addresses how to make use of Ds  and Dt  together to learn the 
predictive model ( ) ( ( )).f x g h x= z i

What defines a self-supervised method is its pretext task, 
consisting of a process, P, to generate pseudolabels and an 
objective to guide learning. Given a raw data set like ,Ds  the 
pretext process programmatically generates pseudolabels z 
and possibly modified data points P{ , } ( ).x z Di i i

M
s1 ==  As an 

example, a portion of a speech signal x can be modified by 
masking out some part of the signal, and the pseudolabel z is 
defined as the masked-out portion of the input. An NN can 
then be trained on the objective of predicting the missing por-
tion z, given the partially masked x.

Many self-supervision research activities address deriv-
ing pretext tasks P, which enable learning general-purpose 
representations ,hi  which provide high performance and data-
efficient learning of downstream tasks .Dt  Different pretext 
tasks are discussed in detail in the “Pretext Tasks” section.

The workflow of self-supervision, also depicted in Figure 2, 
proceeds as follows:
1) Annotated data for the target task forms data set ,Dt  and 

available, unlabeled data forms the larger .Ds

2) The pretext task generates a new pseudolabeled data set, 
P{ , } ( ),D x z Ds i i i

M
s1= ==r  as explained previously. (As 

process P  often depends on sampling transformation or 
masking parameters, it is generally repeated at the start of 
each epoch of training.)

3) The pretext model, ( (·)),k hc i  is trained to optimize the 
self-supervised objective on :Dsr

 L ( ( ( )), ).argmin k h x z
P, ( , ) ( )x z D

i i

i i s

i =)

!i c
c i

r
/  (3)

Importantly, this provides a good estimate i)  of the poten-
tially hundreds of millions of parameters in ,hi  but without 
requiring label annotation. In many cases, input xi  is a sin-
gle data point, and the pseudolabel zi  is a class label of sca-
lar value. However, as discussed later in the “Pretext Tasks” 
section, in certain types of instance discrimination methods, 
the aforementioned input xi  can consist of multiple data 
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FIGURE 2. The self-supervised workflow starts with an unlabeled source data set and a labeled target data set. As defined by the pretext task, pseudola-
bels are programmatically generated from the unlabeled set. The resulting inputs, x  and pseudolabels ,z  are used to pretrain the model ( (·))k hc i — 
composed of feature extractor hi  and output kc  modules—to solve the pretext task. After pretraining is complete, the learned weights i)  of the 
feature extractor hi)  are transferred and used together with a new output module gz  to solve the downstream target task.  
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FIGURE 1. Contrasting supervised, unsupervised and self-supervised 
learning paradigms for training a model f  using raw data ,x  labels ,y  
and loss function L.  Self-supervision methods introduce pretext tasks 
P  that generate pseudolabels z  for discriminative training of .f  
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points, with pseudolabel zi  describing how the network 
should relate these data points. Similarly, in transforma-
tion prediction (TP), input xi  can consist of multiple shuf-
fled chunks, while pseudolabel zi  relates the shuffled 
order to the original order.

4) Pretext output function kc  is discarded, and representation 
function hi)  is transferred as a partial solution to solve the 
target problem of interest using model ( ( )).g h $z i)   
Crucially, when representation parame-
ters i)  are already well fitted from the 
self-supervision step in (3), only a 
minority of parameters may need to be 
learned or refined to solve the target 
problem, thus enabling it to be solved 
with a small, labeled target data set .Dt  
There are two common ways to solve 
the target problem using :i)  fine-tuning 
and linear readout.
The aforementioned presentation assumes 

that the target task is labeled and trained 
with supervised learning, as this is the most typical use case. 
However, unlabeled target tasks like clustering or retrieval can 
also obviously benefit from self-supervised pretraining if sub-
stituted into the previously mentioned step 4 [22].

Linear readout
For linear readout, let ( , )i c  be the weights of the pretrained 
model, consisting of a feature extractor, ,hi  followed by a 
task-specific head, .kc  The simplest way to reuse hi  for a new 
task is to replace the head with a new one, ,gz  designed for 
the new task. This head is then trained with the feature extrac-
tor frozen. Given a target data set of N instances, 

{ , } ,D x y( ) ( )
t i

t
i
t

i
N

1= =  the training objective is
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The head is often a simple linear function, leading to the term lin-
ear readout. This is often used in the very sparse data regime 
where the number of unique parameters to learn for the target task 
must be aggressively limited to avoid overfitting [15], [23], [24].

If enough downstream data are available, it may be better 
to fit a more complex nonlinear function on top of the features. 
This may consist of multiple linear layers interspersed with non-
linearities and potential task-specific modules. In academic lit-
erature, however, it is very common to fit only linear functions 
to simplify the comparison of methods. 

Fine-tuning
Instead of just training a new head, we can retrain the entire net-
work for the new task.  We usually still need to replace the pre-
text head with one suited to the target task, but now we train 
both the feature extractor and head, as follows: 

 L ( ( ( )), ).argmin
N

g h x y1
,
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i
t
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t

1i z
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Crucially, one must initialize i  with the values i)  obtained 
during the self-supervised pretraining phase. Given that DNN 
optimization is usually nonconvex, and assuming a small 
learning rate, this results in the aforementioned optimization 
converging toward a local optimum on the target task objec-
tive that lies near the local optimum attained for the source 
task, thus providing knowledge transfer from the pretext 
source task.

Fine-tuning is often used in the mod-
erately sparse data regime where there is 
enough target data to at least refine all the 
model parameters, or in regimes where the 
pretext task/data are not perfectly suited to 
the downstream task [5], [12], [25]–[27]. 
If the source and target domains are well 
aligned, it may not be necessary—or even 
beneficial—to fine-tune all the parameters. 
Often only the final few layers of a network 
need tuning to adapt to a new task. In other 
cases, it is enough to tune a specific type of 

layer, like batch normalization, to adapt to a slight change 
in domain.

In summary, SSRL uses unlabeled data to generate pseudo-
labels for learning a pretext task. The learned parameters then 
provide a basis for knowledge transfer to a target task of inter-
est. After pretraining, the transfer can be completed by linear 
readout or fine-tuning of the labeled target data.

Canonical use cases
When should one consider using self-supervision? SSRL 
may have diverse benefits in terms of adversarial robustness 
[28], model calibration [29], and interpretability [29], which 
is reviewed further in the “Discussion” section. However, its 
main use case is to improve data efficiency in situations 
where there are limited labels for the downstream target task 
(e.g., semantic segmentation or object detection) and/or 
domain (e.g., medical or Earth-observation images) of inter-
est. The following few typical problem templates explain 
how SSRL can be applied to different situations: 

 ■ If dense labels are available for the target task and the 
domain, then direct supervised learning may be the most 
effective approach, and SSRL may not be helpful.

 ■ If the target domain of interest is very different from any 
available background data sets (e.g., radar versus 
ImageNet data in imagery), and annotation is expensive 
in the target domain, then collecting unlabeled target 
data for target-domain specific self-supervision, fol-
lowed by sparse data fine-tuning may be effective. This 
setting can also be addressed by semi-supervised meth-
ods [20], which should then be evaluated as competitors 
against SSRL.

 ■ If the target domain of interest is similar enough to large 
source data sets (e.g., everyday objects versus ImageNet), 
then one can leverage self-supervised pretraining on the 
source data set before directly transferring the representa-
tion to the target domain of interest. Note that here, 

SSRL is an alternative to 
both conventional transfer 
and semisupervised 
learning pipelines; 
however, it can also 
be complementary to 
semisupervised and  
active learning.
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 conventional supervised pretraining is a competitor that 
should be evaluated against SSRL. However, in many 
cases, state-of-the-art SSRL has the edge on supervised 
pretraining for such transfer settings [29].

Deployment considerations
In this section, we discuss common ways of using a pretrained 
encoder hi  for a labeled target data set. Although there are 
often domain- or task-specific methods in the literature for 
how to best do this, we focus on some of the most widely 
adopted approaches.

The target input data are often assumed to lie in the same space 
as the source data so that the encoder can be 
used without modification; however, the label 
spaces will most likely differ. This means 
that the head of the pretrained network, ,kc  is 
not suited to solve the target task. The design 
of the new head, ,gz  depends mainly on the 
label space of the target task. For example, 
in object recognition, the output is likely a 
vector of class probabilities; for visual object 
detection, additional bounding-box locations 
must be predicted; and for dense predictions, a deconvolutional 
decoder may be introduced.

Layer choice 
Given the model pretrained on the source task, determining 
which feature layer is best for extracting features to solve a 
downstream task is an active research question [16]. This prob-
lem concerns finding the correct layer to split encoder hi  and 
source head .kc  The optimal choice can differ from task to 
task and data set to data set, and can involve combining fea-
tures from several layers, but a general rule is that earlier lay-
ers tend to encode simple patterns while later layers can 
combine these simpler patterns into more complex and 
abstract representations.

Fine-tuning versus a fixed extractor 
An important design choice in deployment phase is whether to 
fix encoder hi  and just train a new classifier module gz  using 
the target data, or fine-tune the encoder while training the classi-
fier. Many SSRL benchmarks use an experimental design rely-
ing on the linear classifier readout of a frozen encoder. This 
makes SSRL methods easier to compare due to there being 
fewer parameters to tune in linear readout.

