
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and  Dstl  

University Defence Research Collaboration (UDRC) 
Signal Processing in a Networked Battlespace 

Brief Summary of Last 3 Months (Oct – Dec 2013) 
 

• Currently investigating the efficient implementation of the SBR2 

algorithm [1] and new Sequential Matrix Diagonalisation (SMD). 

 

• FPGA Development Training - recently completed going through the 

supplied Xilinx FPGA Primer training material 

 

• Reviewing field of Graphical Models (esp. Bayesian Networks) for use in 

distributed processing applications. (e.g. distributed beamforming) 

 

• Delivered a lunchtime seminar to Strathclyde’s CeSIP research group on 

using Gaussian Process (GP) models for Bayesian probabilistic 

modelling. 

 

• Established links with counterpart WP6  in Edinburgh/Heriot-Watt 

Consortium (follow-up on recommendation from [dstl]) 

 

• Attended UDRC Theme Day on Source Separation (Edinburgh 31st Oct) 

 

• Attended ISP conference & UDRC II Launch (London 2-4th Dec) 

 

• Attended Academic Symposium 2013 at Texas Instruments (Freiburg 4-

5th Nov) 

L_WP5: Low Complexity Algorithms and Efficient Implementation 

WP Leaders: Stephan Weiss (University of Strathclyde), Ian Proudler (Loughborough University) 

Researcher: K.Thompson (University of Strathclyde) PhD Student: J. Corr (University of Strathclyde) 

WP5.1 Data Reduction – Efficient Implementation of PEVD 

Methods (SBR2, SMD) 
 

• Matlab Toolbox of optimised software code is in development (code 

optimised through using ‘Profile’ feature to find bottlenecks). 

 

• Both  SBR2 and SMD algorithms minimise the energy placed in off-

diagonal elements. Maximum Element SMD (MESMD) (lower 

computational cost version) has been implemented using absolute value 

(not column norms). MESMD completes diagonalisation at faster  rate  

than SBR2. 

 

 

 

• Approximate methods for SBR2 exploit the growing sparsity of the 

polynomial matrix upon repeated shift and rotation operations (zero-

padding). These ‘trim’ methods are aimed at limiting the growth of the 

overall matrix to trade-off efficiency against accuracy.  

References 
 
[1] J G McWhirter, P Baxter, T Cooper, S Redif and J Foster. An EVD Algorithm for Para-

Hermitian Polynomial Matrices. IEEE Trans Signal Processing, Vol 55, No 6 (May 2007).  

[2] Kasap S, Redif S, Novel Field-Programmable Gate Array Architecture for Computing the 

Eigenvalue Decomposition of Para-Hermitian Polynomial Matrices, IEEE Transactions on 

Very Large Scale Integration (VLSI) Systems, (2013) 

Future Activities 
 

• Complete optimisation of SBR2 and SMD algorithms in Matlab, transfer 

to C/C++, build hardware implementation.  

• Integration of SBR2 with ‘oversampled sub-band decomposition’ to retain 

coherence between sub-bands but reduce spectral dynamics. 

• Organise Mathworks meeting (Professor Robert Stewart) – welcome any 

requests/recommendations  for toolboxes? 

• With C.Clemente develop probabilistic classifier for WP4 Micro-Doppler 

data. Contrast performance with current SVM-based approach. 

• Develop Bayesian Network matlab examples  – use as case studies for 

GPU implementation. 

• Organise Show & Tell Event for 9th April 2014 – at Strathclyde CMT 

 

WP5.2 Hardware Realisations  
 

Using implementation of SBR2 algorithms on FPGA hardware as a case 

study, see previous implementation [2]. Latest FPGA Hardware 

Development tools assessed, especially new auto-coding options for more 

efficient system design flow. Options: 

 

• Manual coding of VHDL/Verilog (Slow, but flexible) 

• ISE (Xilinx) allowed Simulink design creation using embedded Matlab 

function blocks for auto-VHDL generation 

• Mathworks – Matlab Coder (C auto-code) ,HDL Coder (VHDL auto-

code), Fixed Point Designer (floating to fixed-point adaptation) 

• C to VHDL tools – Xilinx Vivado, Mentor Graphics Catapult C 

• C/C++ code also used as basis for GPU coding (OpenCL/CUDA) and 

DSP (TI Code Composer) – thus allowing performance comparisons. 

 

Overall Strategy: 

1) Optimised Matlab Toolboxes (use MEX (C) subroutines) 

2) Optimised C code through Matlab Coder & Manual Tweaking 

3)  Use Matlab & C to produce VHDL, CUDA/OpenCL 

0

10

20

30

40

50

60

70

80

90

SBR SBR3 SBR4 SBR4a SBRTrunc

SBR2 Execution Time 

Measure of Diagonalisation =
 ( off−diag elements

2
)

 ( all elements
2
)

 

SBR2 Implementation Modification 

SBR Original code 

SBR3 Only Search 1st half of the PH matrix 

SBR4 Optimised column-wise masking algorithm 

SBR4a Modified shifting algorithm 

SBRTrunc Truncation of unnecessary fully zero lags 

SBR2 vs. MESMD 


