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Abstract We propose a novel bolt-on module capable of
boosting the robustness of various single compact 2D gait
representations. Gait recognition is negatively influenced by
covariate factors including clothing and time which alter
the natural gait appearance and motion. Contrary to tradi-
tional gait recognition, our bolt-on module remedies this by
a dedicated covariate factor detection and removal proce-
dure which we quantitatively and qualitatively evaluate. The
fundamental concept of the bolt-on module is founded on
exploiting the pixel-wise composition of covariate factors.
Results demonstrate how our bolt-on module is a powerful
component leading to significant improvements across gait
representations and datasets yielding state-of-the-art results.

Keywords Gait recognition · Covariate factor detection ·
Covariate factor removal

1 Introduction

This paper focusses on the gait recognition problem and
specifically boosting the robustness of popular single com-
pact 2D gait representations. To achieve this, contrary to
the traditional gait recognition flow, a dedicated covariate
factor detection and removal procedure is performed post
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representing gait; the flow therefore becomes gait representa-
tion, bolt-onmodule (covariate factor detection and removal),
feature vector extraction, dimensionality reduction and clas-
sification. Our contribution is threefold.

• We present our novel bolt-on module which com-
bines extensive covariate factor detection and aggressive
removal, and easily fits into existing gait recognition
schemes post gait representation construction.

• We define a “typical” gait representation which exposes
the underlying pixel-wise composition of covariate fac-
tors; this contributes a 15.9 % average state-of-the-
art increase across validation dataset covariate factor
sequences.

• In particular, we demonstrate that our bolt-onmodule can
generalise over a diverse set single compact 2Dgait repre-
sentations, varying in feature content and natural robust-
ness, to yield an average performance increase of 15.1%.

The initial concept of our bolt-on module [32] was designed
to boost Gait Energy Image [14] robustness and continued
to advance state-of-the-art results when validated [31] on a
more complex dataset. With these encouraging results, we
felt our bolt-on module could serve a greater purpose of ded-
icated covariate factor detection and removal to enhance the
performance of analogous single compact 2D gait represen-
tations. This paper therefore describes the quantitative and
qualitative evaluation generalising our bolt-on module for
deployment on a diverse set of single compact 2D gait repre-
sentations varying in feature content and natural robustness.

1.1 Motivation

Consider a subject carrying a rucksack (covariate factor). It is
natural for the rucksack to be deemed staticwith respect to the
human body, however this is a simplifying assumption. Nat-
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ural gait motion cases the rucksack to subsequently undergo
motion; therefore pixel-wise confusion occurs between
covariate factor motion and natural gait motion.

Currently few gait recognition approaches perform ded-
icated covariate factor detection and removal; the primary
focus instead considers gait representations and features
which yield a degree of covariate factor mitigation. There-
fore,we aremotivated by exploring howcovariate factors and
their motion affect pixel intensity values. This is achieved by
developing an understanding of how covariate factors cause
gait appearance andmotion alterations. Pixel-wise, covariate
factors cause (a) pixel addition, e.g. bags and coats add bulk
uniformly or in specific locations about the body, (b) pixel
occlusion, e.g. bags occlude trailing armmotion and (c) pixel
shifting, e.g. leaning due to compensation for a shifted centre
of gravity when carrying a bag.

1.2 Gait recognition

Gait recognition identifies a walking person; walking is
standard where alternative actions [34] are less common.
The fundamental walking pattern is similar across healthy
subjects where a unique gait is achieved through subtle mag-
nitude and timing variations attributed to walking manner
and posture [26]; this is established during early medical
[27] and psychophysics [9] research. Applications are real
world and manifold, where a considerable effort is dedicated
to surveillance tasks including crime detection; regardless,
gait recognition is a popular computer vision research topic.

Gait recognition is closely related to classical human
motion analysis studies, however modern gait recognition
surveys reflect current debates [6]. This paper is dedicated to
computer vision gait recognition, however alternative means
include wearable or floor pressure sensors [13] and acoustic
gait recognition [16]. Be aware that gait is capable not only
of determining identity, but also age [24] and gender [21],
however, these tasks are outside the scope of this paper.

Gait is classed as a behavioural biometric and is desir-
able over physiological biometrics, e.g. fingerprint, due to
capture (1) at distance, (2) low resolution, (3) without con-
sent, (4) without cooperation and (5) unobtrusively; further
still, gait is difficult to fake, disguise and forget. Therefore
it is imperative for gait recognition to deploy a means to
represent gait which is (1) discriminative during high sub-
ject numbers (hundred minimum), (2) robust to real-world
covariate factors, e.g. clothing, carrying a bag and complex
couples thereof and (3) efficient with respect to memory,
computational and processing costs.

1.3 Related work

Since early computer vision attempts [8,28], gait recogni-
tion has developed significantly and datasets have matured

equally to validate their robustness; this results in numerous
implementation debates. We discuss three major debates, (1)
model-based versus model-free approaches, (2) the quantity
of images utilised to represent gait and (3) existing research
deploying covariate factor detection and/or removal tech-
niques.

1.3.1 Model-based versus model-free approaches

Model-based approaches, such as [18,36], utilise human
body structure to track or model body segments, e.g. head,
legs, arms, extracted via anthropometric data [11,12]. Mod-
els yield static (e.g. body segment and stride lengths) and
dynamic (e.g. joint angle trajectories) features. Model-free
approaches, such as [14,15], conversely disregard human
body structure and instead target the appearance and motion
of gait. Representations are typically founded on silhouettes
given colour and texture are disregarded thus avoiding bias to
appearance given its inconsistency over time; popular deriv-
atives include contours, optical flow and skeletons.