There have been mixed results reported in the literature 
with regard to whether linear readout is sufficient or whether 
fine-tuning the entire encoder should improve performance 
[29], [30]. Which performs better may depend on the amount 
of available data (fine-tuning is more reliable with more data), 
the similarity between the source and target domain data, and 
how well suited the (in)variances of the SSRL pretext task used 
are to the requirements of the downstream task. The conditions 
with a larger domain/task discrepancy are likely to benefit from 
more fine-tuning. Of course, there are numerous ways to con-
trol the amount of fine-tuning allowed in terms of learning rate, 

and explicitly regularizing the fine-tuning step to prevent it from 
overfitting by limiting the deviation from the initial pretrained 
conditions [19].

Other considerations
A unique issue for SSRL is that it can be difficult to deter-
mine the ideal stopping condition for the pretext task as no 
simple validation signal can be used. There is not yet an 
efficient solution for this issue.

Multiple studies have observed that downstream perfor-
mance after SSRL improves with the capacity of the network 
architecture used for pretraining [5], [16]. Although conve-

nient for extracting more performance at 
the cost of computation and memory, it 
may create a bottleneck for deploying the 
resulting fat representation on an embed-
ded or other memory-constrained down-
stream platform. To alleviate this issue, 
high-performance and high-parameter 
count SSRL features can be distilled into 
smaller networks while retaining their 
good performance [5], [31] (see the “Archi-

tecture Choice and Deployment Costs” section).

Pretext tasks
In the absence of human-annotated labels, self-supervision 
uses the intrinsic structure of the raw data and automated 
process P  to synthesize a labeled source data set, 

P{ , } ( ).D x y Ds i i s= =r  One can then make use of Dsr  as 
they would any other labeled data set when pretraining a 
model by applying a discriminative supervised learning 
algorithm. As the pseudolabels are created from some intrin-
sic structure in the data, a model learning to predict those 
labels must recognize and exploit this structure to solve the 
task successfully. Thus, self-supervised algorithm design 
requires and exploits human prior knowledge about structure 
in the data to help define meaningful pretext tasks. 
Furthermore, different pretext tasks will induce different (in)
variance properties in the learned representations, so the 
choice of method can also be informed by which properties 
of the representation are required by the downstream task. 
In the following sections, we divide the various self-super-
vised pretexts in the literature into four broad families: 
masked prediction, TP, instance discrimination, and cluster-
ing (see Figure 3).

Masked prediction
This family of methods is characterized by training the model to 
fill in the missing data removed by P. It relies on the assump-
tion that context can be used to infer some types of missing 
information in the data if the domain is well modeled. Given a 
raw example, ,x( )

i
s  a subset of the elements is extracted to form 

pseudolabel ,zi  and the remaining components that were not 
used to create the label are used as the new input example, .xi  
The pseudolabel generation process therefore looks like 

P, ( )x z x( )
i i i

s
=  and is described in full in Algorithm 1.

Self-supervised algorithm 
design requires and 
exploits human prior 
knowledge about structure 
in the data to help define 
meaningful pretext tasks.
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As an example of this on real data, a square region of an 
image can be masked out in the raw example. In this scenario, I 
is the set of indices inside the square-mask region, the pixels in 
the masked region will correspond to ,zi  and the pixels outside 
the masked region will be .xi  Given , ,zx ii  the model can now 
be trained to minimize, e.g., the following reconstruction loss-
like mean square error:

 
P

. argmin
D

k h x z1
P, ( , ) ( )s

i i
x z D

2

i i s

i = -)

!i c
c i^ ^ ^^ hh hh /  (6)

A major variant of masked prediction approaches are autore-
gressive methods, which treat x as a sequence, and the task is 
to autoregressively predict the t 1+  element of the sequence, 
given the t elements seen thus far. By factorizing the joint dis-
tribution over x into a product of conditionals, these schemes 
can also be seen as unsupervised generative models.

Examples
Common masking methods involve hiding words in sentences 
for language modeling [12], [22], [32], hiding time slices in 
speech [10], hiding regions of images for inpainting [26], or 
hiding edges in graphs [27]. In a multimodal setting, it could 
correspond to, e.g., predicting the audio signal accompanying 
a video input, or vice versa.

Considerations
Defining an ideal masking strategy (how much, when, and 
where to mask; which context to provide in predicting the 
masked information) is important in making effective use of 
masked predictions. For example, masking too much of a 
speech signal will make it impossible to infer the missing 
words, while masking too little of it makes the task too easy to 
require a rich speech model to be learned.

Transformation prediction
This family of procedures relies on the assumption that inputs 
have a canonical view, and that certain transformations can be 
applied to that view to change it. The canonical view can, for 
example, depend on the effects of gravity in vision (i.e., there 
is a correct notion of up and down in visual scenes) or 
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FIGURE 3. Illustrative examples of the way pseudolabels are generated in the four families of pretext tasks of our taxonomy: TP, masked prediction, 
instance discrimination, and clustering. An additional depiction is included of the popular version of instance discrimination using contrastive losses. The 
squares represent inputs ,x  while circles portray the feature vectors of those inputs, ( ).h xi   

Algorithm 1. The pseudolabel generation process P  
for masked prediction.

Input: Unlabeled data set { } .D x ( )
s i

s
i
M

1= =

 for i  from 1 to M do
   Generate indices, ,I  of elements to remove from x()

i
s

   { : }z x j I,
( )

i i j
s! !

   { : }x x j I,
( )

i i j
s! "

 end for
Output: { , } .x zi i i

M
1=
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 temporal ordering in video, speech, or other time series. TP 
methods apply a transformation that maps from canonical to 
alternative views and train the model to predict which trans-
formation has been applied. Given a raw input in its canonical 
view, ,x( )

i
s  a transformation, ,T~  is applied to produce 

( ),x T x( )
i i

s
= ~  which is fed into the model.
The parameters ~  of this transform are used as the pseu-

dolabel zi ~=  that the model is trained to predict. It is typi-
cal for these transformation parameters to be sampled from 
some distribution, .X  The learning objective can be, e.g., a 
cross-entropy loss, in the case of categorical transformation 
parameters.

 L ( ( ( )), ). argmin k h x z
P, ( , ) ( )

CE
x z D

i i

i i s

i =)

!i c
c i/  (7)

The full process, P ( ),Ds  is described in Algorithm 2. Typically, 
one will generate several different views of each ,x( )

i
s  each with a 

different set of transformation parameters. To succeed, an SSRL 
method has to learn enough about the latent structure of the data 
to correctly predict the transformation while being invariant to 
intracategory variability.

Examples
In vision applications, one can apply rotations to the raw images 
and require the network to predict the angle of rotation [33]. In 
temporal data, such as videos and other time series, one can shuf-
fle the temporal order of signal samples and force the network to 
predict the original order [8], [34].

Considerations
Whichever transformation is chosen, the model will learn to 
produce representations that are equivariant to that transforma-
tion. This is because the information regarding the transforma-
tion needs to be retained in the representation for the final layer 
to be able to correctly solve the pretext task. A second consider-
ation is it that depends on data having a canonical view. If there 
is no canonical view with respect to the set of transformations, 
then the performance will be poor. For instance, satellite or 
drone Earth-observation image data may have no canonical 
view with respect to rotation, so training for rotation prediction 
on this data may be ineffective.

Instance discrimination
In this family of methods, each instance in the raw source data 
set Ds  is treated as its own class, and the model is trained to 

discriminate between different instances. There are a few dif-
ferent variations on this framework, which we now describe.

Cross entropy
The most straightforward way of tackling instance discrimi-
nation is to assign each instance in the data set a one-hot 
encoding of its class label; for example, instance number 126 
in a data set of 100,000 images would be assigned a vector of 
length 100,000 with zeros everywhere except for a value of 
one at position 126. This enables training the network with a 
categorical cross-entropy loss to predict the correct instances. 
This was the approach taken by the early exemplar-convolu-
tional NN (CNN) method [23]. However, as the size of the 
data set grows, the softmax operation used to compute class 
probabilities becomes prohibitively expensive. As such, it 
became difficult to scale this process to large modern data 
sets where the number of instances—and therefore classes—
can be millions [35] or even billions [36]. This led to the 
development of the contrastive procedures discussed in the 
next sections.

Another problem within the instance discrimination frame-
work is the lack of intraclass variability. As each instance in the 
data set is treated as its own class, we end up with only a single 
example of each class. In conventional supervised learning, 
there might be hundreds or thousands of examples within each 
class to aid the network with learning the inherent variation 
within in each class. This problem was tackled by exemplar-
CNN via extensive data augmentation. Given a data point, we 
can apply many different transformations to obtain slightly dif-
ferent views of that same data point while preserving its core 
semantic information. For example, we can slightly change the 
color of an image of a car, and it will still be perceived as an 
image of a car. Figure 4 shows examples of common transfor-
mations across modalities. The use of data augmentation has 
become an important component for instance discrimination 
methods as we see in the more recent contrastive- and regular-
ization-based techniques discussed next. 

