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Abstract—The number of nodes in sensor networks is con-
tinually increasing, and maintaining accurate track estimates
inside their common surveillance region is a critical necessity.
Modern sensor platforms are likely to carry a range of different
sensor modalities, all providing data at differing rates, and with
varying degrees of uncertainty. These factors complicate the
fusion problem as multiple observation models are required,
along with a dynamic prediction model. However, the problem
is exacerbated when sensors are not registered correctly with
respect to each other, i.e. if they are subject to a static or
dynamic bias. In this case, measurements from different sensors
may correspond to the same target, but do not correlate with
each other when in the same Frame of Reference (FoR), which
decreases track accuracy. This paper presents a method to jointly
estimate the state of multiple targets in a surveillance region,
and to correctly register a radar and an Infrared Search and
Track (IRST) system onto the same FoR to perform sensor
fusion. Previous work using this type of parent-offspring process
has been successful when calibrating a pair of cameras, but
has never been attempted on a heterogeneous sensor network,
nor in a maritime environment. This article presents results on
both simulated scenarios and a segment of real data that show
a significant increase in track quality in comparison to using
incorrectly calibrated sensors or single-radar only.

Index Terms—Sensor fusion, registration, PHD filter, radar,
infrared, calibration, tracking, maritime

I. INTRODUCTION

A. State-of-the-Art and Problem Outline

W ITH many advances in sensor suites in recent years,
tracking targets from multiple aspects using a range of

different sensor modalities is now possible. Sensor fusion is
a mature and sophisticated technology that looks to automate
the process of combining a number of heterogeneous sources
of information. By combining these sources of different infor-
mation, the result should, in some sense, be better than what
would have been possible if the data from each sensor was
used individually [1], [2]. Maritime navigation radars typically
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take a number of seconds to perform a full sweep of the region
they are observing, whereas optical systems can potentially
have much faster update rates, making the measurements
asynchronous. By exploiting the high update rate and fusing
these image measurements with the radar, target tracks can be
updated and maintained more frequently [3].

The calibration of tracking systems [4] through estimation
of their model parameters is an important prerequisite before
such systems are deployed out in the field. In particular,
when fusing multiple sensor measurements, it is necessary
to consider sensor calibration or registration into the same
Frame of Reference (FoR). If, in the real world, the set of
sensors is incorrectly calibrated, any fusion in the multi-sensor
multi-target tracking algorithm could possibly lead to total
failure through loss of useful tracking information. Possible
calibration or registration errors could come from a number
of different sources. These could include incorrect calibration
during sensor manufacture, incorrect alignment during instal-
lation and setup, and potentially even uncontrollable factors
such as harsh weather, sensor drift (Global Positioning System
(GPS) drift or Inertial Measurement Unit (IMU) inaccuracies),
or misalignment through platform vibrations. Such drift might
possibly be dynamic, resulting in the need of repeated, time-
consuming re-calibration, or it could be impossible to calibrate
the system to a global frame altogether, e.g. in GPS-denied
environments. In such cases, it would be advantageous to
calibrate sensors relative to each other in an automatic manner
to avoid loss in track accuracy due to incorrect data fusion.

Previous work in the fusion of radar and optical imagery
data has been shown to be successful when tracking ma-
noeuvring targets [5] and also for the application of avian
monitoring [6]. In these articles, the registration problem is
either not accounted for, or is treated as a separate process
before fusion occurs. Methods for solving the sensor reg-
istration problem have been shown in [7]–[10] which use
pseudo-measurement approaches to estimate biases in sensor
networks, and in [11] which uses deep learning to deter-
mine appropriate registration parameters. Machine learning-
type methods require vast amounts of realistic training data in
order to give reliable results, furthermore these articles only
present results on datasets with biases around one order of
magnitude smaller than those treated in this article.

The joint method presented below is flexible and allows
for varying types of multiple target tracking algorithm to be
used, such as Joint Probabilistic Data Association (JPDA)
[12], [13], Multiple Hypothesis Tracking (MHT) [14], [15],
and Belief Propagation (BP) and message passing [16], [17].
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Fig. 1. An example of the sensor registration problem for a simple two-
dimensional case, using an IRST and a radar that are co-located. Both sensors
detect the target and give accurate measurements in their own FoR. However,
when the measurements are projected into a common FoR, a relative angular
bias φ is identified which needs to be accounted for during fusion.