Discussion. While model-based approaches are popular
due to their view and scale invariant properties, their reliance
on anthropometrics encourages sensitivity to body pose and
image quality. Conversely, model-free approaches exhibit
favourable qualities outweighing model-based approaches,
namely (1) insensitivity to image quality and noise, (2) lower
computational complexity and (3) handling low resolution
images typical to surveillance applications.

1.3.2 Quantity of images utilised to represent gait

A complete gait sequence contains an entire gait cycle, e.g.
left-to-left heel striking the ground.Model-based approaches
tend to utilise the entire gait sequence which is uneconomical
with respect to memory and computational cost. Key frames
[7] are selected for their saliency at fixed points during the
gait sequence, however this rejects a quantity of informa-
tion. Single compact 2D gait representations are popular with
model-free approaches and are constructed by space- and
time-normalising a gait sequence; this enables natural robust-
ness to noise and short term occlusion whilst constructing
an economical representation with respect to memory and
computational cost. Note that our novel bolt-on module is
designed for single compact 2D representations.

Manifold single compact 2D gait representations exist
promoting static features (torso), dynamic features (limb
motion) [14,17,19,33,35] or a combination thereof [1,2,
33,38]; those containing only dynamic features tend to be
naturally robust given their saliency [25] over time compared
toonly static features.Regardless of representations,misclas-
sification occurs from neglecting the following: (a) covariate
factor pixel-wise confusion with natural gait motion and (b)
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the degree, severity and uniqueness inwhich covariate factors
affect gait appearance and motion.

1.3.3 Covariate factor detection

Gait recognition strives to mitigate the effects of covariate
factors. The majority of approaches achieve covariate factor
mitigation as a by-product of robust gait representations or
features. However, there are relatively few approaches which
explicitly attempt to detect and/or remove the influence of
covariate factors; a select few are described. Li et al. [19]
specifically attempt to mitigate covariate factors relating to
carrying a bag and clothing. Anthropometrics are employed
to segment the body into six large regions. By monitor-
ing the pixel distribution within each region, those outside
normal ranges are deemed to be influenced by a covari-
ate factor and are therefore disregarded from subsequent
processing. This approach neglects the fact that covariate
factors may only partially affect a region, thus removing
potentially salient regions unhampered by covariate factors.
Bashir et al. [1] propose a feature selection mask. Given the
saliency of lower limb motion, the body is segmented into an
upper and lower region and pixel thresholds applied to reject
the typical appearance of covariate factors. This approach
neglects one of the fundamental limitations of gait recogni-
tion, namely pixel-wise confusion between covariate factor
motion and natural gait motion. Das Choudhury and Tjahjadi
[10] utilise Fourier descriptors based on the contour of the
silhouette. Specifically, the presence of a briefcase covari-
ate factor is confirmed should the number of contour points
increase above a set threshold. This approach neglects the
fact that covariate factors can exist within the confines of
the silhouette contour, thus causing covariate factors to go
undetected.

Discussion. From the aforementioned examples, it is clear
that our bolt-on module requires a flexible covariate factor
detection approach to (1) target covariate factors and thus
avoid removing potentially salient body areas unaffected
by covariate factors, (2) minimise the pixel-wise confusion
between covariate factor motion and natural gait motion and
(3) ensure that covariate factorswhich exist within the human
figure silhouette are not overlooked.

1.4 Validation

Our bolt-onmodule is applied to the Gait Energy Image [14],
Gait Variance Image [33], Skeleton Energy Image [33] and
Skeleton Variance Image [33] which vary in feature content
and natural robustness, demonstrated in Fig. 1. Validation is
performed on two of the largest and covariate factor rich stan-
dardised publicly available datasets: CASIA B [37,39] and
TUM GAID [15,16]. Overall, our bolt-on module enables
representations to achieve superior robustness thanks to ded-

icated covariate factor detection and removal procedures;
these ensure a significantly greater quantity of covariate fac-
tor related pixel intensity values are targeted (this is vital for
the trade-off between incorporating the natural inter-class
and intra-class variance versus minimising the pixel-wise
confusion between covariate factor and natural gait motion).

2 Gait representations

Our bolt-on module is designed for single compact 2D gait
representations which are popular for model-free gait recog-
nition. Single compact 2D gait representations boast (1) a
compact nature due to condensing a gait sequence into a sin-
gle 2D image, (2) natural robustness to noise and short term
occlusion due to the normalisation procedures applied and
(3) low computational and memory costs. Despite the com-
pactness, these representations remain discriminative.

We select a mixture of traditional and recent gait rep-
resentations which naturally vary in feature content and
natural robustness, namely the Gait Energy Image (GEI),
Gait Variance Image (GVI), Skeleton Energy Image (SEIM)
and Skeleton Variance Image (SVIM) demonstrated in Fig.
1; baseline performances on which to improve are presented
in Table 1 for validation on the CASIA B and TUM GAID
datasets. This combination permits a rounded and enhanced
robustness evaluation of our novel bolt-on module.

normal

Person A

Person B

carrying a bag

Person A

Person B
GEI GVI SEIM SVIM

Fig. 1 Notice that despite the varying feature content within the GEI,
GVI, SEIM and SVIM validation representations, the unique nature
of gait is clearly evident. More importantly, notice the various ways
in which the carried bag covariate factor manifests itself within the
representations
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Table 1 Covariate factor removal results for the CASIAB dataset (nor-
mal (nm), carrying a bag (bg), clothing (cl)) and TUM GAID dataset
(normal (N), carrying a bag (B), shoes (S), time and normal (TN), time
and carrying a bag (TB), time and shoes (TS)) across all gait representa-
tions (GR); optimal “typical”GR leniency and covariate factor threshold

parameters are utilised for their highest average performance across all
covariate factor types in a dataset.With exception of the SEIMvalidated
on the CASIA B dataset, notice how the bolt on module enhances the
robustness of all GRs across each dataset

