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Abstract—This paper presents a new adaptive algorithm for
the linearly constrained minimum variance (LCMV) beamformer
design. We incorporate the set-membership filtering (SMF) mech-
anism into the reduced-rank joint iterative optimization (JIO)
scheme to develop a constrained recursive least squares (RLS)
based algorithm called JIO-SM-RLS. The proposed algorithm
inherits the positive features of reduced-rank signal processing
techniques to enhance the output performance, and utilizes the
data-selective updates (around 10−15%) of the SMF methodology
to save the computational cost significantly. An effective time-
varying bound is imposed on the array output as a constraint to
circumvent the risk of overbounding or underbounding, and to
update the parameters for beamforming. The updated parame-
ters construct a set of solutions (a membership set) that satisfy the
constraints of the LCMV beamformer. Simulations are performed
to show the superior performance of the proposed algorithm in
terms of the convergence rate and the reduced computational
complexity in comparison with the existing methods.

I. INTRODUCTION

Beamforming is an important antenna array technique with

application in wireless communications to adjust array pa-

rameters for maintaining the array response from a certain

direction while attenuating interference and noise. The optimal

linearly constrained minimum variance (LCMV) beamformer

[1] is a well-known beamforming technique. Many adaptive

filtering algorithms have been proposed for the implementation

of the LCMV beamformer, ranging from the low-complexity

stochastic gradient (SG) algorithm to the more complex recur-

sive least squares (RLS) algorithm [2]. The major drawback of

the reported algorithms is that they require a large number of

samples to reach the steady-state when the number of elements

in the filter is large. Besides, filters with many elements always

show a poor performance under dynamic scenarios for tracking

signals embedded in interference and noise.

An effective approach to circumvent these shortcomings is

to utilize reduced-rank array processing and adaptive filtering

techniques for the beamformer design. The reduced-rank array

processing techniques aim to construct a projection matrix

to project the array input vector onto a lower dimensional

subspace, and use a reduced-rank adaptive filter to perform

the weight update within this subspace. Compared with the

full-rank techniques, the reduced-rank one achieves fast con-

vergence and improved tracking performance since the number

of elements in the reduced-rank filter is much less than those

in the full-rank filters, especially under the condition where

the number of sensor elements in the array is large. The

popular reduced-rank schemes include the auxiliary vector

filtering (AVF) [3], the multistage Wiener filter (MSWF)

[4], and the joint iterative optimization (JIO) [5], [6]. The

SG and RLS type algorithms are developed based on the

reduced-rank schemes for implementation. Despite the im-

proved convergence and tracking performance achieved with

these reduced-rank adaptive algorithms, the calculation of the

projection matrix and the reduced-rank weight vector requires

a significant computational cost.

The contribution of this paper is the development of a

new adaptive filtering algorithm for the beamformer design

that guarantees the improved convergence and tracking per-

formance compared with those of the existing full-rank and

reduced-rank algorithms, whereas the computational cost is

much lower than that of its reduced-rank counterparts. An

efficient approach to reduce the computational cost is to

employ a set-membership (SM) technique to adaptive filtering

[7], [8]. The SM technique specifies a bound on the magnitude

of the estimation error (or the array output) and uses the

data-selective updates to encompass a set of parameters in a

feasibility set, in which any member is a valid SM filter that

satisfies the constraints of the design criterion. It involves two

steps: 1) information evaluation and 2) parameter adaptation.

If the parameter update does not occur frequently, and the

information evaluation does not involve much complexity, the

overall computational cost can be saved substantially. The

well-known SM based algorithms include the works reported

in [9]-[11], which were developed for the full-rank parameter

estimation. In this paper, we introduce the SM technique into

reduced-rank array processing and propose a novel reduced-

rank adaptive algorithm. The proposed algorithm introduces a

framework to combine the SM mechanism with the reduced-

rank joint iterative optimization (JIO) scheme [6], and devel-

ops a RLS algorithm for implementation, which is termed

JIO-SM-RLS. An effective time varying bound is employed

in the proposed algorithm as a constraint to avoid the risk

of overbounding or underbounding [11]. Compared with the

existing algorithms, the JIO-SM-RLS algorithm inherits the
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positive features of the JIO scheme to enhance the conver-

gence and tracking performance, and utilizes the data-selective

updates of the SM mechanism to save the computational cost

significantly.