For this work, the now commonly-used Probability Hypothesis
Density (PHD) filter [18]–[20] is implemented. The PHD filter
holds a number of advantages when dealing with multiple-
target distributions, such as a low computational cost, and
the ability to correctly estimate clutter and target populations
even with large variance in the number of objects. The low
computational cost is attractive in this defence application,
as time-critical decisions need to be taken often. Other more
expensive algorithms such as the Generalized Labelled Multi-
Bernoulli (GLMB) filter [21] may not operate quickly enough.

B. Proposed Method and Contributions

The solution outlined in this article is motivated by a specific
class of PHD filters that are based on hierarchical point process
models, called single-cluster filters [22]. In these filters, the
target population is regarded as a single group with one or
several common parameters which are hidden and have to be
estimated. In order to do so, the problem is modelled in two
inter-dependent layers: The high-level process, also called the
parent process, estimates the hidden parameter(s); and the low-
level process, also called the offspring process, estimates the
target states depending on those parameters.

Suitable models for sea clutter were identified to deal with
highly fluctuating numbers of sea spikes [23], which motivated
the usage of offspring processes with different false alarm
models. Therefore, two types of filter will be used in this work.
First, we consider the PHD filter [18], where the number of
targets and false alarms are assumed to be Poisson distributed
and only the first moment is propagated. Second, we consider
a recent development in this field, the Panjer PHD filter [24]
that can, by assuming the underlying distribution is Panjer,
propagate both the mean and variance of the process. Both
filters can be integrated in the single-cluster framework using
a filter-dependent multi-object likelihood (MOL) [22], [25]
which serves as a quality measure for the estimation provided
by the parent process.

The single-cluster method has been successfully applied to
Simultaneous Localisation and Mapping (SLAM) problems
[26], sensor calibration [4], [27] and sensor drift estimation
[28], [29], but to our knowledge, this is the first article
that addresses the registration problem in a heterogeneous
sensor network within a defence or surveillance context. More
specifically, this work presents a method for estimating and
tracking multiple targets from a maritime radar and an Infrared
Search and Track (IRST) system like those in Fig. 3, while
jointly registering the sensors onto the same FoR for fusion.
Here, the FoR can be chosen arbitrarily and it will be shown
that the relative bias is estimated correctly irrespective of
that choice. One possibility is to assume that one sensor is
perfectly calibrated onto the WGS84 coordinate system and
a second, colocated sensor shows an angular displacement as
shown in Fig. 1. In fact, by estimating the relative (angular
or translational) displacement between sensors, fusion can be
successfully performed even if the calibration onto a world
FoR is impossible, e.g. in GPS-denied environments.

The contributions of this paper include:
1) a multi-target tracking (MTT) technique that incorpo-

rates sensor calibration in a joint manner, in contrast to
existing techniques which solve tracking and calibration
separately by using pseudo-measurements [7]–[10]; the
proposed technique also avoids the computationally ex-
pensive data association problem found in some joint
fusion and registration approaches, such as [30];

2) a new predictive model for tracking changes in the
dynamic sensor configuration which is included in the
parent process computations (Sec. II-A); it also incorpo-
rates non-uniform sampling information to overcome the
asynchronous aspect of the sensor network (Sec. II-B);

3) non-linear observation models respecting the MTT out-
put states being given in Cartesian coordinates and
measurements in polar coordinates; therefore, imple-
mentations of two multi-object estimation algorithms
are introduced in this paper to solve the non-linear
fusion problem, including a novel Extended Kalman
Filter (EKF) version of the Panjer filter (Sec. II-B);

4) a comprehensive set of simulations (Sec. III-D), in-
volving a typically challenging tracking scenario where
target trajectories cross one another; moreover, the sim-
ulations shown in this article consider a much larger
angular offset, by an order of magnitude, compared to
those simulated in [8], [31].

C. Paper Organization

The remainder of this paper is organized as follows: Sec. II
gives an overview of the joint estimation problem, with
modelling and implementation information given in Sec. III;
results are shown in Sec. IV and conclusions are drawn in
Sec. V.

II. MULTIPLE TARGET TRACKING AND FUSION

The main challenge in this work is that the offset angle
between the radar and the IRST system, φ, is unknown and
must be estimated recursively along with the target states based
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Fig. 2. Flowchart of the joint registration and fusion process. Asynchronous
measurements are sent to the buffer when ready, and then used in the offspring
layer for tracking. When IRST measurements are received, the MOL ˆ̀i

k =
ˆ̀
k(φ

i
k|Zk) is calculated to update the sensor registration parameter(s).

on imperfect data. For example, consider the scenario shown
in Fig. 1 where a slow moving maritime target follows the
trajectory shown in the dark thick line. Both sensors generate
accurate measurements in their own FoR; the registration error
is only apparent once the measurements are projected onto
a common FoR such as WGS84. The radar produces range-
azimuth measurements represented by the crosses which are
assumed to be close to the true target trajectory.1 However,
the azimuth-only IRST measurements shown as the light
lines radiating from the origin contain a systematic angular
offset, φ, that is to be estimated in order to perform accurate
sensor fusion. The following sections will provide detailed
information on the work flow presented in Fig. 2.