GR CASIA B (%): remove nm bg cl Average

GEI Baseline 100.0 53.2 22.2 58.5

Bolt-on module CV only 99.2 75.4 64.1 79.6

CV outwards 99.2 76.6 65.7 80.5

CV rows completely 98.4 77.4 93.1 89.7

GVI Baseline 97.2 77.8 50.4 75.1

Bolt-on module CV only 97.2 78.6 50.8 75.5

CV outwards 97.2 78.2 50.8 75.4

CV rows completely 95.6 85.9 71.4 84.3

SEIM Baseline 98.0 93.1 69.8 87.0

Bolt-on module CV only 98.0 93.1 69.8 87.0

CV outwards 98.0 93.1 69.8 87.0

CV rows completely 98.0 93.1 69.8 87.0

SVIM Baseline 98.4 92.7 71.8 87.6

Bolt-on module CV only 98.0 96.4 72.6 89.0

CV outwards 98.0 96.8 73.0 89.2

CV rows completely 97.2 94.8 73.8 88.6

GR TUM GAID (%): remove N B S TN TB TS Average

GEI Baseline 99.7 19.0 96.5 34.4 0.0 43.8 67.4

Bolt-on module CV only 98.1 53.9 88.1 43.8 28.1 37.5 75.9

CV outwards 99.0 42.3 92.3 40.6 15.6 43.8 73.7

CV rows completely 98.7 58.1 87.4 37.5 21.9 46.9 77.1

GVI Baseline 99.0 47.7 94.5 62.5 15.6 62.5 77.3

Bolt-on module CV only 98.1 64.2 94.2 65.6 28.1 62.5 82.4

CV outwards 98.4 68.1 95.8 59.4 25.0 50.0 83.4

CV rows completely 98.7 68.1 93.9 62.5 34.4 59.4 83.6

SEIM Baseline 98.7 18.4 96.1 31.3 0.0 31.3 66.4

Bolt-on module CV only 98.7 45.2 91.6 37.5 25.0 34.4 74.2

CV outwards 99.0 47.1 92.9 37.5 12.5 25.0 74.6

CV rows completely 98.7 45.5 92.3 37.5 25.0 37.5 74.6

SVIM Baseline 98.4 64.2 91.6 65.6 31.3 50.0 81.4

Bolt-on module CV only 98.1 73.2 89.4 65.6 40.6 56.3 83.6

CV outwards 98.4 70.3 91.6 71.9 34.4 53.1 83.6

CV rows completely 98.4 74.8 89.7 68.8 43.8 43.8 84.3

Bold values indicate the highest performance for each sequence and gait representation

2.1 Gait Energy Image

The Gait Energy Image (GEI) [14] exhibits static (torso
appearance) and dynamic (limb motion) features differen-
tiated by high and low pixel intensity values respectively.
Construction first requires the silhouette sequence to be
space-normalised to ensure silhouettes are (1) of constant
size and (2) horizontally aligned with respect to a reference

point, e.g. head or centre mass. Next, time-normalisation, via
the pixel-wise mean, condenses the silhouette sequence into
a single compact 2D gait representation; this aspect is advan-
tageous for noise and short-term occlusion robustness. The
key limitation relates to the pixel-wise confusion between
covariate factor and natural gait motion which is an unfor-
tunate consequence of (1) the construction process and (2)
incorporating a mixture of static and dynamic features.
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2.2 Gait Variance Image

The Gait Variance Image (GVI) [33] extracts only dynamic
features due to their saliency [25]. The construction process
mimics theGEIwhere time-normalisation employs the pixel-
wise variance in place of the pixel-wise mean; this process
exploits dynamic features whilst suppressing static features.
The inherent risk with the GVI is enhancing noise (instead of
suppressing noise due to utilising the pixel-wise mean in the
case of the GEI) due to computing the pixel-wise variance.
Regardless, the saliency of dynamic features outweighs this
limitation to yield often double the performance achieved by
the GEI, demonstrated in Table 1.

2.3 Skeleton Variance Image

The Skeleton Variance Image (SVIM) [33] utilises skele-
tons derived from silhouettes and extracts dynamic features
utilising similar space- and time-normalisation procedures
as the GVI. In brief, computing the gradient of a smoothed
distance function based on the Screened Poisson equation
yields a skeleton robust to silhouette quality (see [33] for fur-
ther details). The SVIM is successful due to the (1) saliency
of dynamic features and (2) skeletons naturally emphasizing
gait motion whilst suppressing covariate factor motion.

2.4 Skeleton Energy Image

The Skeleton Energy Image (SEIM) [33] is analogous to the
GEI where skeletons (same procedures as the SVIM) replace
silhouettes. The advantages of utilising skeletons over silhou-
ettes remain; however the inclusion of static features due to
computing the pixel-wise mean can be a double edged sword
performance-wise depending on silhouette quality, i.e. miss-
ing head or limbs due to silhouette extraction techniques.

3 Covariate factor detection

The GEI, GVI, SEIM and SVIM are founded on silhou-
ettes which disregard colour and texture thus avoiding bias to
subject appearance, e.g. clothing, which is inconsistent over
time; this is fundamental during the complex and coupled
time-based covariate factors presented by the TUM GAID
dataset. Covariate factor detection is not a trivial task; detec-
tion in an RGB image is easier by human eye compared to
silhouettes. Considering the silhouettes in Fig. 2, it is rela-
tively straightforward to identify the bags should they disrupt
the known outline of the human body, however the extent to
which they encroach the silhouette is unknown. Therefore
when utilising silhouettes, it is impossible to identify and
remove every covariate factor related pixel.