The remaining of this paper is organized as follows: we

outline a system model for beamforming and present the

reduced-rank technique in Section II. Section III introduces the

reduced-rank SM scheme and Section IV derives the proposed

JIO-SM-RLS algorithm. Simulation results are provided and

discussed in Section V, and conclusions are drawn in Section

VI.

II. SYSTEM MODEL AND REDUCED-RANK

BEAMFORMER DESIGN

A. System Model

Let us suppose that q narrowband signals impinge on a

uniform linear array (ULA) of m (q ≤ m) sensor elements.

The sources are assumed to be in the far field with directions of

arrival (DOAs) θ0,. . . ,θq−1. The received vector x(i) ∈ Cm×1

at the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), i = 1, . . . , N (1)

where θ = [θ0, . . . , θq−1]T ∈ Rq×1 is the DOAs, A(θ) =
[a(θ0), . . . ,a(θq−1)] ∈ Cm×q composes the steering vec-

tors a(θk) = [1, e−2πj d
λc

cosθk , . . . , e−2πj(m−1) d
λc

cosθk ]T ∈
Cm×1, (k = 0, . . . , q − 1), where λc is the wavelength

and d = λc/2 is the inter-element distance of the ULA, and

to avoid mathematical ambiguities, the steering vectors a(θk)
are considered to be linearly independent, s(i) ∈ Cq×1 is the

source data, n(i) ∈ Cm×1 is the white Gaussian noise, N
is the observation size of snapshots, and (·)T stands for the

transpose. The output of a narrowband beamformer is

y(i) = wHx(i), (2)

where w = [w1, . . . , wm]T ∈ Cm×1 is the complex weight

vector of the adaptive filter, and (·)H stands for the Hermitian

transpose.

B. Reduced-rank Beamformer Design

For large m or in the dynamic scenario, the full-rank

adaptive algorithms (e.g., SG or RLS) fail or provide poor

performance with a small number of snapshots for the beam-

former design. Many of recent works in the literature have

been reported based on the reduced-rank techniques to solve

these problems [3]-[5]. The important feature of the reduced-

rank schemes is to construct a projection matrix T r =
[t1, . . . , tr] ∈ Cm×r with columns tl (l = 1, . . . , r) constitute

a bank of r full-rank filters as given by tl = [t1,l, . . . , tm,l]T ∈
Cm×1. The projection matrix performs the dimensionality

reduction to project the full-rank received-vector onto a lower

dimension and retains the key information of the original

signal in a reduced-rank received vector, which is

x̄(i) = T H
r x(i), (3)

where x̄ ∈ Cr×1 denotes the reduced-rank received vector

and r (1 ≤ r ≤ m) is the rank number. In what follows, all

r-dimensional quantities are denoted by an over bar.

The reduced-rank adaptive filter w̄ = [w̄1, . . . , w̄r] follows

the projection matrix to produce the filter output

y(i) = w̄H x̄(i). (4)

The popular reduced-rank schemes include the AVF [3], the

MSWF [4], and the JIO [6], which employ the SG or the RLS

type algorithms to calculate T r and w̄ for the beamformer

design. However, with respect to the SG type algorithms,

it is difficult to predetermine the step size values to make

a tradeoff between fast convergence and misadjustment in

dynamic scenarios. Furthermore, the computational cost is

high due to the calculation of the projection matrix.

III. PROPOSED REDUCED-RANK SM SCHEME

In this section, we introduce a novel reduced-rank SM

scheme by combining the SM mechanism with the reduced-

rank JIO scheme. It should be remarked that the JIO scheme is

considered here since it exhibits the superior convergence and

tracking performance with relatively simple realization over

other reduced-rank schemes [6].