A. Parent Process: Sensor Registration

The parent process is responsible for estimating the poten-
tially time-varying sensor registration angle, φ, in order to
project the measurements of one sensor into the FoR of the
other sensor for fusion purposes. The densities involved in the
parent process are denoted with ·̂ for the rest of this article.
A Bayes recursion is used to propagate the posterior density,
P̂k(φ), for the calibration angle:

P̂k|k−1(φ) =

∫
f̂k|k−1(φ|φ′)P̂k−1(φ′)dφ′, (1a)

P̂k(φ|Zk) =
ˆ̀
k(φ|Zk)P̂k|k−1(φ)∫

ˆ̀
k(φ′|Zk)P̂k|k−1(φ′)dφ′

(1b)

where ˆ̀
k(φ|Zk) is a multi-object likelihood (MOL) function,

and f̂k|k−1(φ|φ′) is the transition density. Note that the

1In Fig. 1, the world FoR in which the ground truth is assumed to be located
coincides with the radar’s FoR.

MOL, or registration parameter likelihood, is different from
a multitarget association likelihood like the one used in the
offspring process below as it describes the plausibility of a
given sensor registration parameterisation φ based on a set of
measurements Zk; more details can be found in [4], [26]. The
multi-object/multi-measurement association likelihood, on the
other hand, measures the association of the target states given
the sensor measurements.

Using a particle filter approach, the registration parameter
to be estimated at time-step k is represented with a particle
distribution φik for 1 ≤ i ≤ N , where each i represents a
different sensor geometry. Each particle has a corresponding
weight wik and an underlying set of multi-target estimation
statistics θik that are dependent on the offspring process.
The particle weight wik essentially encapsulates the belief
that registration parameter φik best represents the true sensor
calibration. With the particles fixed to a grid, the particle
weights can be computed using grid-based methods [32, p. 9].
Using this method, the recursion for predicting and updating
the parent process weights is

wik|k−1 =
N∑
j=1

wjk−1f̂k|k−1

(
φik|φ

j
k

)
(2a)

wik =
wik|k−1

ˆ̀
k(φik|Zk)∑N

j=1 w
j
k|k−1

ˆ̀
k(φjk|Zk)

(2b)

where f̂k|k−1

(
φik|φ

j
k

)
= f̂ i−jk|k−1 is a discrete density over

the difference in angle-indices and ˆ̀
k(φik|Zk) is the MOL

function evaluated for a given sensor geometry at φik. Equation
(2a) can be written as the convolution of weights wjk−1 and
a kernel f̂ i−jk|k−1. The transition is modelled as a perturbation
with a discretised wrapped Gaussian distribution. This is ap-
proximated using a finite-support shifted binomial distribution
where u ∼ B(n, p) and i = j + u − n/2 is the relationship
between the predicted angle-index, i, and the particle angle-
index, j. Heuristically, the values n = 6, p = 0.5 are
used, such that Equation (2a) can in practice be calculated
as the convolution of wk−1 and the kernel B(6, 0.5) =
{0.0156; 0.0938; 0.2344; 0.3125; 0.2344; 0.0938; 0.0156}. The
parent process is initialized with a flat prior distribution, where
all sensor geometries are equally likely.

The information contained inside θik at time-step k is depen-
dent on the type of offspring filter that is chosen, i.e. it either
just contains the intensity, µk, of the multi-target distribution
in case of the PHD filter, or both µk and the variance vark in
case of the Panjer filter. The filters and their respective MOL
functions are described below.