Contrastive
The issue with using a categorical cross-entropy loss to solve 
instance discrimination is that it becomes intractable for 
large data sets. Researchers have therefore looked for ways 
to approximate this loss in more efficient ways. The core 
idea leading to recent advances is inspired by metric learning 
as well as the work in [37] and [38]. The idea is to not pre-
dict the exact class of the input but to instead predict whether 
pairs of inputs belong to the same or different classes. This 
allows for the use a binary class label instead of massively 
high-dimensional class vectors. If a pair of inputs belongs to 
the same class, the label is one, and if it belongs to different 
classes, the label is zero. In this setting, however, the use of 
data augmentation becomes even more important as we need 
to introduce variation among inputs of the same class.

To formalize the contrastive-instance discrimination setup, 
multiple views of inputs are created via some process T (trans-
formation or sensory based) and compared in representation 

Algorithm 2. The pseudolabel generation process P for TP.

Input: Unlabeled data set { } .D x ( )
s i

s
i
M

1= =

 for i  from 1 to M  do
   Sample ~~ X
   ( )x T x ( )

i i
s! ~         ⊳ Apply transformation to raw input

   zi!~
 end for
Output: { , } .x zi i i

M
1=
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space. One input, ( ),x T x( )a
i
s

+  is chosen to be the anchor and 
is compared with a positive sample, ( ),x T x( )

i
s

++  which is 
another view or transform of the same input. The anchor is 
also contrasted with a negative sample, which is a view of a dif-
ferent image, ( ).x T x( )

j j
s

+-  In the context of the general SSRL 
objective given in (3), this means that the pretext task generator 
P  produces pretext inputs that each correspond to multiple 
pairs of raw input instances, with the associated pseudolabels 
indicating whether the pairs are matching or mismatching (see 
Algorithm 3 for a full description).

The samples are then encoded by the feature extractor to obtain 
their representations, ( ), ( ), ( ).r h x r h x r h xa a

j j= = =i i i
+ + - -  

A similarity function U  is used to measure the similarity 
between positive (the anchor with a positive sample) and nega-
tive pairs (the anchor with a negative sample). The system is 
then trained to pull positive pairs closer and push negative 
pairs apart. A general formulation of the contrastive loss used 
in many works is

 L
( , ) ( , )

( , )
,log

r r r r

r r
E

a

j

k
a

j

a

1

con

U U

U
=-

++

=

-

+

> H/
 (8)

where k different negative samples have been contrasted with 
the anchor. The model can then be updated by minimizing the 
contrastive loss

 L ( ( ( )), ). argmin k h x z
P, ( , ) ( )x z D

i icon
i i s

i =)

!i c
c i/  (9)

Within this framework, methods differ in what similarity func-
tion they use, whether they use the same or different encoders 
for the anchor and other samples, which family of transforma-
tions T they use, and how they sample anchor, positive, and 
negative examples. Notable contrastive instance discrimina-
tion methods are SimCLR [5] and DGI [15].

Regularization based
Although the contrastive framework succeeds in scaling 
instance discrimination to large data sets, it still has some 
issues. To learn efficiently, a very large number of negative 

examples needs to be included in the loss. If we use too-few 
negative examples, the network will fail to learn the subtle dif-
ferences between instances, but too many and training will be 
computationally expensive. If we were to remove negative 
examples altogether, the features of our network would all col-
lapse to a single constant vector as there is no incentive to sep-
arate features.

Regularization-based approaches to instance discrimina-
tion avoid the use of negative examples altogether by regu-
larization techniques that prevent feature collapse while 
keeping training efficient. There are many different schemes, 
like using asymmetrical encoding for the two inputs [6] or 
minimizing redundancy via cross correlation between fea-
tures [39].

Examples
The established SSRL methods for computer vision, including 
MoCo [40] and SimCLR [5], fall into the family of regulariza-
tion based. Other applications include speech [11] and multiv-
iew [41] and multimodal representation learning, including 
audiovisual [42] and visuolinguistic [43] data, where matching 
and mismatching views of the same instance are contrasted 
against each other.

Considerations
The representations learned here develop high sensitivity to 
instances while developing invariance to transformations or 
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FIGURE 4. The common transformation and masking methods for different modalities of data. The transformations can be applied to alter the order of 
sequential data, like the frames in a video, clauses in text, or chunks in audio waves. The graphs can be transformed by moving nodes or neighbor-
hoods. Masking can be applied by hiding frames in videos, groups of words in text, chunks for audio data, or subgraphs in graphs. The darker-green area 
highlights the portion of the data point that is transformed or masked out. For examples of transforms and masking on image data, see Figure 3. (Source: 
Eadweard Muybridge, Human and Animal Locomotion, Plate 626, 1878–1887; Wikimedia Commons.) 

Algorithm 3. The pseudolabel generation process P for con 
trastive-instance discrimination.

Input: Unlabeled data set { } .D x ( )
s i

s
i
M

1= =

 for i  from 1 to M  do
   Sample ~ ( )x T x ( )a

i
s

   Sample ~ ( )x T x ( )
i
s+

   for k  from 1 to K  do
    Sample U~ ( , )j M1         ⊳ Pick another raw input.
    Sample ~ ( )x T x ( )

k j
s-         ⊳ Get a random transform

   end for
   {( , ), ( , ), ..., ( , )}.x x x x x x xi

a a a
K1! + - -

   { , , ..., } .z 1 0 0i!
 end for
Output: { , } .x zi i i

M
1=
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views. This means that the design of augmentation or view-
selection function T is important due to its influence on the 
invariances learned. For example, aggressive color augmen-
tation in T may lead to color-invariant representations [29], 
which could either be an issue or a benefit depending on 
the downstream task. When using different speakers as dif-
ferent views for audio data, the representations would 
become speaker invariant, which could be beneficial if the 
downstream task is speech recognition but an issue if it is 
speaker diarization. 

Recent work has systematically demonstrated this intu-
ition that the ideal transformations to use do indeed depend on 
the downstream task [44]. On one hand, this undermines the 
appealing and widely believed property of SSRL that a single 
pretrained model can be reused for diverse downstream tasks. 
On the other hand, it highlights a new route for research to fur-
ther improve performance by customizing the transformation 
choice according to the downstream task requirements.

Instance discrimination methods implicitly assume that 
all instances in the raw data set represent unique seman-
tic examples, which might not hold, e.g., if there are many 
images of the same object. When this assumption is violat-
ed, they suffer from false-positive pretext task labels [45]. 
Nevertheless, they are highly effective in practice despite 
this violated assumption.

A different issue that is not well understood in theory but 
crucial in practice is the sampling and batching strategy for 
anchor, positive, and negative instances for contrastive tech-
niques. For example, how should negative samples be chosen 
(e.g., at random, via hard negative mining)? What proportion 
of positive and negative samples, and what batch size should 
be used [40]? These are all crucial design parameters that 
vary across the many approaches and significantly influ-
ence performance.

Clustering
This family of methods focuses on dividing the training 
data into a number of groups with high-intragroup and 
low-intergroup similarity. This relies on the assumption 
that there exists meaningful similarities by which the data 
can be grouped, which is likely the case, especially if the 
data are categorical in nature. There are multiple ways of 
determining cluster assignment, such as connectivity (hier-
archical clustering), centroids fitting (e.g., k-means), likeli-
hood maximization (e.g., Gaussian mixture modeling), and 
so on [21].

As opposed to traditional clustering, in SSRL, the aim of 
the algorithm is to obtain a good feature extractor, ,fi  instead 
of cluster assignments. Thus, one typically jointly performs 
feature extractor learning and clustering to pretrain the rep-
resentation prior to downstream use. This is in contrast to 
classic clustering methods, which normally use a fixed set 
of features.

A common approach to self-supervised clustering is by 
alternating two steps: 1) optimizing the clustering objective by 
assigning data points into clusters based on their representa-
tions and (2) optimizing the model by using the cluster assign-
ments as the pseudolabels in updates.

A unique feature of the clustering family is thus that pretext 
task P  changes during the course of training. As the pseu-
dolabels are created by clustering the current representations 
at each epoch, the labels are updated as the representations 
change. This means that the input to process P  at each itera-
tion is the representations and clusters in addition to the raw 
data. The full process P  is described in Algorithm 4.

Given a cluster assignment where each input xi  has its clus-
ter class assigned to ,zi  we can optimize the model via a cross-
entropy loss:

 L ( ( ( )), ).argmin k h x z
P, ( , ) ( )

CE
x z D

i i

i i s

i =)

!i c
c i/  (10)

After this, we go back to the clustering step, now using the 
new representations of our updated model.

In the cluster assignment step, many works use k-means 
clustering [7], [46], where the number of clusters k is a hyper-
parameter set by evaluating on a validation set of a downstream 
task. A big problem is that there are degenerate solutions to 
this, such as assigning all instances to the same cluster [46]. To 
avoid this, methods often enforce that cluster assignments must 
be balanced [7]. Recent approaches such as ODC [47] aim to 
avoid the burden of alternating updates of the feature extractor 
and clusters by simultaneously updating both online.

Examples
The major examples include DeepCluster, ODC [46], [47], 
and SwAV [7] for vision, and XDC [9] for multimodal cluster-
ing, such as audio and video.