Fig. 2 Detecting the extent of covariate factors is easier by eye in RGB
images. Silhouette image covariate factor detection relies on disruptions
of the known human body outline

GVIGEI

SVIMSEIM

Fig. 3 Test GR (left in pair) versus “typical” GR (right of pair); notice
the smoothing especially around limb areas

Considering Fig. 1, it is easy for humans to roughly detect
the carried bag covariate factor in these gait representations
(GR i.e. the GEI, GVI, SEIM and SVIM) if a “typical”
covariate factor free (normal) GR is known. Therefore, it
is imperative for computer vision to mimic this ability in
order to achieve a similar skill set. Since gait recognition
datasets provide specific training and test image sequences,
it is possible to construct a covariate factor free “typical” GR
by computing the pixel-wise mean of all training GRs; the
averaging applied causes “typical” GR smoothing demon-
strated inFig. 3. The “typical”GRenables the bolt-onmodule
to understand how the body is posed and distributed with
respect to pixel intensity values; this is crucial formaximising
covariate factor pixel detection and minimising pixel-wise
confusion between covariate factor and natural gait motion.

Gait recognition is concerned with the walk action which
follows the same fundamental pattern of movement; subtle
differences relating to magnitude and timing yield inter-class
and intra-class variance demonstrated in Fig. 1. It is imper-
ative to incorporate this subtle inter-class and intra-class
variance within the “typical” GR; this is achieved by incor-
porating the pixel-wise standard deviation of all trainingGRs
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to simulate a degree of pixel-wise leniency. Should the pixel
intensity values in the GRs display a Gaussian distribution,
the three-sigma rule (stating that nearly all values lie within
three standard deviations of themean) could be applied, how-
ever this is not true due to the unequal quantity of static and
dynamic features within the GRs (especially when covariate
factors are present).

Regardless, we define four levels of leniency for each
“typical” GR

tGR0 = GR, tGR1 = GR ± σ,

tGR2 = GR ± 2σ, tGR3 = GR ± 3σ (1)

where tGR0,1,2,3 are “typical” GRs, and GR and σ are the
pixel-wise mean and pixel-wise standard deviation of all
training GRs respectively. tGR0 is simply the “typical” GR
sans leniency, while tGR1,2,3 incorporate ±1, 2, 3σ to sim-
ulate successively greater leniency within the “typical” GR;
notice ± which is essential given pixel intensity values may
lie either side of themean due to the uniqueness of gait. These
leniency definitions are vital to determine their contribution
to satisfy the trade-off between incorporating inter-class and
intra-class variance versus minimising the pixel-wise confu-
sion between covariate factormotion and natural gait motion.
Further still, this trade-off is likely to vary across the valida-
tion GRs given the features utilised and natural robustness
therein.

Therefore areas of the body affected by covariate fac-
tors are detected by comparing a “typical” GR against a test
GR

CV = |GR − tGR0,1,2,3| (2)

where CV are detected covariate factor areas, and GR and
tGR0,1,2,3 are test and “typical” GRs respectively. For illus-
trative purposes, consider the GEI in Fig. 4 to help visualise
the detected covariate factor areas with respect to leniency
included in the “typical” GEI during the CASIA B dataset.
Starting with the a normal (covariate factor free) test GEI, it
is clear to see the advantage of utilising a large σ (tGR3) to
incorporate the greatest possible amount of inter-class and
intra-class variance. However, now consider the carrying a
bag test GEI. A significant amount of covariate factor areas
are detectedwhen σ is small (tGR0) due to (1) the bag and (2)
leaning due to a shifted centre of gravity; i.e. there is consid-
erable pixel-wise confusion between covariate factor motion
and natural gait motion. When σ is larger (tGR3), obviously
fewer covariate factor areas are detected given the subsequent
decrease in pixel-wise confusion between covariate factor
and natural gait motion. Remember while covariate factors
are static with respect to the body, covariate factors undergo
motion due to the nature of human gait. This observation
is mimicked during the clothing test GEI. Given covariate

Fig. 4 Detected covariate factor areas in the CASIA B dataset with
respect to leniency included within the “typical” GEI tGR0,1,2,3 for
normal (top), carrying a bag (middle) and clothing (bottom) covariate
factors

factor performance is paramount for robust gait recognition,
Fig. 4 clearly demonstrates that > ±3σ is not beneficial and
therefore represents the boundary of leniency values consid-
ered.

4 Covariate factor removal

While our covariate factor detection stage aims to locate
the greatest extent of covariate factor areas possible, the
employed removal technique is the final opportunity to con-
tribute an effective pixel-wise distinction between covariate
factors andnatural gaitmotion.Covariate factor areasmust be
removed as their covariate factor free equivalent is unknown.
Removal therefore requires a three stage process: (1) apply
a threshold to the detected covariate factor areas to satisfy
the trade-off between incorporating inter-class and intra-
class variance versus minimising the pixel-wise confusion
between covariate factor and natural gait motion, (2) remove
these areas and finally (3) reclaim any salient limb-based
dynamic features if removed by preceding stages.

Stage 1: covariate factor threshold

All testGRs are normalisedwith respect to pixel intensity val-
ues due to the GR construction process. Therefore, detected
covariate factor areas vary with respect to pixel intensity
value depending on the covariate factor present; normalising
these values is ill advised as they are indicative of person iden-
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tity. A threshold is therefore employed to satisfy the trade-off
for incorporating inter-class and intra-class variance versus
minimising the pixel-wise confusion between covariate fac-
tor and natural gait motion. This is especially beneficial in
the case of Fig. 4 where a low leniency “typical” GEI is
combined with a covariate factor free test GEI, this leads to
incorrectly detected covariate factor areas due to the lack of
inter-class and intra-class variance incorporated; a threshold
can alleviate this issue which also affects the GVI, SEIM and
SVIM. The application of a threshold therefore ultimately
decides the detected covariate factor areas for removal. A
broad range of values are chosen {Th = 0.1 to 1 in steps of
0.1} to analyse their contribution to effective and complete
covariate factor removal; these values are chosen as test GRs
contain normalised pixel intensity values, i.e. lying between
0 and 1. Note that the head area is often deemed a covariate
factor area in Fig. 4 due to either natural body rotations or
leaning due to compensation for a shifted centre of gravity
when e.g. carrying a bag.