B. Offspring Process: Sensor Fusion

Let X and Z denote the state and measurement spaces,
respectively. The offspring process estimates the time-varying
multi-object state with nk targets, ψ ∈ Xnk , dependent on
a certain sensor configuration φ. This process is assumed to
evolve with a Markov transition function fk|k−1(ψ|ψ′) which
in this case will follow the near constant velocity (NCV)
motion model [33], with a dynamic value for state transition
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Fig. 3. Sensor setup for collecting real data with the IRST system in the
foreground and radar in the background. © Crown copyright, 2019.

time ∆k. This dynamic value is calculated at the measure-
ment buffer stage as shown in Fig. 2, using the equation
∆k = tk − tk−1 where tk is the known current measurement
time, and tk−1 is the previous measurement time. The multi-
measurement/multi-target likelihood lk(ψ|φ,Zk) describes the
association likelihood of targets and measurements. The fol-
lowing Bayes recursion is used to propagate the law Pk of the
target process at time k:

Pk|k−1(ψ|φ) =

∫
fk|k−1(ψ|ψ′)Pk−1(ψ′|φ)dψ′ (3a)

Pk(ψ|φ,Zk) =
lk(ψ|φ,Zk)Pk|k−1(ψ|φ)∫
lk(ψ′|φ,Zk)Pk|k−1(ψ′|φ)dψ′

(3b)

For this work, the offspring process will be fulfilled using
either the original PHD or the Panjer PHD filter as described
below, and concrete model choices are described in Sec. III-B.
When a measurement arrives from the reference sensor, θik are
updated for all i = 1, . . . , N , and when a measurement arrives
from an uncalibrated sensor, both θik and the registration
parameter weights wik in (2b) are updated using the MOL
in Eqns (9) or (13), respectively.

1) PHD Filter: The PHD filter is now a mature method of
performing multi-target tracking. It was first developed in 2003
[18], [19] and the common Gaussian mixture implementation
was introduced in 2006 [20]. A full derivation of the filter can
be found in [18], [20]. This first-order filter propagates only
the mean µk of the point process and assumes the predicted
number of targets and false alarms are both Poisson distributed
[25]. The implementation used in this work can be found in
[20, Table IV].

2) Panjer PHD Filter: The Panjer PHD filter was first
introduced in [24] as a useful extension to the first-order PHD
filter defined earlier. This process propagates both the mean
and variance of the point process, using the assumption that
the number of predicted targets and the false alarms are Panjer
distributed. The Panjer distribution is characterised by two
parameters α and β which closely correspond to its mean and
variance.

Case 1: 0 < {α, β} ∈ R+ × R+: Represents a negative
binomial distribution, where the variance is greater than the
mean. This would be useful, for example, in situations where

there may be sudden large influxes of measurements such as
strong returns on a rough sea.

Case 2: 0 > {α, β} ∈ Z− × R−: Represents a binomial
distribution where the variance is less than the mean. This
could be used in a situation where a very consistent number
of false alarms is expected, e.g. a static or slow-changing
environment.

Case 3: {α, β} → ∞: The limit case where the ratio
stays constant, resulting in the Poisson distribution. This
represents the standard false alarm model used in many pieces
of target tracking literature.

Having these three different cases available gives more
flexibility in modelling the number of targets and false alarms.
A full mathematical derivation and pseudo-code is available
elsewhere [24], and is omitted here.

3) Extended Kalman Filter PHD and Panjer filters: An
EKF version of both offspring filters is required to overcome
the non-linearity between the Cartesian state space and the Po-
lar observation space. EKFs use a Jacobian matrix to linearize
the non-linear function around the current state estimate. This
Jacobian is found by performing partial differentiation of the
observation model equations with respect to the variables in
the state vector, such that the elements of the matrix are

Jpq =
∂hp
∂Xq

, p ∈ {r, φ}, q ∈ {1, . . . , 4} (4)

where hp is the conventional Cartesian to Polar transformation

hr = r =
√
x2 + y2, hφ = φ = tan−1 (x, y) ,

and where tan−1 (x, y) is the four-quadrant inverse tangent
function and X = [x, ẋ, y, ẏ]

T . During an offspring update
with radar measurements, the Jacobian matrix used is

JR =

[
x√

x2+y2
0 y√

x2+y2
0

−y
x2+y2 0 x

x2+y2 0

]
(5)

and for an IRST update, the Jacobian becomes

JI =
[
−y

x2+y2 0 x
x2+y2 0

]
. (6)

C. The multi-object likelihood functions

In this section, the PHD and the Panjer version of the MOL
are revisited, and a short version of their derivations is given
in a supplementary document. More detailed explanations are
found in [22] and [34]. Note that we will omit an implicit time
index k in all notations for the sake of brevity.