Considerations
Many clustering-based SSRL techniques [46] rely less heavily 
on data augmentation compared to contrastive methods [5]. 
This fact, as well as avoiding the need to sample triplets, have 
some benefit in terms of computation cost; however, the non-
stationary nature of the clustering SSRL task (clusters 
coevolve with features) imposes additional cost compared to 
the other pretext tasks with stationary objectives. Compared to 
instance discrimination, TP, and masked prediction pretexts, it 
can be harder to analyze the kinds of (in)variances induced 
by clustering-based SSRL, making it harder to predict 
which downstream tasks they are suitable for without empiri-
cal evaluation.

Algorithm 4. The pseudolabel generation process P for clustering.

Input: Unlabeled data set { } .D x ( )
s i

s
i
M

1= =

Input: Representations { } ,ri i
M

1=  where ( )r h x ( )
i i

s! i

Input: Cluster centers { } ,c j j
k

1=  via clustering on { } .ri i
M

1=

 for i  from 1 to M  do
   Sample ~ ( )x T x ( )

i i
s

   argminz c r[ ]i j k j i! -!

 end for
Output: { , } .x zi i i

M
1=
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Theoretical underpinning
The theoretical underpinnings of SSRL are lacking compared 
to standard supervised learning. When analyzing a conven-
tional supervised method, the object of most interest is the 
expected performance of a model on unseen data. The mod-
el’s performance is measured using a task-specific loss func-
tion. For example, consider the case of a binary classification 
problem where the model produces a real-valued score: the 
sign of this score indicates the predicted class, and the mag-
nitude provides an indication of the confidence with which 
the model is making the prediction. One loss function that is 
commonly used for evaluation purposes is the following 
zero-one error: 

 L ( , , ) ( ( ) ),f x y f x y 0I0 1 2=-  (11)

where { , }y 1 1! -  is the ground-truth label, f is the model, x 
is an input, and (·)I  is the indicator function. The expected 
performance of a model on unseen data are then denoted by

 [ ( , , )] .f x yE L,x y 0 1-  (12)

The typical goal in statistical learning theo-
ry is to bound this quantity from (12) using 
the error measured on the training set and 
some measure of complexity of the class of 
models, F, which the training algorithm is 
optimizing over. Such bounds are probabi-
listic due to the inherent randomness 
involved in sampling a training data set, 
and in some sense can be thought of as 
sophisticated confidence intervals. These 
bounds hold uniformly overall, F,f !  and 
usually take the form

 L L C F[ ( , , )] ( , , ) ( , , ),f x y
n

f x y n1E ,x y
i

n

i i0 1 0 1
1

# d+- -

=

/  (13)

where the inequality holds with a probability of at least ,1 d-  
so d  is essentially defining the width of a confidence interval, 
as in classic statistical analysis. The complexity term 
C F( , , )n d  can be thought of as the upper bound of a confi-
dence interval that takes into account multiple hypothesis test-
ing, i.e., each Ff !  can be thought of as a hypothesis. As 
more complex classes of models are considered, this term will 
grow larger. Crucially, these bounds assume no knowledge 
about the underlying data-generating distribution, and as such, 
they hold for all distributions.

There are several roadblocks preventing the direct applica-
tion of this framework to SSRL methods. The most fundamen-
tal issue is that the training loss used during self-supervised 
pretraining measures performance on a pretext task and is 
generally not the same loss function used for measuring the 
performance of the downstream task. As a consequence, the 
training loss cannot be interpreted as a biased estimate of the 
expected model performance, and analysis of the model’s class 

complexity cannot be used to compensate for the bias in this 
estimate by widening the confidence interval. A further com-
plication comes from the distribution shift. In many cases, 
one wishes to perform self-supervised pretraining on one data 
set (such as ImageNet) and then use the resulting features on 
another data set with a different marginal distribution. One of 
the standard assumptions made in learning-theoretic analysis 
is that the elements in the training and test sets are sampled 
from the same distribution.

Nevertheless, there is a small but growing body of litera-
ture devoted to the theoretical analysis of SSRL techniques. 
The key goal these papers share is relating a self-supervised 
training objective to a supervised one measured on a small 
set of labeled data by, e.g., showing that the SSRL loss can be 
interpreted as an upper bound to a supervised loss. Such anal-
yses typically rely on making assumptions about the data-gen-
erating process that are hard to verify in practice. We briefly 
outline three recent approaches to connecting SSRL with con-
ventional statistical learning theory: one approach that applies 
to only instance discrimination methods [48], another that pri-
marily considers how SSRL learns useful representations for 
natural language tasks [49], and finally, a paper that makes use 

of conditional independence to further elu-
cidate how masked prediction pretext tasks 
lead to useful representations.

The analysis of contrastive-instance 
discrimination methods for SSRL [48] is 
predicated on the assumption of a specific 
data-generating process. In particular, they 
assume that the data are generated by a mix-
ture of distributions associated with latent 
classes. For example, there is a distribution 
over the pixels in an image associated with 

the concept “dog,” and there is some prior probability that an 
image from a particular domain will contain a dog. They dem-
onstrate that one can bound the supervised loss by

 L L C F[ ( , , )] [ ( , )] ( ) ( , , ),f x y f x s nE E,x y x ssrl0 1 # t d+ +-
-   

 (14)

where L ( , )ssrl $ $
-  is a modification to the contrastive loss that 

considers only negative pairs, and ( )s t  is a function of the 
mixing coefficients, ,t  over the latent classes. This bound 
relies on f being a centroid classifier on top of the network 
trained with SSRL, and it is shown that this line of analysis is 
of limited use on more general families of models.

SSRL on text data is often formalized as a masked predic-
tion problem where, given the first part of a sentence, the task 
is to predict the next word or remainder of the sentence. Recent 
work [49] has provided a concrete link between the perfor-
mance on this pretext task and the performance one can expect 
to see on natural language classification problems. However, 
their analysis does require an assumption for how classification 
tasks can be reformulated to make them more comparable with 
the sentence-reconstruction pretext task. Their first contribu-
tion is to formalize this assumption as a falsifiable hypothesis 

One of the standard 
assumptions made in 
learning-theoretic analysis 
is that the elements in  
the training and test sets 
are sampled from the 
same distribution.
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and empirically verify that it holds, in practice. Their second 
main contribution investigates the transfer performance of 

optimal-e  language models, namely, those that achieve an 
expected cross-entropy loss within e  of the  expected loss of 
the best possible model. They show that, conditioned on this 
empirically verified hypothesis being true, if one can find a 
model for next-word prediction with an optimal-e  cross-entro-
py loss, then the cross-entropy loss for a downstream clas-
sification task will be .O e^ h  This implies that developing 
models that are better at the next-word prediction pretext task 
will translate into better feature representations for natural lan-
guage classifiers.

Lee et al. [50] conduct a more general analysis of masked 
prediction pretext tasks that is not restricted specifically to 
the NLP domain. Recall that masked prediction pretext tasks 
take each source instance x( )

i
s  and produce two new objects, xi  

and ,zi  which contain subsets of the elements in the original 
instance. It is shown in [50] that if there is conditional inde-
pendence between xi  and zi  given the downstream label (and 

optionally some additional latent variables), then any model 
that successfully predicts zi  from xs  must be estimating the 
label (and optional latent variables). They further generalize 
their results to the case where one must only assume some 
notion of approximate conditional independence, which they 
quantify in terms of covariance matrix norms.

Although there have been some advances in understand-
ing why contrastive and masked prediction schemes can lead 
to discriminative representations for downstream tasks, this 
work does rely on assumptions about the data (e.g., conditional 
independence) that have not been verified to occur in practice. 
Moreover, the empirical results associated with proce-
dures from other parts of our taxonomy, such as TP and deep 
clustering, have still not been investigated. An example of how 
further work could address gaps in our current understand-
ing is to extend theoretical frameworks analyzing (shallow) 
clustering methods [51] to the deep SSRL paradigm. Future 
work addressing these limitations would be useful for SSRL 
researchers and to the broader AI community that make use of 
pretrained features.

Methods and data sets
In this section, we review major techniques and considerations 
broken down by data modality. The summaries of major meth-
ods and data sets for image, video, text, time series, and graph 
modalities are provided in Tables 1 and 2, respectively.

Images
Computer vision tasks performed on still images vary broadly 
from recognition (whole image classification), detection 
(object localization within an image), and dense prediction 

Table 1. The notable methods in each modality.

Method Pretext Task Code/PT 

Images RotNet [33] TP Y/Y 

iGPT [52] MP Y/Y 

Colorization [53] MP Y/Y 

Inpainting [26] MP Y/Y 

MoCo [40] ID Y/Y 

SimCLR [5] ID Y/Y 

BYOL [6] ID Y/Y 

SwAV [7] Cl Y/Y 

Video/MM VCP [54] MP Y/N 

CLIP [43] ID Y/Y 

XDC [9] Cl N/Y 

ViLBERT [55] MP + ID Y/Y 

Text word2vec [22] MP Y/ Y 

ELMo [56] MP Y/ Y 

BERT [12] MP Y/Y 

GPT [13, 32] MP Y/Y N/N 

S and TS CPC [11] MP N/N 

wav2vec [10] MP Y/Y 

STRN [34] TP Y/Y 

Graph Node2Vec [14] MP Y/N 

GraphSAGE [57] MP Y/N 

DGI [15] ID Y/N 

GPT-GNN [27] MP Y/Y 

GraphTER [24] TP Y/Y 

code/PT: indicates whether a code-base and pretrained models are available, 
respectively. MP: masked prediction; ID: instance discrimination; BYOL: bootstrap 
your own latent; Cl: clustering; S and TS: speech and time-series; Y/Y: yes/yes; 
Y/N: yes/no; N/Y: no/yes; N/N: no/no.