Stage 2: covariate factor removal techniques

The primary objective is to ensure maximum covariate
factor removal. Three covariate factor removal techniques
(pseudocode provided in Algorithm 1) are evaluated which
vary in aggression and demonstrated in Fig. 5 for the GEI in
the CASIA B dataset.

Result: Remove covariate factors only
for every pixel value do

if pixel value > threshold then
set pixel value to zero;

end
end

Result: Remove covariate factors outwards from the centreline
of the body

for every row do
calculate midpoint of the GR
for RHS (centreline −→ RHS) do

for every pixel value do
if pixel value > threshold then

set all pixel values in the row to zero;
end

end
end
repeat process for LHS

end

Result: Remove covariate factor rows completely
for every row do

for every pixel value do
if pixel value > threshold then

set all pixel values in the row to zero;
end

end
end

Algorithm1: Pseudocode for each covariate factor removal
technique

Fig. 5 Detected covariate factor areas CV are removed using three
removal techniques: remove CV only, remove CV outwards from the
centreline of the body and remove CV rows completely; notice the
increasing removal aggression and the similarity with remaining pixel
intensity values when compared to a training GEI

Removing covariate factors only. This is the least aggres-
sive removal technique and is classed as high risk if the
detection stage cannot effectively differentiate pixel-wise
between covariate factor motion and natural gait motion. The
effect of this limitation is clearly demonstrated inFig. 5where
an outline (consisting of covariate factor motion related pixel
intensity values) surrounds the removed pixels. As a result,
poorer performance is naturally expected.

Removing covariate factors outwards from the centre-
line of the body. Figure 5 demonstrates a proactive tech-
nique resolving the limitations of removing covariate factor
areas only. Any residual effects are targeted by remov-
ing all covariate factor areas outwards from the centreline
of the body; therefore increased robustness is naturally
anticipated.

Removing covariate factor rows completely. Presented
in our preliminary studies [31,32], this removal technique
is aggressive and we therefore expect high performance.
Figure 5 demonstrates complete rows are removed only
where covariate factor areas are detected. This works on the
premise that covariate factors can be found within, or at the
boundary of, the figure thus causing increased pixel-wise
confusion between covariate factor motion and natural gait
motion.While this techniquemay cause a significant quantity
of the GR to be removed and risk jeopardising person iden-
tity, this limitation is specifically addressed during stage 3.

Stage 3: reclaiming salient leg features

Limb motion is salient [25] and removal from GRs is ill
advised; baseline performance in Table 1 demonstrates GRs
containing dynamic features only tend to outperform those
containing both static and dynamic features i.e. the GVI is
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superior to the GEI. Given covariate factor detection depends
on “typical” GR leniency and tunable threshold value, a sig-
nificant quantity of the test GR in question can be removed
during Stage 2. Therefore, any salient leg motion (dynamic
features) is reclaimed by initiating a bottom-up search to
identify the highest GR image row containing a low pixel
intensity value; all rows up to this point are retained com-
pletely despite their initial removal by Stages 1 and 2 (this
process is similar in nature to [1]).

5 Experimental procedure

5.1 Dataset

The CASIA B and TUM GAID datasets are employed
for validation. The CASIA B dataset is nearing a decade
old however deployment for validation remains popular to
this day. In an indoor environment, 124 subjects are cap-
tured under three covariate factors: (1) normal i.e. covariate
factor free, (2) carrying a bag which varies across the
dataset, e.g. handbags, rucksacks and (3) clothing in the
form of bulky outdoor jackets varying in length and shape.
A clear divide separates training and test data. Training
data utilises four normal image sequences per person; test
data utilises two image sequences per covariate factor per
person.

The TUM GAID dataset is also based indoors however
its recency means fewer gait recognition validation results
exist. Containing 305 and 155 training and test subjects
respectively, this dataset also boasts complex coupled covari-
ate factors which are highly attractive traits. Six covariate
factors are presented, three single: (1) carrying a bag (ruck-
sack) consistent across the dataset and (2) shoes, i.e. wearing
clean room shoe covers; an additional three complex coupled
covariate factors are utilised where image sequences are cap-
tured three months later and therefore include clothing as an
additional and hidden covariate factor due to a weather sea-
son change: (3) time and normal, (4) time and bag and (5)
time and shoes. Image sequence division for test and training
data mirrors the CASIA B dataset.

Both datasets provide silhouettes which permits research
to focus on the gait recognition problem as opposed to
silhouette extraction techniques. Overall, the CASIA B
dataset contains poorer quality silhouettes compared to the
TUM GAID dataset. The TUM GAID dataset utilises the
Microsoft Kinect to extract depth information enabling rel-
atively clean and intact silhouettes. The CASIA B dataset
utilises background subtraction [37]which extracts imperfect
silhouettes containing extraneous noise with missing heads
or limbs. This difference in silhouette quality is advantageous
as silhouette quality robustness is an aim for our bolt-on
module.

5.2 Validation representations

Commonly employed, the GEI, GVI, SEIM and SVIM are
space-normalised utilising the head as a reference point for
horizontal alignment; note that space-normalisation is per-
formed prior to skeletonisation for the SEIM and SVIM. The
SEIM and SVIM are constructed utilising optimal parame-
ters set out by [33]; smoothing parameters respectively are
(1) CASIAB dataset: t = 30 and t = 70 and (2) TUMGAID
dataset: t = 90 and t = 5.