1) Notations: In the following, all equations referring to
the PHD filter or Poisson distributed phenomena are marked
with the symbol • and any reference to the Panjer filter
or the Panjer distribution is indicated with the symbol ◦.
Dependent on the sensor configuration φ, we can write down
the spatial distribution of the false alarms as sc(·|φ). Further-
more, suppose that µ•/◦pr (·|φ) is the predicted intensity of the
PHD or Panjer filter, l(x|z) denotes the single-target single-
measurement association likelihood, and pd(·|φ) is the (state-
dependent) probability of target detection. For arbitrary regions
B ⊆ X , the association terms µ•/◦z (·|φ) are given by

µ•/◦z (B|φ) =

∫
B

pd(x)l(x|z)µ•/◦pr (x)dx. (7)
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2) The PHD filter likelihood [22]: For the original PHD
filter, the number of false alarms is assumed to be Poisson
distributed, in which case λ•c shall denote the Poisson false
alarm rate and µ•c(·|φ) = λ•cs

•
c(·|φ) is its intensity function

(cf. Eq. (28) in the supplementary document).

Theorem II.1 (MOL of the PHD filter [22]). Given the short-
hand notation

µ•d(X ) =

∫
X
pd(x|φ)µ•pr(x|φ)dx, (8)

the likelihood function of the PHD filter for a given sensor
state φ is found to be

ˆ̀•(φ|Z) =

∏
z∈Z [µ•c(z|φ) + µ•z(X|φ)]

exp
[∫
Z µ
•
c(z|φ)dz + µ•d(X )

]. (9)

3) The Panjer filter likelihood [25], [34]: Let us define the
Pochhammer symbol or rising factorial xn↑ by

xn↑ :=
n−1∏
i=0

(x+ i), x0↑ := 1. (10)

As the name suggests, the Panjer filter assumes Panjer dis-
tributed false alarms, in which case we write αc, βc for the
two Panjer clutter parameters and s◦c for the spatial distribution
of the false alarms.

Theorem II.2 (MOL of the Panjer PHD filter). Write α = αpr,
β = βpr and s◦pr for the Panjer parameters and the spatial
distribution of the predicted process, and let

Fd,φ = 1 +
1

β

∫
X
pd(x|φ)s◦pr(x|φ)dx, (11)

Fc = 1 +
1

βc
(12)

be two auxiliary functions for a given sensor state φ. The
multi-object likelihood function of the Panjer PHD filter for φ
is found to be

ˆ̀◦(φ|Z) =

|Z|∑
j=0

αj↑
βj

(αc)(|Z|−j)↑

(βc + 1)|Z|−j
F−α−jd,φ F−αc−|Z|−j

c

·
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µ◦z(X|φ)
∏

z′∈Z\Z′

s◦c(z|φ).
(13)

III. MODELLING, DATA, AND SCENARIOS

A. Implementation

Much like the parent process in [35], the parent process in
this application is represented with a one-dimensional even
spread of particles. In this case, particles are distributed on
a fixed grid between angles ±10° from the centre of the
field of view. The number of particles N has been chosen
to be 201 such that the angular resolution is 0.1° between
consecutive filters. With this even spread of particles, and
a consistent test between ±10°, there is no need for a
particle resampling step [36] in this algorithm, reducing the
computational effort required. In this work we only consider
estimating one parameter, however several parameters could
be estimated simultaneously if necessary at the cost of using

Algorithm 1 Joint Sensor Registration and Fusion
Input: Set of particles {φik−1, w

i
k−1, θ

i
k−1}Ni=1

Set of measurements Zk

procedure PREDICTION
for 1 ≤ i ≤ N do

wik|k−1 = ParentPrediction(wik−1) . Eq. (2a)
θik|k−1 = OffspringPrediction(θik−1) . Eq. (3a)

end for
end procedure

procedure UPDATE
for 1 ≤ i ≤ N do

if Zk from reference sensor then
θik = OffspringUpdate(θik|k−1, Zk) . Eq. (3b)
wik = wik|k−1

else if Zk from uncalibrated sensor then
θik = OffspringUpdate(θik|k−1, Zk) . Eq. (3b)
wik = ParentUpdate(θik|k−1, w

i
k|k−1) . Eq. (2b)

end if
end for

end procedure

Output: Set of particles {φik, wik, θik}Ni=1

more particles. A high-level pseudocode for this solution is
given in Algorithm 1.

Both offspring processes are implemented using a Gaussian-
Mixture representation of the target population like in [20],
[24], but using an EKF as described earlier. A measurement-
driven birth process will be used as described in [37], and
the Hellinger distance is used for component merging [38];
components with low weights below a threshold τprune are
removed at every update.