Table 2. The common source data sets used in each modality.

Source Size 

Images ImageNet [35] 1.3 million images 

YFCC100M [59] 100 million images 

iNaturalist [60] 2.7 million images 

Video and MM Kinetics [61] 650,000 videos 

YouTube-8M [62] 8 million videos 

HowTo100M [63] 136 million videos 

Text WikiText [64] 100 million tokens 

OpenWebText [65] 40 GB of text 

Common Crawl [66] 410 billion tokens 

S and TS Librispeech [67] 960 h of speech 

Libri-Light [68] 60,000 h of speech 

AudioSet [69] 580,000 h of audio 

Graph Open Academic Graph 
[70] 

178 million nodes, 2 bil-
lion edges

Amazon Review Recom-
mendation [71]

113 million nodes 

PROTEINS [72] 1,100 graphs 
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(e.g., pixelwise segmentation). State-of-the-art performance 
on all of these tasks is achieved by supervised deep learning, 
and thus, SSRL aims to alleviate the annotation bottleneck in 
computer vision by providing self-supervised pretraining that 
can be combined with data-efficient fine-tuning.

Computer vision has long been dominated by the use of 
CNNs that use weight sharing to reduce the number of learn-
able parameters by exploiting the spatial properties of images. 
State-of-the-art architectures usually start with CNN repre-
sentation encoding (·),hi  with residual networks (ResNet) [1] 
being widely used, before appending task-specific decoding 
heads .gz  Many of the initially successful practices in SSRL 
used ResNet backbones [5], but a recent trend has brought 
transformer architectures into the vision domain [52]. One 
notable version is a vision transformer [58], which is increas-
ingly being used by recent self-supervised methods on image 
data [43].

Methods
All types of pretext tasks (see the “Pretext Texts” section) 
have been widely applied in still imagery (see Table 1). The 
earliest example of a self-supervised system, given the modern 
interpretation of the phrase, is the work of [37]. This paper 
introduced two fundamental ideas still relevant to techniques 
being developed today: 1) metric learning with a contrastive 
loss, and a heuristic for generating training pairs that can be 
used to train an NN feature extractor; 2) side information, 
such as the relative position or viewing angle of training imag-
es, can be used to learn invariant or equivariant features. The 
subsequent methods that focused on SSRL for single images 
also pursued the goal of developing feature extractors that are 

invariant to different types of transformations through trans-
formation augmentations [23].

Several approaches fall into the TP family, focusing on 
modifying unlabeled images using a known transformation, 
like rotation [33], and then training the network to predict the 
angle of that rotation. The others mask out information in the 
training images and require the network to reconstruct it, lead-
ing to pretext tasks such as colorization [53] and inpainting 
[26], where color channels and image patches, respectively, are 
removed. A state-of-the-art example in this category is iGPT 
[52], which exploits a self-attention architecture and masked 
prediction for representation learning.

The majority of recent schemes focus on the relationships 
between different images in the data set, using instance 
discrimination [5], [40] or clustering [7]; and heavy data 
augmentation has become a vital component required by 
all procedures to achieve high performance. Progress has 
accelerated rapidly in the last two years, with the latest 
methods now systematically outperforming supervised pre-
training in diverse downstream tasks and data sets [29], as 
shown in Figure 5.

Data sets
As in much of computer vision, ImageNet [35] is the most 
typical source data set for self-supervised pretraining [5]–[7], 
[40], consisting of 1.28 million training images across 1,000 
object categories, with the most commonly used resolution at 
224 × 224. Many methods are increasingly using data sets 
much larger than ImageNet. For example, YFCC100M [59], 
with 100 million images from Flickr, used by Caron et al. 
[46], and by the authors in [36], with 3.5 billion images from 
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Instagram. The subsets of the latter are used by the authors 
in [7] and [40].

The ImageNet benchmark is a highly curated data set, 
with certain biases that do not appear in natural images, such 
as centering of objects and clear isolation of object from back-
ground. iNaturalist [60] is a collection of wildlife data sets 
compiled by a citizen science project, where members upload 
their own photographs and others collectively annotate them. 
This forms a more natural data set that exhibits class imbal-
ance and distractor objects, which often complicate real-
world tasks. Although it has not yet served as the source data 
set for any new method, it has been used to benchmark the 
robustness of existing SSRL techniques to more uncurated 
data [73].

Applications
On established benchmarks, SSRL has had widespread and 
significant success in matching and surpassing supervised 
pretraining performance, especially for image recognition 
tasks, and in photo imagery of similar character to ImageNet 
(see Figure 5). Progress in transfer to more diverse downstream 
tasks such as detection and segmentation as well as downstream 
data sets, which are out of distribution with respect to pretraining 
data, has also been steady [29], if less rapid.

Beyond common benchmarks, SSRL has been successful-
ly applied in application areas where labeled data are sparse, 
such as Earth-observation remote sensing [74]. In these cases, 
pretraining on the available, unlabeled target-domain data 
was beneficial to compensate for sparse annotations. A grow-
ing downstream consumer of SSRL is the medical imaging 
domain, where labeled data are often intrinsically sparse or 
too expensive to collect in bulk for end-to-end learning from 
scratch. For example, the authors in [75] used unlabeled brain 
scan images to perform image restoration (an inpainting-like 
task), improving upon random initialization for fine-tuning 
several downstream tasks. A somewhat unique feature of the 
medical imaging domain is the processing of 3D volumet-
ric images, such as from magnetic resonance. This has also 
recently inspired various extensions of standard pretext tasks 
into 3D [76].

A final application where SSRL pretraining has been success-
fully applied is that of anomaly detection. SSRL-based approach-
es typically either train a feature to be used in conjunction with a 
classic generative anomaly detector, or more interestingly use the 
SSRL objective itself to produce an anomaly detection score. For 
example, current state-of-the-art anomaly detectors [77] rely on 
SSRL training of rotation prediction, with the rotation prediction 
accuracy providing the anomaly score.

Video and multimodal
In the domain of video and multimodality, diverse tasks are of 
interest, including video recognition, action/event detection 
(localization of an event within a longer video), tracking (localiz-
ing an object within frames and across time), and cross-modal 
retrieval (e.g., retrieving a video frame given associated subtitles). 
State-of-the-art architectures again dominate all of these tasks, 

given access to sufficient training data to train encoder and task-
specific decoder components.

Common architectures (·)hi  for encoding videos include 
3D CNNs or multistream encoders that process appearance and 
motion separately. In the case of multimodal processing of video 
and audio, or video and associated text, one requires a synchro-
nized video CNN encoder as well as a text/audio encoder (e.g., 
a recurrent NN) to encode the multimodal streams. These data 
streams may then be fused into a single representation and decod-
ed at each time step (e.g., for localization/detection), or first pooled 
over time (e.g., for video-level recognition).

Methods
TP and contrastive-instance discrimination methods are the most 
widely used for SSRL in video. There are a wide variety of TP 
pretexts in video. Rotation, and colorization discussed earlier, are 
also widely generalized to video data. Making more unique use 
of the temporal nature of video, one can, for example, predict the 
ordering of frames or clips [8], or the speeding up or slowing 
down of videos.

In terms of contrastive-instance discrimination methods, 
data augmentation has been the main mode of obtaining dif-
ferent views in still imagery. However, for videos, several 
approaches exploit multiple sensory views, like red, green, 
blue (RGB); optical flow; depth; and surface normals [41], [78], 
which provide different views for learning cross-view video 
clip matching.

A recent notable method in the instance discrimination 
family is CLIP [43], a visuolinguistic multimodal learning 
algorithm that has further advanced the state of the art in robust 
visual representation learning by crawling pairs of images and 
associated text from the Internet, and exploiting them for cross-
view contrastive learning. Massive multimodal pretraining was 
shown to lead to excellent performance on diverse downstream 
tasks, including language-based image retrieval.

Clustering has been used in similar ways to match inputs 
from different modalities to the same clusters [9]. Finally, 
masked prediction has been applied through filling in masked-
out clips [54].

Data sets
There are several data sets of videos used for pretraining in 
this modality. Kinetics [61] is a large, action recognition 
data set of human–object and human–human interactions, 
collected from YouTube videos. One version, Kinetics-400, 
contains approximately 300,000 videos. There are larger 
versions of the data set, with up to 700 classes and 650,000 
videos. Recently, a group of very large-scale data sets have 
been constructed from publicly available videos on social 
platforms, like YouTube-8M [62] and HowTo100M [63], 
the latter containing 136 million YouTube instructional 
videos featuring narration with captions across 23,000 
visual tasks.