5.3 Dimensionality reduction and classification

Standard to single compact 2D gait representations the GEI,
GVI, SEIM, SVIM represent gait (standard dataset image
sizes CASIA B: 240 × 240, TUM GAID: 128 × 178) and
describe gait when reshaped to a 1D vector (CASIA B:
57600D, TUM GAID: 22784D). This yields undesirably
high dimensionality feature vectors which are alleviated by
typical gait recognition procedures [14]. Principle Compo-
nent Analysis and Linear Discriminant Analysis [23] are
combined to satisfy the best data representation with respect
to covariance and class separability respectively (CASIA B:
123D, TUM GAID: 154D account for approximately 97 %
variance). Nearest Neighbour classification is performed
alongside the Euclidean and Cosine distance metrics which
are standards set by the CASIA B and TUM GAID datasets
respectively. This dimensionality reduction and classifica-
tion combination is very effective and typical [14] for single
compact 2D gait representations due to the small number of
training sequences available in gait recognition datasets.

5.4 Recognition procedure

Each test GR is considered in turn and detected covari-
ate factor areas are removed from both test and training
GRs to ensure dimensionality reduction and classification
are performed on areas deemed covariate factor free. This
is essential for Nearest Neighbour classification where it
is unfair to compare test GRs with covariate factor areas
removed against complete “typical” GRs; this promotes
increased distances during Nearest Neighbour classification
thus triggering unnecessary misclassification.

For each covariate factor type, Nearest Neighbour classi-
fication assigns a predicted subject ID to each test GR given
the dataset specified distance metric. A confusion matrix is
therefore constructed based on the predicted and known sub-
ject IDs. Therefore, the performance of our bolt-on module
(percentages seen in Table 1) is calculated by averaging the
diagonals of the confusionmatrix and dividing by the subject
number in the dataset.
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6 Results

Four key factors are considered when analysing the results
from each GR, namely performance effects due to (1) covari-
ate factors, (2) “typical” GR leniency, (3) covariate factor
threshold and (4) covariate factor removal techniques.

Figure 6 provides detailed analysis of “typical” GR
leniency and covariate factor threshold for each GR and
dataset during covariate factor free, covariate factor and the
average of all sequences. For simplicity, covariate factor
removal technique performance is presented in Table 1 for
optimal “typical” GR leniency and covariate factor thresh-
old parameters yielding the highest average performance
across all sequences. Across datasets, this table demon-
strates how our bolt-onmodule increasesGRperformance by
15.1%, and increases covariate factor sequence performance
by 15.9 %.

Note that we are primarily interested in the average per-
formance across covariate factors in each dataset as this
demonstrates the ability for our bolt-on module to generalise
over covariate factors; this is standard for gait recognition.
The performance achieved during individual covariate fac-
tors is important to determine weaknesses in our bolt-on
module. All tables and figures highlight the baseline per-
formance enabling easy comparison post bolt-on module
application.

6.1 Covariate factor effect on performance

Consider Table 1 which demonstrates performance across
each covariate factor (utilising optimum “typical” GR
leniency and covariate factor threshold). Covariate factor free
test GRs (CASIAB: nm; TUMGAID:N, S) are visually sim-
ilar to training GRs which explains their high performance
and therefore serve as proof of concept. While the TUM
GAID dataset provides shoe sequences, their appearance is
visually similar to training GRs thus yielding high perfor-
mance; note that the clean room shoe covers are primarily
aimed towards being an acoustic gait recognition covariate
factor. Alternative shoe types such as flip flops [5] and heels
will cause greater misclassification due to greater alterations
in gait appearance and motion.

Covariate factor GRs (CASIA B: bg, cl; TUM GAID: B,
TN, TB, TS) yield significant gait appearance and motion
alterations thus causing detrimental performance drops. One
major difference between the CASIA B and TUM GAID
dataset is the bag carried; the TUM GAID dataset utilises a
consistent rucksack while the CASIA B dataset employs a
range of bags, e.g. rucksacks, handbags; on top of image size
differences, this variation likely accounts for the performance
differences encountered between these sequences. The time-
based covariate factor sequences utilised by the TUMGAID
dataset show particularly poor performance due to the cou-

pled covariate factors in play i.e. time and clothing on top of
the named covariate factor. Notice in Table 1 how the per-
formance of such sequences are near half that achieved by
single covariate factor sequences. The aforementioned pat-
terns occur in the GEI, GVI, SEIM and SVIM.

6.2 “Typical” GR leniency

Consider Fig. 6 which demonstrates “typical” GR leniency
across covariate factors for the “remove covariate factor
rows completely” covariate factor removal technique (all
removal techniques demonstrate similar performance pat-
terns). Including leniency in the “typical” GR is aimed
towards incorporating the abundant inter-class and intra-
class variance encountered in human gait; however inclusion
is a double edged sword due to potential pixel-wise con-
fusion between covariate factor motion and natural gait
motion.

Consider the GEI which is the least naturally robust GR
in this paper. Covariate factor free GEIs (CASIA B: nm,
TUMGAID:N, S) benefit fromhigher “typical”GR leniency
(tGR3) as no covariate factors are present and therefore
significant inter-class and intra-class variance canbe incorpo-
rated to boost performance. Conversely covariate factorGEIs
(CASIAB: bg, cl, TUMGAID:B, TN,TB, TS) require negli-
gible “typical” GR leniency (tGR0) as greater inter-class and
intra-class variance promotes unnecessary pixel-wise con-
fusion between covariate factor and natural gait motion. To
achieve the greatest performance across covariate factors, the
GEI prefers tGR0 regardless of dataset.