B. Model Definitions

1) Dynamical Model: The measurement buffer will have
access to the raw range-bearing radar measurements and the
bearing-only IRST measurements that are recorded at a given
iteration k and physical time tk. The MTT routine will be
performed using a 4−D Cartesian state vector with elements

xk = [xk ẋk yk ẏk]
′ (14)

where xk, yk are the x and y positions of a target, and ẋk, ẏk
are the x and y velocities of a target. For this maritime
surveillance-based scenario, it is assumed that each and every
target follows a near-constant velocity (NCV) model [39], [40]
that is described by

xk = Fkxk−1 + wk (15)

where Fk is the state transition matrix

Fk =


1 ∆k 0 0
0 1 0 0
0 0 1 ∆k

0 0 0 1

 , ∆k = tk − tk−1, (16)
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and wk represents zero-mean white Gaussian process noise
with covariance

Qk =


q∆3

k/3 q∆2
k/2 0 0

q∆2
k/2 q∆k 0 0
0 0 q∆3

k/3 q∆2
k/2

0 0 q∆2
k/2 q∆k

 (17)

and q is the acceleration noise value in both the X and Y
directions.

2) Measurement Models: The radar measurement model is
defined as

zRk = hR(xk) + ηRk , (18)

with

hR(xk) =

[
rk
φk

]
=

[ √
x2
k + y2

k

tan−1(xk, yk)

]
, (19)

where rk > 0, tan−1(xk, yk) is the four-quadrant inverse
tangent function, and the resulting φk lies within [0, 2π). The
additive noise term ηRk is defined by

ηRk ∼ N (ηRk ; 0, diag(σ2
rr , σ

2
φr

)) (20)

where σrr and σφr are the radar’s range and azimuth standard
deviations respectively.

The camera measurement model is described by

zCk = hC(xk) + ηCk , (21)

where
hC(xk) = φk = tan−1(xk, yk). (22)

The additive noise term ηCk is defined by

ηCk ∼ N (ηCk ; 0, σ2
φc

) (23)

where σφc
is the camera azimuth standard deviation.

C. Sensors

The maritime navigation radar used as a part of the data
collection was a Kelvin Hughes SharpEye system [41], shown
in the background of Fig. 3. It uses a number of different
radar techniques to detect a wide-range of targets in a maritime
environment. During the trial, the system was operating in a
full 360◦ sweep mode, with a full scan taking approximately
2.5 seconds to complete. The low-profile antenna gives an
azimuthal beam-width of less than 1° at the 3 dB point.
Techniques such as monopulse to further improve the angular
accuracy of the radar were not in use; accurate target locali-
sation inside the beam was not possible.

The IRST system, shown in the foreground of Fig. 3, was a
research platform which limited the amount of information
available. IRST is one method for detecting and tracking
targets that give off infra-red signatures. The wavelength of
this sensor tends to be shorter than that of a conventional mar-
itime radar, thus giving much better angular resolution. One
drawback however is that it can be affected by atmospheric
conditions and the weather, both shortening its effective range.
The reasons for performing sensor fusion in this case are to
exploit the better angular accuracy in the IRST measurements
and the higher update rate available from the IRST sensor.
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Fig. 4. Trajectories used in simulated scenario, with sensors co-located at the
origin (0, 0).

D. Simulations

In order to test the algorithm using simulated data, a
challenging scenario involving crossing target trajectories has
been created. Two targets move around inside the IRST field-
of-view and their trajectories cross around 60 iterations into
the scenario. Crossing targets often make the data association
problem difficult for tracking algorithms; a sensor with a
slow update rate will not generate estimates quickly enough,
and therefore there will be a loss in track resolution. Sensor
properties and update rates are close to those defined in the
accompanying data sheets and manuals [41].

In this first scenario, we consider two potential false alarm
models for a maritime tracking scenario; the common Poisson
model, and also a negative binomial model [42]. The latter
will allow for a large variance in the number of false alarms
generated from crests of waves or from rough sea conditions
[23]. Simulations have been created to test the filters on each of
those models. The parameters used for the simulations and the
filters are shown in Table I and are typical for multiple target
tracking simulations using PHD filters [20], [24]; any variation
in parameters for different experiments will be stated later. For
the first two experiments (Sec. IV-A and IV-B) where the IRST
is calibrated onto the radar FoR, a misalignment of 3° has been
simulated in the IRST measurements. Due to the different
characteristics and sampling rates of radar and an infrared
sensor, a third simulated scenario is considered (Sec. IV-C)
where the radar measurements contain an angular bias and the
IRST measurements have no bias. This alternative scenario
will show that it is possible to still estimate this angular
bias, even when exploiting the infrequent radar measurements,
rather than the high-frequency IRST measurements.