For methods using multiple modalities, the visual and audio 
information often come from the large video data sets dis-
cussed previously [79]. An additional data set considered here 
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is AudioSet [69], an audio event detection data set. For schemes 
using text information, this is often obtained from automated 
transcription using automatic speech recognition (ASR). Other 
data sets have textual information built in, such as subtitles or 
video descriptions.

Applications
As outlined in the previous section, the most common applica-
tion and benchmark scenario for video SSRL is in video 
action recognition and detection in various guises. SSRL has 
made rapid progress in this area, and state-of-the-art methods 
trained on massive pretraining sources lead to significantly 
better performance than direct training on an array of standard 
benchmarks [9] but do not yet reliably surpass supervised pre-
training on the same source data sets as in the case of still 
images earlier.

Similar to the still-image domain, SSRL has been success-
fully applied to video anomaly detection. For example, given 
a TP pretext task of arrow-of-time prediction (differentiating 
forward- versus reverse-frame sequences) among others, vid-
eos with a high probability of being reversed can be considered 
anomalous [17].

Video data are often multimodal, covering RGB-depth, 
video plus audio, or video plus text (e.g., from script- or text-
to-speech) modalities. It is noteworthy that several studies [41], 
[79] have explored how SSRL on multimodal source data can 
be used to learn a stronger representation for single-modality 
downstream tasks, and ultimately outperform single-modality 
pretraining on diverse downstream tasks in unimodal video, 
still-image, or audio domains [79].

With regard to the video and text, several recent SSRL stud-
ies have learned joint multimodal representations. Notably, 
ViLBERT [55] exploited both BERT-like masked prediction 
and contrastive-instance discrimination to learn a multimod-
al representation, which then achieved state-of-the-art per-
formance in downstream vision and language tasks such as 
caption-based retrieval, visual question answering (QA), and 
visual common sense reasoning.

Text and natural language
Natural language processing (NLP) methods aim to learn from 
raw input text and solve a wide variety of tasks, ranging from 
low level, such as word similarity, part of speech tagging and 
sentiment, to high-level tasks such as QA and language trans-
lation. The state-of-the-art approaches are often based on 
deep-sequence encoders such as long short-term memory 
(LSTM), and in recent years, self-attention-based approaches 
have been dominant [2]. With data annotation being a major 
bottleneck, NLP was the first discipline to make major and 
successful use of self-supervision [22].

Methods
SSRL has been a fundamental component in NLP for many 
years. Masked prediction methods have been particularly 
effective in this modality, with word embeddings becoming 
widely adopted as they succeed in producing representations 

that capture the semantic similarity of words as well as being 
able to deal with arbitrary vocabulary sizes. Word2vec [22] 
and related approaches work by either predicting a central 
word given its neighbors, called continuous bag of words, or 
predicting the neighbors given the central word, called skip-
gram. Given such pretrained word embeddings, a target task is 
then solved by mapping input tokens to their vector embed-
dings and learning a model on top of them. As the embedding 
for a word is fixed after training, it cannot adapt to the context 
in which the word appears, causing a problem for words with 
many meanings.

As opposed to these noncontextual embedding methods, 
topical contextual approaches learn embeddings, which 
change depending on the surrounding words. The two most 
common approaches to this are next-word [13] and masked-
word prediction [12], with the landmark BERT process 
combining the latter with next-sentence prediction [12]. For 
the encoder architecture, recurrent networks like LSTMs 
[18] have long been used to model the context while recent 
works have moved to transformer-based architectures with 
self-attention [2], which allow longer-range connections to 
be made across words in a sentence but require more data 
for training. A final trend is that new models are becoming 
bigger, counting ELMo  [56] at 94 M, BERT [12] at 340 M, 
GPT-2 [13] at 1.5 billion and GPT-3 [32] at 175 billion param-
eters. The recent progress on this type of large-scale masked 
prediction has led to performance surpassing human base-
lines on language-understanding tasks. This can be seen in 
Figure 6, where we show the performance of selected top 
models from the leaderboard of the common SuperGLUE 
[80] benchmark. 

All the techniques discussed previously belong to the 
masked prediction family of methods, and they have been 
the most successful and widely adopted. But there are 
examples of TP, such as recovering the order of permuted 
[81] or rotated [81] sentences. These have often been used as 
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FIGURE 6. The performance of SSRL methods on the textual benchmark 
SuperGLUE, compared to a baseline of human performance. The selected 
techniques were taken from the official leaderboard at https://super.
gluebenchmark.com/leaderboard.  
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 complementary signals to improve downstream performance 
on a particular task.

Data sets
Self-supervision in language has been shown to benefit from 
ever-larger corpora of text. This has led to huge data sets 
being created, primarily by crawling the web for the data. 
The early word embeddings made heavy use of Wikipedia 
articles [64], or crawls of news sites and social media sites 
like Twitter. As models have become larger and require more 
text to train on, the organizations training these models have 
begun using private data sets, which are not publicly avail-
able [13], [32]. Attempts have been made 
at replicating the data used in such papers, 
for example the OpenWebText Corpus 
[65]. Another example is Common Crawl 
[66], a nonprofit project that makes data 
from billions of web pages freely accessi-
ble. Various data sets have been created 
from this data, and filtered versions of the 
entire corpus often form the bulk of train-
ing sets [32]. Using a combination of the 
aforementioned data sources, the total size 
of the training set used in state-of-the-art language modeling 
is now on the scale of 500 billion tokens [32].

Applications
SSRL has made a major impact on a host of problems involv-
ing multiple languages, which introduces a new kind of 
source/target dichotomy besides the task- and domain-level 
dichotomies we have focused on thus far. In the simplest 
(within-language) scenario, SSRL can benefit all the standard 
language-understanding tasks (classification, QA, and so 
forth) for low-resource languages. One can pretrain SSRL 
models on large corpora of high-resource languages before 
fine-tuning them on smaller corpora of low-resource languag-
es [25]. For cross-language tasks such as machine translation, 
one can pretrain SSRL models (e.g., for masked prediction) 
that are multilingual, in that they simultaneously encode/
decode data from more than one language. These multilingual 
language models are then well primed for comparatively low-
data fine-tuning for translation [25], or provide good repre-
sentations to drive unsupervised [25] learning of translation 
models. This is valuable, as vanilla translation models are 
extremely expensive to supervise due to requiring a vast num-
ber of aligned (translated) sentence pairs across languages.

The conventional, task-specific fine-tuning, as outlined 
in the “Background” section, is the dominant paradigm for 
exploiting SSRL in language. However, a notable exception to 
this is in the recent GPT-3 [32] language model. A key obser-
vation in this work is that a sufficiently scaled-up 175 bil-
lion parameter generative language model can often perform 
few- or zero-shot learning of a new task in a purely feedfor-
ward manner (no backpropagation or fine-tuning) simply by 
prompting the model with a few training examples, the query, 
and allowing it to complete the answer. 

Considerations
A growing concern in language modeling is the extent to 
which biases implicit in the large training corpora for SSRL 
become baked into the resulting language models, for exam-
ple, sexist or racist stereotypes. Vast corpora must be used for 
SSRL, so training data cannot be manually filtered for appro-
priateness. A small but growing body of work aims to develop 
SSRL variants with reduced bias [82].

Audio and time series
The classic approaches to audio analysis tasks such as 
speech recognition compute mel-frequency cepstrum coeffi-

cients (MFCCs) from the raw audio data 
and then model the sequence via both 
Gaussian mixture and hidden Markov 
models. Meanwhile, contemporary NN 
approaches trained by supervised learning 
have dominated in settings where mas-
sive, annotated training data are available 
[83]. Against this backdrop, self-super-
vised methods have very recently made 
massive advances in alleviating this anno-
tation bottleneck, enabling state-of-the-art 

audio analysis procedures to be trained with relatively 
sparse annotations.

Self-supervised methods in the audio analysis arena have 
exploited architectures hi  spanning all the popular options for 
time-series data, including recurrent [84], convolutional [11], 
and self-attention [10] networks. These are usually applied 
directly to raw waveform data to build a representation without 
any preprocessing step, such as an MFCC.

Methods
In terms of self-supervision algorithms, numerous studies 
have successfully adapted the insights of self-attention-based 
language models [12] to audio data. As a pretext task, random 
segments of the input sequence are masked and predicted by a 
self-attention architecture. However, a key difference is that 
language models work with discrete token sequences, thus 
enabling the pretext to be formalized as a multiclass classifica-
tion, while audio time series are naturally continuous. Thus, 
solutions to formalizing a masked prediction task for audio 
have either quantized the speech embedding for classification, 
including wav2vec-2.0 [10]; applied contrastive losses to dif-
ferentiate the masked segment from alternative distractors, 
such as CPC [11]; or replaced classification-based predictions 
with regression layers to directly synthesize the masked 
frame, such as an APC [84]. Other approaches such as PASE 
[85] go beyond defining a single self-supervision pretext task 
to combine several losses, each predicting or classifying a dif-
ferent property of the input.

Data sets
Although it is not as strong as in the text modality, there is 
still a trend for newer models to train on ever-larger data sets. 
Small data sets historically used for model training are now 

A growing concern in 
language modeling is the 
extent to which biases 
implicit in the large 
training corpora for SSRL 
become baked into the 
resulting language models.
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reserved for downstream evaluation, with contemporary meth-
ods being pretrained on Librispeech [67], containing 960 h of 
speech from audiobook readings, and Libri-light [68], a much 
larger data set (60,000 h of similar audiobook recordings).

