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Structure of Talk 

• Introduce the source separation problem and its application 

domains 

• Key books and literature reviews  

• Technical preliminaries 

• Type of mixtures 

• Taxonomy of algorithms 

• Performance measures 

• Conclusion 

• Acknowledgement  
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Fundamental Model for Instantaneous 

ICA/Blind Source Separation 
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Potential Application Domains 

Biomedical signal processing 

• Electrocardiography (ECG, FECG, 
and MECG) 

• Electroencephalogram (EEG)  

• Electromyography (EMG) 

• Magnetoencephalography (MEG) 

• Magnetic resonance imaging (MRI) 

• Functional MRI (fMRI) 
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Biomedical Signal Processing 

(a) Blind separation for the enhancement of sources, cancellation of 

noise, elimination of artifacts 

(b) Blind separation of FECG and MECG 

(c) Blind separation of multichannel EMG    [Ack. A. Cichocki] 
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Audio Signal Processing 
 

Cocktail party problem 

• Speech enhancement 

• Crosstalk cancellation 

• Convolutive source separation 
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Objective of Machine-based Source 

Separation 
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• Room reverberation: multiple reflections of the sound on wall surfaces 

and objects in an enclosure 

 

• Source separation becomes more challenging as the level of 

reverberation increases!!  

 

• The mixing process is convolutive! 

A typical room impulse response (RIR) 

The Convolutive Source Separation 

Problem 
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Communications & Defence Signal 

Processing  
• Digital radio with spatial diversity 

• Dually polarized radio channels 

• High speed digital subscriber lines 

• Multiuser/multi-access communications systems 

• Multi-sensor sonar/radar systems 
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Image Processing 

• Image restoration (removing blur, clutter, noise, 
interference etc. from the degraded images) 

 

• Image understanding (decomposing the image to 
basic independent components for sparse 
representation of image with application to, for 
example, image coding) 
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Blind Image Restoration 
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Temporal/Spatial Covariance Matrices  
(zero-mean WSS signals) 
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Technical Preliminaries:- 

Linear Algebra 
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Linear equation: 

m=n,  exactly determined 
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m<n, under determined (overcomplete)  
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Linear Equation-:  

Exactly Determined Case 

When m=n: 

If H is non-singular, the solution is uniquely defined by: 

  xHs
1

If H is singular, then there may either be no solution 

(the equations are inconsistent) or many solutions. 
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Linear Equation :-  

Over determined Case 

When m>n: 
If the H is full rank (or the columns of H are 

linearly independent), then we have the least 

squares solution: 

  xHHHs HH( 1)
This solution is obtained by minimization of 

the norm of the error (exploit orthogonality 

principle): 
2

  Hsxe 
2
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Linear Equation :- 

Underdetermined Case 

When m<n: 
There are many vectors that satisfy the equations, 

and a unique solution is defined to satisfy the 

minimum norm condition: 

  xHHHs 1) HH(

If H has full rank, then minimum norm 

solution is (pseudo inverse): 

smin
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Permutation and Scaling Matrices 

Permutation matrix: 

(an example: 5x5) 
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Conventional Blind Source 

Separation 

Solution - making assumptions: 

1. The sources are statistically (mutually) 

independent of each other. 
 

2. The mixing matrix H is a full rank matrix with 

m no less than n. 
 

3. At most one source signal has Gaussian 

distribution. 

H is unknown, i.e. no prior information about H 
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Indeterminacies 

sPWHsWxy 

Separation process: 

Separation matrix Permutation matrix 
Scaling matrix 
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Independence Measurement 

224 ))((3)()( yEyEykurt 

Kurtosis (fourth-order cumulant for the 

measurement of non-Gaussianity): 

In practice, find out the direction where the kurtosis of 

y grows most strongly (super-Gaussian 

signals/Leptokurtic) or decreases most strongly (sub-

Gaussian signals/Platykurtic). 

 
UDRC Vacation School, Heriot-Watt 

University, 26th June 2014 



Independence Measurement-Cont. 

Mutual information (MI): 

In practice, minimization of MI leads to the statistical 

independence between the output signals. 
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Independence Measurement-Cont. 