The GVI, SEIM and SVIM demonstrate a degree of nat-
ural robustness compared to the GEI which is demonstrated
in Table 1 baseline results; robustness is achieved by (1) the
GVI extracting dynamic features only and (2) the SEIM and
SVIM placing emphasis on natural gait motion as opposed
to covariate factor motion. Covariate factor free GVI, SEIM
and SVIM (CASIA B: nm, TUM GAID: N, S) similarly
benefit from higher “typical” GR leniency (tGR3). How-
ever their natural robustness permits covariate factor GRs
(CASIA B: bg, cl, TUMGAID: B, TN, TB, TS) higher “typ-
ical” GR leniency (tGR1); this enables a greater quantity of
inter-class and intra-class variance to be incorporated in the
GRswhilst simultaneously minimising the pixel-wise confu-
sion between covariate factormotion and natural gait motion.
Notice that the SEIM validated on the CASIA B dataset does
not achieve any performance increases which is attributed to
SEIM skeleton sensitivity to poorer quality image sequences
causing often significant differences between training and
test SEIMs; the SVIM receives only a minor performance
increase during the CASIA B dataset. To achieve the great-
est performance across covariate factors the GVI, SEIM and
SVIM prefer tGR1 regardless of dataset.
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Fig. 6 Covariate factor threshold results for each GR validated on the
CASIA B and TUM GAID datasets based on covariate factor free
sequences (CASIA B: normal (nm), TUM GAID: normal (N), shoes
(S)), covariate factor sequences (CASIAB: carrying a bag (bg), clothing
(cl), TUM GAID: bag (B), time and normal (TN), time and bag (TB),
time and shoes (TS)) and averaged across all covariate factor types.

Resultswith respect to leniency tGR0,1,2,3, covariate factor threshold Th
and “remove covariate factor rows completely” covariate factor removal
technique (all covariate factor removal techniques exhibit similar pat-
terns).Notice how thebolt-onmodule considerably increases robustness
during covariate factor sequences

123



On covariate factor detection and removal

6.3 Covariate factor threshold

Consider Fig. 6 which demonstrates the covariate factor
threshold behaviour during covariate factor free (CASIA B:
nm, TUM GAID: N, S), covariate factor (CASIA B: bg,
cl, TUM GAID: B, TN, TB, TS) and the average of all
sequences. The covariate factor threshold is designed to fur-
ther satisfy the trade-off between incorporating inter-class
and intra-class variance versus minimising the pixel-wise
confusion between covariate factor and natural gait motion.
Similar to “typical” GR leniency, the optimal covariate factor
threshold value varies between covariate factor and covariate
factor free GRs. A high threshold value is ideal for covari-
ate factor free GRs to maximise the incorporation of natural
inter-class and intra-class variance (given no covariate fac-
tors are present to induce pixel-wise confusion). However,
it is paramount to utilise a low threshold value for covariate
factor sequences to satisfy the aforementioned trade-off and
thus yield robust gait recognition. Notice how Fig. 6 clearly
demonstrates significant robustness improvements for each
GR during covariate factor sequences (the SEIM receives
fewer performance increases during the CASIA B dataset
due to the lack of similarity between training and test SEIMs
and skeleton sensitivity to noise); note that the covariate fac-
tor free sequences match the baseline results.

When averaging across all presented covariate factor
types, the CASIA B and TUM GAID datasets unanimously
prefer Th = 0.1 for the GVI, SEIM and SVIM despite their
different image sizes (standard dataset image sizes CASIA
B: 240×240, TUMGAID: 128×178) and across presented
covariate factors. However the GEI varies between Th = 0.1
and Th = 0.3 for the CASIA B and TUM GAID datasets
respectively; this difference is attributed to the inclusion of
static and dynamic features and the inherent pixel-wise con-
fusion between covariate factor and natural gait motion. Note
that these threshold values are for gait recognition and require
further investigation for analogous applications.

6.4 Covariate factor removal technique

This is thefinal opportunity to remove covariate factorswhich
may have previously evaded detection. Table 1 presents the
best combinations of “typical” GR leniency and threshold
for the CASIA B and TUM GAID datasets achieving the
highest average performance across covariate factors (Fig. 5
helps visualise each removal technique).

6.4.1 Removing covariate factors only

The least aggressive and most risky technique is low and
middle ranking dataset dependent. Despite the best efforts
of covariate factor detection, pixel-wise confusion between
covariate factor and natural gait motion occurs frequently

causing covariate factor motion related pixel intensity values
to enclose removed covariate factor areas; this is demon-
strated in Fig. 5.

6.4.2 Removing covariate factors outwards from the
centreline of the body

While this approach visually resolves the limitations of
removing covariate factors only, increased performance is
not exhibited. Removing covariate factors only and remov-
ing covariate factors outwards from the centreline of the body
neglect an important point. Covariate factors can lie within,
and at the boundary of, the human figure which increases the
complexity of differentiating between covariate factor and
natural gait motion. As such, the ranking is also middle and
low ranking dataset dependent.

6.4.3 Removing covariate factor rows completely

The most aggressive and originally implemented removal
technique remains superior across datasets. Compared to
aforementioned removal techniques which gingerly remove
covariate factor areas, this technique is aggressive to the
point of appearing risky; remember stage 3 of covariate factor
removal ensures salient limb dynamic features are retained
if removed during preceding stages. This technique could be
considered sensitive with respect to natural inter-class and
intra-class variance, however we demonstrate it is best to err
on the side of caution to ensureminimal pixel-wise confusion
between covariate factor and natural gait motion.

7 Comparison to state of the art

The best performing GR bolt-on module parameters (1)
“typical” GR leniency, (2) covariate factor threshold and
(3) removal technique, for the CASIA B and TUM GAID
datasets are posed against state-of-the-art results in Table 2.
We compare against individual covariate factors, and more
importantly those achieving the highest average performance
to demonstrate the ability to generalise over covariate factors.