Applications
A notable success in speech was shown by wav2vec 2.0 
[10], which used transformers plus masked prediction SSRL 
on 53,000 h of unlabeled data prior to fine-tuning a down-
stream speech recognition system. This was subsequently 
able to surpass prior state-of-the-art ASR performance with 
10-fold less-supervised data than used before, and approach 
the state of the art with 100-fold less-supervised data than 
before. Albeit at the cost of 660-GPU days of SSRL com-
pute, this is a dramatic improvement in data efficiency. In 
terms of representation learning on more general time-
series data, masked prediction methods based on a trans-
former architecture have been shown to match supervised 
state of the art in a suite of benchmarks in diverse applica-
tion areas [86]. 

A major application area for self-supervised time-series 
analysis is medical data, where annotations are hard to col-
lect. There has been progress in applying SSRL to electroen-
cephalogram (EEG) and electrocardiogram (ECG) data [34], 
[87]. For example, using TP SSRL prior to training ECG-based 
emotion recognition [34] and contrastive-instance discrimina-
tion SSRL prior to learning downstream, EEG-based, motor-
movement classification and ECG-based anomaly detection 
[87]. In terms of time-series forecasting, transformers based 
on sequential masked prediction pretext have significantly out-
performed conventional autoregressive models in predicting 
disease transmission [88].

Graphs
Graph-structured data are ubiquitous in the networked world 
and support a diverse array of tasks, including node, edge, and 
graph classification. These tasks should all be informed by 
both node/edge features where available, and graph connectiv-
ity. Graph NNs (GNNs) [89] have advanced all these tasks sig-
nificantly, especially where massive-labeled data are available. 
Thus, a large body of work on self-supervised graph represen-
tation learning has emerged to facilitate downstream GNN-
based tasks.

Graph-based SSRL can be somewhat unique in several 
aspects. Depending on whether the ultimate task of interest 
requires node- or graph-level predictions, methods may focus 
on learning node- [15], [27], [57] or graph-level [90] represen-
tations, or both [91]. Graph-based approaches also differ in 
whether they are oriented at training on a set of graphs [15], 
[90] (compare a set of images or audio clips in other modali-
ties), or on a single large graph [14].

Methods
The early shallow methods for self-supervised graph represen-
tation learning used NLP-inspired masked prediction 
approaches to learn node embeddings, for example, based on 

random walks on the graph [14]. Much as shallow word 
embeddings have been eclipsed by deep language models in 
NLP, newer graph representation learning architectures that 
focus on graph convolutional networks or self-attention have 
driven progress in this modality.

In terms of self-supervision objectives, most of the work in 
this area falls into masked prediction and instance discrimi-
nation categories. Several recent techniques optimize mutual 
information-based, instance discrimination objectives, with 
DGI [15] and InfoGraph [90] performing contrastive-instance 
discrimination between pairs of nodes/patches and whole 
graphs. Masked prediction pretexts were used both by clas-
sic shallow approaches [14] as well as recent deep approach-
es such as GPT-GNN [27]. A minority of approaches have 
applied transformation prediction practices, such as Graph-
TER [24], where nodewise transformations are applied and 
predicted by a GNN.

An important dichotomy in graph-based representation 
learning is between transductive and inductive graph rep-
resentation learning methods. The majority of schemes are 
transductive in that they learn embeddings specifically for 
nodes seen during, and so are primarily relevant in applica-
tions where the downstream task uses the same graph data as 
is used for pretraining. This is analogous to how the word2vec 
algorithm [22] in language learns embeddings for words in its 
training set, but cannot produce embeddings for unseen words. 
A minority of methods are inductive [27], [57] in that they 
learn embedding functions that do not depend on a specific 
choice of input graph, and thus can be transferred to new target 
nodes or graphs.

Data sets
As the graph-structured data occur so pervasively, they cover a 
wide range of data-type tasks. The major examples include 
social [57], citation [70], chemical [92], and biological net-
works [93]. Because there are many different kinds of graphs 
with different structures and sizes, there is no one-size-fits-all 
source data set, which consistently improves transfer, as in 
many of the previously discussed modalities. It instead 
depends on the tasks of interest.

For learning in the transductive setting, pretraining must 
necessarily be done on the same graph as the testing, thus lim-
iting the task transfer, not domain-transfer. For the inductive 
setting, the source data can differ from the target, but in most 
evaluation cases, the test set consists of nodes that were hidden 
from the training graph [27], or unseen graphs from the same 
underlying data set [93]. Like in other modalities, we have seen 
increasingly large graphs being used for pretraining, like the 
Amazon Review Recommendation data [71] with 113 million 
nodes or the Open Academic Graph [70], which consists of 
more than 178 million nodes and 2 billion edges.

Applications
Self-supervised, graph-based representation learning is 
expected to benefit all graph-based prediction applica-
tions where data are limited. This is especially the case in 
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 computational chemistry and biology applications, where 
graphs and the associated annotations may correspond to mol-
ecules and corresponding molecular properties. In such appli-
cations, data are intrinsically hard to collect, but predicting 
graph properties can significantly impact tasks such as drug 
and material discovery [92], [93]. In computer vision, using 
lidar rather than RGB sensors leads to observations represent-
ed as point clouds or graphs, as opposed to conventional imag-
es. In this case, self-supervised graph representation learners 
such as GraphTER [24] have led to excellent performance in 
object segmentation (i.e., node classification) and classifica-
tion (i.e., graph classification).

Discussion

Pretraining cost
The pretraining cost of different SSRL methods is not consis-
tently documented, and hardware platform/GPU differences 
make them hard to compare quantitatively. Nevertheless, 
clearly, we can see that state-of-the-art techniques in computer 
vision, speech, and text (Tables 1 and 2) require massive 
resources on the order of 100 s of GPU days for training on 
ImageNet, Librispeech, and Wikipedia corpora, respectively. 
The general-purpose pretrained nature of these representations 
may amortize this cost somewhat by enabling many down-
stream problems to be solved with the same representation. 
This has largely been the case in the text 
modality where there has been strong suc-
cess fine-tuning generic pretrained models 
to diverse tasks [12]. However, this may 
not be possible in other modalities such as 
graphs, which may require transductive 
training, or vision, where domain-specific 
pretraining may be necessary for data very different from 
ImageNet, such as hyperspectral imagery or volumetric mag-
netic resonance imaging. In this case, the pretraining cost 
poses an accessibility barrier to modestly resourced organiza-
tions, and an environmental issue [94] due to its energy 
requirement. Although there is also tremendous research activ-
ity in developing more efficient pretraining algorithms, the net 
cost of pretraining is trending upward due to the fact that 
bigger data sets and larger network architectures have sys-
tematically led to better performance.

Data requirement and curation
For text [32] and speech [10], the literature unambiguously 
shows that thus far, performance increases consistently with 
ever-larger data sets. In the case of text, this result further 
seems to be relatively insensitive to the degree of curation of 
the data.

For images, the majority of recent work still uses ImageNet, 
with its 1.28 million images as the source set [6], [7]. However, a 
number of studies have shown that using larger pretraining data 
sets [36], [59] benefits transfer performance [16], [36], with fea-
ture quality growing logarithmically with data volume [16]. For 
video pretraining, state-of-the-art models use the  increasingly 

large YouTube-8M-2 [62] and HowTo100M [63] with combined 
video playtimes of 13 and 15 years, respectively.

The vision of SSRL is to enable representation learning 
on easily obtained, uncurated data. However, for benchmark-
ing purposes (especially in vision and audio and graphs, but 
less so in text), methods are often actually trained on curated 
data while ignoring the labels. It is not clear how much exist-
ing algorithm design is overfitted to these curated data sets, 
and whether the relative performance of different approaches 
is maintained when real, uncurated data are used instead. 
For example, in computer vision, most of the pretraining is 
performed on ImageNet, which is large and diverse, yet uni-
formly focused on individual objects. If this was replaced 
with scene images of multiple cluttered objects, then typi-
cal instance discrimination tasks like mapping two different 
crops of one image to the same identity could create false-
positive pretext label noise that maps different semantic 
objects to the same representation [95]. We are beginning to 
see new SSRL methods designed for data with different sta-
tistics, such as cluttered images [95].

Architecture choice and deployment costs
For both image [5], [16] and text [12] analysis, the trend has 
been that bigger architectures lead to better representation per-
formance, especially when coupled with extremely large pre-
training data sets, and challenging pretext tasks [16]. This is 

welcome from the perspective of near-
“automatic” performance improvement as 
data sets and computation capabilities grow. 
However, it does pose a concern for deploy-
ment of the resulting models on resource-
constrained or embedded devices with 
limited memory and/or computation capa-

bility, which may limit the benefit of this line of improvement 
for such applications.