E. Real Scenario

In order to further test the algorithm developed, a short
segment of data from a real scenario was used. Both sensors
were located on a sea wall at Fort Blockhouse in Gosport
overlooking Portsmouth harbour. The trial coordinators had
instructed a number of instrumented targets to be present dur-
ing the trial. However, there was a large amount of background
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TABLE I
TRACKING PARAMETERS

Quantity Symbol Sim Value Real Value

Detection Probability pd 0.99 0.6
Survival Probability ps 0.95 0.95
Pruning Threshold τprune 0.001 0.001
Merging Threshold τmerge 0.8 0.6

Extraction Threshold τextract 0.5 0.5
False Alarm Rates λr , λc 2, 5 5, 10

False Alarm Variance varr , varc 10, 50 N/A
Birth Intensity µb 1 0.01

Acceleration Noise (ms−2) q 1 3
Radar Meas. Noise (m, deg) σrr , σφr 5, 0.06 3.873, 0.059

IRST Meas. Noise (deg) σφc 0.01 0.016

traffic such as ferries and cargo vessels passing through, which
is actually an advantage: having more targets present in the
scene is preferable when attempting to calibrate using this
method as more measurement-to-track associations can be
made, and therefore increase the MOL.

In the segment of real data used, a target crosses the field
of view at approximately 2 kilometres away from the sensors.
The segment lasts for approximately 50 seconds and then the
target disappears from view. For the sensor fusion aspect, a
subset of the IRST measurement sets are used to improve the
update rate, but not so much as to heavily rely on bearings-
only track updates; a typically challenging problem in MTT.
Approximately three sets of IRST measurements are used
between consecutive radar scans.

IV. RESULTS

All results have been averaged over 50 Monte Carlo runs,
and the registration angle estimate is taken as the Maximum
A Posteriori (MAP) estimate of the parent likelihood function.
The tracked output from the PHD filter and Panjer PHD
filter will be compared to the simulated trajectories using the
Optimal Subpattern Assignment (OSPA) distance [43]. The
OSPA distance is a combination of a cardinality error and a
localisation error between two sets X and Y with cardinalities2

m and n, which is widely used to determine accuracy in multi-
target tracking systems. It is given by [43, Eq. (3)]

d(c)
p (X,Y ) =

[
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

] 1
p

,

(24)
using an order parameter p and a cut-off distance c. Here,
the distance function d(c)(x, y) = min(c, d(x, y)) is an ap-
propriate distance measure, e.g. the Euclidean distance, cut
off at c, and Πn denotes the set of all possible permutations
of the numbers 1, . . . , n. As the order parameter increases,
the metric penalises estimates that lie further away from the
ground truth more harshly. From [43, Sec. III-D], p = 2 is
a good practical choice for the order parameter, as it usually
gives smoother distance curves, and is consistent with other

2Without loss of generality, it is assumed that X has at most as many
elements as Y .
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Fig. 5. OSPA Distance over Time, PHD Filter, Poisson Distribution

metrics that use a p-th order average construction. The cut-
off distance c determines the trade-off between penalising
cardinality errors as opposed to localisation errors. For all
OSPA results shown, a cut-off parameter of c = 100 m and
order parameter p = 2 will be used.

In Figs. 5 through to 9, where the OSPA distance and IRST
pointing angle are plotted, these are the averages taken across
all Monte-Carlo trials. We use a consistent target ground truth
in all trials and use this to generate a different set of sensor
measurements for each individual trial. The legend shown in
Fig. 5a is consistent across Figs. 5, 6, 7, and 10a. The red
dashed plots represent the case where only the radar is used
and no data fusion is performed. The blue dotted plots show
the case where the radar and IRST are incorrectly registered
and no correction attempt is made, whereas the dashed-dotted
black plots show the results for the joint estimation method
presented in this work. Finally, as a benchmark to compare
our result to, we have also simulated the case where the radar
and IRST are perfectly registered, giving an optimal result.
This is shown as the solid green plot on each figure.