We therefore successfully demonstrate our bolt-onmodule
enhances GR robustness with new state-of-the-art results

CASIA B: carrying a bag (bg) + 4.0 %, clothing (cl) +
11.0 %
TUMGAID: bag (B) + 16.5%, time + normal (TN) + 4.9%,
time + bag (TB) + 39.9 %, time + shoes (TS) + 18.8 %,
weighted average + 3.6 %

where on average, our bolt-on module provides a 15.9 %
increase to covariate factor sequences.
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Table 2 Utilising the optimum parameters for each GR, the perfor-
mance post bolt-on module application are posed against existing
state-of-the-art results; CASIA B dataset (normal (nm), carrying a bag

(bg), clothing (cl)) and TUMGAID dataset (normal (N), carrying a bag
(B), shoes (S), time and normal (TN), time and carrying a bag (TB),
time and shoes (TS))

CASIA B (%) nm bg cl Average

CGI [30] 88.1 43.7 43.0 58.2

GEI [14] 100.0 53.2 22.2 58.5

GEnI [4] 100.0 78.3 44.0 74.1

MII + MDIs [3] 97.5 83.6 48.8 76.6

SEI + GSP [17] 99.0 64.0 72.0 78.3

PRWGEI [35] 98.4 93.1 44.4 78.6

Body segmentation [19] 99.2 80.6 75.8 85.2

AEI [38] 98.4 91.9 72.2 87.5

SGEI + GEI [20] 98.2 80.7 83.9 87.6

MG [1] 100.0 91.0 80.6 90.5

With bolt on module applied

GEI 98.4 77.4 93.1 89.7

GVI 95.6 85.9 71.4 84.3

SVIM 98.0 96.8 73.0 89.2

TUM GAID (%) N B S TN TB TS Average

Depth GEI [14] 99.7 17.4 96.5 37.5 0.0 43.8 67.1

GEV [16] 94.2 13.9 87.7 41.0 0.0 31.0 61.4

DGHEI [16] 99.0 40.3 96.1 50.0 0.0 44.0 74.1

SVIM [33] 98.4 64.2 91.6 65.6 31.3 50.0 81.4

With bolt on module applied

GEI 98.7 58.1 87.4 37.5 21.9 46.9 77.1

GVI 98.7 68.1 93.9 62.5 34.4 59.4 83.6

SEIM 98.7 45.5 92.3 37.5 25.0 37.5 74.6

SVIM 98.4 74.8 89.7 68.8 43.8 43.8 84.3

Bold values highlight state-of-the-art results

For the CASIA B dataset, we set new state-of-the-art
results for individual covariate factor sequences (carry-
ing a bag and clothing), however we do not achieve the
highest average result. This is attributed to the parameter
trade-off for achieving the highest average performance,
i.e. to achieve superior covariate factor performance we
incur a minor performance drop during covariate factor free
sequences. However for the TUM GAID dataset, we set
significant state-of-the-art results for individual covariate
factor sequences (carrying a bag, shoes, time and normal,
time and carrying a bag, time and shoes) and the high-
est average result. Similar to CASIA B dataset results,
covariate factor free sequences incur minor performance
drops due to boosting covariate factor performance; however
unlike the CASIA B results, this is offset by the quan-
tity of state-of-the-art covariate factor results set. Across
datasets, the bolt-on module enhances GR robustness due
to achieving a favourable trade-off for incorporating GR
inter-class and intra-class variance versus minimising the

pixel-wise confusion between covariate factor and natural
gait motion.

Notice that the GRs achieve varying performances across
covariate factors, similar to many approaches in Table 2;
this is natural due to the unique manner in which covari-
ate factors affect gait appearance and motion. Across GRs
where state of the art is not achieved, an unsatisfactory
trade-off occurs between incorporating GR inter-class and
intra-class variance versus minimising the pixel-wise con-
fusion between covariate factor motion and natural gait
motion.

There are factors causing performance fluctuations: (a)
GR size and consistency in walking direction [22], (b) sil-
houette quality due to extraction technique, (c) silhouette
noise and segmentation errors, e.g. missing head and limbs
(this can have a significant knock-on effect during skeletoni-
sation for the SVIM and SEIM) and (d) GEI, GVI, SEIM and
SVIM horizontal alignment technique [29]. We also demon-
strate a limitation of our bolt-on module whereby silhouette
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quality must permit similarities between training and test
GRs.

8 Conclusion and future work

We have clearly demonstrated the benefits of our bolt-on
module which incorporates covariate factor detection and
removal within standard gait recognition procedures; this
significantly enhances the robustness of single compact 2D
gait representations by an average of 15.1 % thanks pri-
marily to the tunable parameters. Extensive covariate factor
detection and aggressive removal combine to contribute sig-
nificant improvements by ensuring a favourable trade-off
between incorporating the natural inter-class and intra-class
variance versus minimising the confusion between covari-
ate factor and natural gait motion. This yields multiple new
state-of-the-art results across validation gait representations
and datasets. Our bolt-on module is capable of generalising
over covariate factors at the boundary of, and hidden within,
the human figure where such sequences receive a 15.9 %
increase.

Three future directions exist for our bolt-on module and
gait recognition in general: (1) there exists no single optimal
threshold or leniency parameter, which effectively combats
every covariate factor, and this is natural as each affects
gait appearance and motion uniquely; one possible solution
exists whereby covariate factors are initially detected and
the preferred threshold and leniency parameter subsequently
applied—note that this process is best achievedutilisingRGB
images as too many visual cues are lost when utilising sil-
houettes, (2) greater research should focus on the complex
and coupled time-based covariate factors given Table 2 high-
lights the interesting and open problem of exceeding 50 % in
performance, and (3) analysis of the bolt-on module for sin-
gle compact 2D representations during analogous research
topics, e.g. action recognition.
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