A standard approach to alleviate this issue is to perform 
SSRL of large models as usual followed by using unlabeled data 
to perform posttraining distillation of the large, self-supervised 
model into a smaller, more compact but similarly performant 
student model. For example, in vision, this has been demon-
strated to compress a ResNet-152 × 3 model to a ResNet-50 of 
similar performance [5]; in text, a 109-M parameter/22.5-gflop 
BERT model can be distilled to a 14.5-M/1.2-gflop BERT 
model with a similar performance [31].

Transferability
The vision of SSRL is to produce features that transfer to a 
wide range of downstream tasks. The extent to which this has 
been realized varies by discipline/modality. In vision this is on 
its way, with many studies evaluating transfer performance 
[16], [29], but no single benchmark has yet been widely 
agreed upon. Recognition has been the most common scene of 
transfer assessment, but recently, detection and dense predic-
tion have also been embraced [6], [7], [29]. However, 
ImageNet Top-1 accuracy is still the main metric used in 
model comparisons. As reported by Ericsson et al. [29], this 

The vision of SSRL is to 
enable representation 
learning on easily 
obtained, uncurated data.
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metric shows high correlation with downstream-recognition 
performance. Their results for detection and dense prediction, 
however, show markedly lower correlations, indicating that 
current SSRL methods are not optimized for such a broad 
transfer [29]. For practitioners with new data and tasks, this 
means that the best-performing SSRL model on ImageNet can 
be safely adapted to recognition tasks. However, if the task 
differs, then more models need to be considered. Additionally, 
if the images of the target domain are unstructured or exhibit 
different properties to ImageNet images, then further caution 
must be taken when choosing a pretrained model. This is fur-
ther expanded on by Mac Aodha [73], who shows how SSRL 
models fail to compete with supervision on “in-the-wild” data 
sets containing plant and animal species, contrasting what has 
been found for curated data sets [29].

In video and multimodal settings, common transfer evalu-
ation considers transfer from large source data sets, such as 
Kinetics [61], to standard target data sets such as UCF101. 
State-of-the-art procedures successfully leverage large 
source data sets and approaches but do not yet outperform 
supervised pretraining [78]. Nonetheless, there has been an 
uptake of SSRL methods in applications such as tracking [96] 
and detection.

In text, the field has matured more already. Here, several 
broad benchmarks, such as SuperGLUE [80], are regularly 
used to monitor progress. The main mode of transfer in NLP 
has long been to fit a linear model or fine-tune an SSRL model 
like BERT [12], and on many tasks on the above benchmarks, 
fine-tuned SSRL models achieve top results. The recent GPT-3 
[32] has shown that huge SSRL models can achieve competi-
tive performance via few-shot adaptation instead of full fine-
tuning, especially on language modeling and QA. In summary, 
text models exhibit relatively high transferability, with SSRL 
pretraining dominating in a broad range of downstream tasks.

In speech and time series, the focus thus far has been nar-
row, with only a few tasks and data sets forming the evaluation 
landscape. These cover phoneme recognition, and occasional-
ly, speaker identification or emotion classification. Most of the 
work focuses on English-language speech, both for pretraining 
and transfer. However, very rapid progress is currently being 
made in multilingual [97] speech models and cross-lingual 
transfer [98], so prospects for transferability seem promising.

The current state of the graph modality is that transfer-
ability is good to unseen nodes within the same graph and to 
unseen graphs within the same data set, e.g., protein-protein 
interactions [93]. However, there is little information to sug-
gest transfer across graph types, like chemical-to-biological or 
citation-to-social, currently has any benefit.

Choosing the right pretext task
As we have seen, the four families of pretext tasks can be 
applied to all the different modalities. But because self-super-
vised pretexts rely on exploiting the structure of data, which in 
turn differs significantly across modalities, their efficacy can 
vary substantially across modalities. One such clear trend is 
that masked prediction is ubiquitous in the text modality [12], 

[22], [32], with other tasks being significantly less effective. 
And when other tasks are used, they are often complementary 
to a masked prediction loss [81]. In images, masked prediction 
and TP have been tried in various forms and drove initial prog-
ress, but the most recent advances in these modalities have 
been driven by instance discrimination [5], [78] and clustering 
[7], [9]. However, TP is still seeing success in videos, presum-
ably because of the rich spatiotemporal information to be 
exploited. Finally, although there may be a dominant pretext 
strategy for a given modality, it is common that suitably 
designed combinations of pretexts applied in a multitask man-
ner can improve performance compared to a single pretext [81].

Picking a pretext based on the bulk of successes for the 
modality of interest is a good start. However, to further inform 
choice, one can further consider the assumptions that underlie 
each family of methods. Masked prediction relies on context 
being enough to fill in the missing parts of a data point. TP 
relies on each data point possessing a canonical view. Instance 
discrimination relies on each data point representing a unique 
semantic example, distinguished from all other data points in 
the training set, which may not hold for cluttered images, as 
discussed previously. It is notable that clustering requires no 
strong assumptions other than the existence of meaningful 
similarities by which to group the data into a certain number 
of clusters. Therefore, if little is known of the structure of the 
data, then a method based on clustering may be a good start.

A final consideration when selecting a pretext task is, 
which properties do we want in our representations? If our 
data modality is images and we are interested in exploiting the 
orientation of objects in our data, do we want our representa-
tions to vary with orientation?; in which case, we might want 
to use a TP technique like that which is detailed in [33]. Or 
do we want all orientations of the input to produce the same 
output?; in which case, we might instead choose an instance 
discrimination method that uses rotation-based augmentation. 
This question of equivariance or invariance can greatly impact 
the downstream performance of certain tasks. For example, a 
visual object classification task might benefit from invariance 
to spatial translation, but a detection task would need this infor-
mation to be preserved to correctly predict object locations.

If there are no specific downstream tasks in mind a pri-
ori and therefore no known required properties that must be 
learned, the ideal selection is not clear. In this case, we want to 
use the approach that best captures the core information in our 
data, which also has the best chance of being of use for later 
tasks. Finding such pretext tasks can be considered the main 
aim of the SSRL field of research.

Self-supervised versus semisupervised
In cases where the source and target data sets are the same or 
similar in content and label space, then both semisupervised 
and self-supervised approaches can potentially apply (see the 
“Background” section). As both families of methods are mak-
ing rapid progress and there have been few direct compari-
sons, it is not yet clear if/when one family should be preferred. 
However, because SSRL deals with initialization and Secure 
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Sockets Layer (SSL) pertains to refinement, the two strategies 
can, in principle, both be applied to one learning problem. 
There has yet been very little investigation into the extent to 
which these strategies can be complementary and further 
boost performance when used together; a preliminary result in 
computer vision suggests that they cannot [99]. However, pre-
liminary results in text [100] indicate that SSL and SSRL can 
be synergistic when used together.

Other benefits of SSRL
Although we have mainly focused on the benefits of SSRL 
with respect to accuracy in the low- and few-shot data regime, 
there are several other potential benefits: 1) The computational 
cost of fine-tuning a self-supervised model tends to be lower 
than training from scratch (although it is comparable to fine-
tuning a supervised pretrained feature). 2) If the supervised 
target task suffers from label noise, training leads to a much 
worse performance compared to using clean labels. However, 
SSRL also increases resilience to such label noise [28], which 
often occurs in practice. 3) Given a trained system, SSRL can 
also improve the robustness of image recognition to adversari-
al attacks as well as common corruptions such as blur, noise, 
and compression artifacts [28]. 4) Furthermore, SSRL leads to 
better calibrated probabilities [28], [29], which can be used to 
drive abstention of automated predictions or out-of-distribu-
tion detection [28]. 5) Finally, in terms of model interpretabili-
ty, feature extractors trained by self-supervision tend to lead to 
more reasonable and interpretable attention maps [29].

Recommendations for future work
The following few areas are recommended for future research:

 ■ Develop wider benchmarks. Several of the modalities we 
look at have a few standard downstream tasks against 
which they are consistently evaluated. This creates a bias 
toward making new methods that optimize only for those 
particular tasks. Instead, we should create benchmark 
suites that study the performance of pretrained models 
across a wide range of tasks within a modality. This has 
been done successfully in NLP and has driven progress, 
making sure that it benefits many areas of the field [80], 
but such standardized benchmarks are lacking in the other 
modalities we have considered.

 ■ Focus not only on tracking task performances in these 
benchmarks but also on other feature properties, like social 
biases, to obtain a broader understanding of how these 
models behave. Progress on reducing such biases can only 
really be done if we know about and can quantify them.

 ■ Be wary of relying on only scale to improve performance. 
As we use ever-larger data sets to train these models, 
increasingly, we know less about the data themselves as 
there is very little human oversight in the data collection 
process. By developing methods that are more data effi-
cient, i.e., don’t need billions of instances to learn, we can 
create models that are easier to understand and control. 
Additionally, as we develop larger models, their carbon 
footprint grows significantly [94]. We must make sure that 

the efficiency of training these models is tracked in com-
mon benchmarks.

 ■ Do not get stuck on training on only one specific source 
data set, as this will bias the type of methods that are creat-
ed. As an example, the highly curated and single-centered 
object style of ImageNet has led to a particular style of 
data augmentation and instance discrimination. However, it 
has been shown that on less-curated, in-the-wild images, 
these procedures underperform. By continuously consider-
ing different types of source data sets, we get a better pic-
ture of when and where a method works.
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