A. Poisson Distribution

We start by considering the Poisson distribution as the
underlying false alarm model. Here, the mean number of
false alarms is equal to the variance, giving a reasonably
consistent number per scan. The average false alarm rates for
each sensor are shown in Table I. From Figs. 5 and 6, the
importance of having the correct registration between sensors
is clear. Performing tracking with only radar measurements
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is accurate in itself, however the tracking accuracy can be
improved by performing sensor fusion between a radar and
a calibrated IRST sensor. Without taking the registration into
account, and performing fusion with an IRST sensor that is
uncalibrated, tracking performance is decreased and the OSPA
distance increases significantly. Comparing Fig. 5a to Fig. 6a,
and Fig. 5b to Fig. 6b there is an improvement in tracking
performance by using the Panjer PHD filter. In the pd = 0.99
case, the k = 95 OSPA distances for the PHD filter and
Panjer PHD filters with estimated registration are 21.72 m
and 20.04 m respectively, and in the pd = 0.85 case, these
are 32.56 m and 30.72 m. This is due to propagation of the
variance of the cardinality distribution, as well as the mean.

As with many tracking scenarios, the probability of detec-
tion pd is an important factor and as shown in Figs. 8a and
9a, performance improves in both the target tracking and the
registration estimation as pd increases from 0.7 to 0.99.

B. Negative Binomial Distribution

For this set of simulations, the variance in the number of
false alarms is no longer constrained to be equal to the mean.
The included variance parameters are shown in Table I. The
PHD filter assumes the false alarm distribution is Poisson,
and does not take account of the variance information. The
Panjer PHD filter however allows for variance information to
be included. It can be seen in Fig. 7 that the Panjer PHD
filter does outperform the PHD filter in all cases. At k =
95 in the estimated registration case, the OSPA distance for
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Fig. 7. OSPA Distance over Time, Negative Binomial Distribution

the PHD filter is 35.71 m, whereas for the Panjer PHD filter,
this is 30.61 m. Again these results show it is important to
take account of the registration between the sensors. A larger
performance gain can be seen in Fig. 9. We see that even with
lower values of pd (e.g. 0.7), the Panjer PHD filter is able
to give more consistent and accurate estimates of the IRST
pointing angle. We require a higher pd value (> 0.9) to get
accurate registration estimates from the PHD filter.

C. Alternative Frame of Reference

We now consider the alternative representation of the sen-
sors, where instead, the radar measurements are assumed
to contain some angular bias and the IRST measurements
contain no bias. Firstly in Fig. 10a, it can be seen that the
tracking accuracy using a single radar has now decreased as
expected, and the result where fusion is performed between
the unregistered sensors is still poor. The estimated result is
close to the unbiased and correctly registered result, with an
OSPA distance at k = 95 of 27.04 m. In Figs. 10b and 10c, as
the probability of detection pd increases, there is a decrease
in the OSPA distance, and the angle estimate tends towards
the true registration configuration, following the same trends
as the results given in Figs. 8a and 9a.

D. Real Scenario

Fig. 11 shows that after the initialisation to 10° and a
transition period, a 1.5° to 2° registration error is estimated
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between the radar and the IRST system. After the transition,
it can be seen that the angle only deviates from this a small
amount, which could be due to some platform vibration, or
gusts of wind for example. This error could account for the
fact that the installation was done only by eye and therefore
subject to human error. The advantage of performing sensor
fusion is apparent in the comparison in Fig. 12. The radar track
shown in Fig. 12a is accurate, however there are considerable
gaps between consecutive estimates. These gaps are filled
using fusion of the IRST information, see Fig. 12b. With
range information only available in the radar measurements,
we see the two larger ”jumps” in the track at (−2000, 400)
and (−1850, 450). These are points where radar measurements
become available again and range information can be updated.

V. CONCLUSIONS

We have successfully demonstrated a suitable method for
performing joint sensor registration and fusion using asyn-
chronous and heterogeneous sensors. The registration param-
eter is estimated on the fly, based on the performance of the
underlying target tracker, which has never been performed in
this context before. The simulation results on a challenging
scenario clearly highlight the importance of calibrating the net-
work before performing fusion across the sensors, even when
using an alternative false alarm model. When applying this
method to a real data set, a plausible offset angle was found.
For this sensor setup of radar and IRST, the well-documented
bearings-only tracking problem was evident when using IRST
measurements. By not having a range measurement available,
tracking accuracy is reduced. This was compensated for by
using only a subset of the IRST images available, giving more
weight to the sparse range-bearing measurements of the radar.

Taking into consideration the simulated scenario outlined
in this work, it is of vital importance that sensor fusion is
used. Using only the slow update rate of the radar system will
leave longer periods where no track estimates are given, and
therefore track resolution is lost. Exploiting the higher update
rate of the IRST system majorly improves the performance
where the calibration is accurate, especially at the point where
the targets cross. Having more track estimates gives better
situational awareness, and helps to resolve potential issues
with estimate-to-track association.
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