Kullback-Leibler (KL) divergence: 

Minimization KL between the joint density and the 

product of the marginal densities of the outputs leads to 

the statistical independence between the output signals. 
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Types of Sources 

• Non-Gaussian signals (super/sub-Gaussian) 

[Conventional BSS] 

• Stationary signals [Conventional BSS] 

• Temporally correlated but spectrally disjoint 

signals [SOBI, Cardoso, 1993] 

• Non-stationary signals [Freq. Domain BSS, 

Parra & Spence, 2000] 

• Sparse Signals [Mendal, 2010] 
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Types of Mixtures 

•  Instantaneous mixtures (memory-less, flat fading): 

  Hsx 
A scalar matrix 

•  Convolutive mixtures (with indirect response with 

time-delays) 

  sHx  A filter matrix 

  
TT

Hsx  (Transpose form) 

(Direct form) 
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Types of Mixtures-Cont. 

•  Noisy and non negative mixtures (corrupted by noises 

and interferences): 

0s and 0H where

  



 nHsx Noise vector 

  

• Non-linear mixtures (mixed with a mapping function) 

Unknown function  sx F
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Taxonomy of Algos. :-  

Block Based- JADE 

Joint Approximate Diagonalization of Eigen-matrices 

(JADE) (Cardoso & Souloumiac): 

1. Initialisation. Estimate a whitening matrix V, and set 

2. Form statistics. Est. set of 4th order cumulant matrices:  

Vxx 
iQ

3. Optimize an orthogonal contrast. Find the rotation matrix U such that the 

cumulant matrices are as diagonal as possible (using Jacobi rots), that is  









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i

)(offminarg UQUU i

H

U

4. The separation matrix is therefore obtained unitary (rotation) & whiten.:  

VUVUW
1 H 
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Taxonomy of Algorithms:-  

Block Based - SOBI. 
Second Order Blind Identification (SOBI) (Belouchrani et al.): 

1. Perform robust orthogonalization 

2. Estimate the set of covariance matrices: 

)()( kk Vxx 

3. Perform joint approximate diagonalization:  
T

iip UUDRx )(ˆ

4. Estimate the source signals:  

)()(ˆ kk T
VxUs 

T

i
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i
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where     is a pre-selected set of time lag ip
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Taxonomy of Algorithms:-  

Block Based - FastICA 

Fast ICA ( Hyvärinen & Oja): 

1. Choose an initial (e.g. random) weighting vector W 

2. Let  

3. Let  

4. If not converged, go to step 2. 

Non linearity g(.) chosen as a function of sources 

     WxWxWxW
TT gEgE 

 WWW
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Taxonomy of Algos:-  

Sequential - InforMax 
InforMax (Minimal Mutual Information/Maximum Entropy) 

(Bell & Sejnowski): 

     

     















i

iy

i

iiMMI

ypEh

hyhJ

i
WWx

WyWW

,detlog

,,

          

       



i

ii

zzME

ygEh

gpEpEhJ

logdetlog

loglog,

Wx

WxzWzW

          kkkk
T

WyyIWW  1

UDRC Vacation School, Heriot-Watt 

University, 26th June 2014 



Taxonomy of Algos:-  

Sequential - Natural Gradient 

Natural Gradient (Amari & Cichocki): 
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In Riemannian geometry, the distance metric is defined as: 
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General adaptation equation: 
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Performance Measurement 
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Performance Measure 
BSS Eval Toolbox [http://bass-db.gforge.inria.fr/bss_eval/]:  

 

This MATLAB toolbox give reliable results in the form of 

Source to Interference Ratio (SIR), Source to Distortion Ratio 

(SDR), Source to Noise Ratio(SNR), and Source to Artifact 

Ratio (SAR).  

SIR = 10𝑙𝑜𝑔10

|| Starget ||
2

|| einterf ||2
 

 

SDR = 10𝑙𝑜𝑔10

|| Starget ||2

|| einterf + enoise + eartif ||2
 

 

SDR = 10𝑙𝑜𝑔10

|| einterf + enoise + eartif ||2

|| einterf ||2
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Performance Measure 

Perceptual Evaluation Speech Quality: 

 

This is basically an algorithm that is design to predict subjective 

opinion scores of a degraded audio sample. 

It give us the Mean Opinion Score for the speech quality, that 

values from 0-5. 
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Linear to Nonlinear Separation 

• Nonlinear Separation: Using a time frequency mask 

• Linear Separation: Multichannel ICA/IVA/Beamforming  

Time frequency masking ? 
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Time Frequency Signal 
Representation 

In 1946, Gabor  proposed, “a new method of 

analysing signals is presented in which time and 

frequency play symmetrical parts”. 
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Time-Frequency Masking 

Audio signals are enhanced by simple nonlinear operations 

X 

Masks mixture 
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Summary 

In this talk, we have reviewed: 

• Mathematical preliminaries 

• BSS applications and concepts 

• Sources and mixtures in BSS 

• Representative block and sequential algos 

 

You should be all set for the ensuing talks! 
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