The existing SM techniques focus on full-rank signal pro-

cessing, namely, the related filter w is encompassed in a

feasibility set, in which any member satisfies a predetermined

or time-varying bound on the magnitude of the estimation error

(or the array output). The SM algorithms utilize the data-

selective updates to reduce computational complexity [11].

Regarding the proposed reduced-rank SM scheme, some valid

pairs of {T r, w̄} are consistent with the bound at each time

instant due to the joint iterative exchange of information. The

solution to the proposed scheme is a feasibility set in the

parameter space, which is

Θ(i) =
⋂

(
s0(i),x(i)

)
∈S

{
w̄ ∈ Cr×1, T r ∈ Cm×r : |y(i)|2 ≤ δ2(i)

}
,

(5)

where s0(i) is the transmitted data of the desired user from

θ0 and S is the set of all possible data pairs (s0(i),x(i)). The

pairs of {T r, w̄} in the set are upper bounded in magnitude by

a time-varying bound δ(i) that can be viewed as a constrained

condition in the beamformer design. Actually, S cannot be

traversed all over in practice. An alternative way is to construct

an exact membership set Ψ(i), which is the intersection of

the constraint sets provided by the observations over the time

instants i = 1, . . . , N , i.e., Ψ(i) = ∩i
l=1Hl with the constraint

set Hl = {w̄ ∈ Cr×1,T r ∈ Cm×r : |y(i)|2 ≤ δ2(i)}. It is

clear that a larger space of the data pairs leads to a smaller

membership set. Note that the feasibility set Θ(i) is a subset

of the exact membership set Ψ(i). The two sets will be equal

if the data pairs traverse S completely.
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IV. PROPOSED JIO-SM-RLS ALGORITHM

In this section, we employ the proposed reduced-rank SM

scheme to develop a new RLS algorithm. The objective is

to design a bank of full-rank filters and a reduced-rank filter

whose output is not greater than a time-varying bound but

remains the signal from one certain direction for all input data.

It can be derived by minimizing the following cost function

minimize E
[|w̄HT H

r x(i)|2]
subject to w̄H ā(θ0) = γ, and |w̄HT H

r x(i)|2 = g2(i),
(6)

where a(θ0) and ā(θ0) are the full-rank and the reduced-rank

steering vectors of the desired signal, γ is a constant with

respect to the constraint, x̄(i) = T H
r x(i) is the reduced-rank

received vector, and g(i) corresponds to a bound within the

constraint set Hi with |g(i)| ≤ δ(i). The solutions {T r, w̄}
construct the feasibility set in (5) and satisfy the constraints

in (6).

The constrained cost function can be transferred into an

unconstrained least squares (LS) cost function by using the

method of Lagrange multipliers [2], which is

JLS =
i−1∑
l=1

λi−l
1 (i)w̄H(i)T H

r (i)x(l)xH(l)T r(i)w̄(i)

+ λ1(i)
[|w̄H(i)T H

r (i)x(i)|2 − g2(i)
]
+ λ2

[
w̄H(i)ā(θ0) − γ

]
,

(7)

where λ1(i) plays the role of the forgetting factor and La-

grange multiplier with respect to the constraint on the am-

plitude of the array output, and λ2 denotes another Lagrange

multiplier for the constraint on the steering vector.

It is clear that (7) is a function of the projection matrix

T r(i) and the reduced-rank filter w̄(i). Taking the gradient of

w̄(i) with respect to (7) and making it equal to a null vector,

we have

w̄(i) = − λ2

{[ i−2∑
l=1

λi−l
1 (i)x̄(l)x̄H(l) + λ1(i)x̄(i − 1)x̄H(i − 1)

]
+ λ1(i)x̄(i)x̄H(i)

}−1

ā(θ0)

≈ −λ2R̄
−1

(i)ā(θ0),
(8)

where R̄(i) = R̄(i − 1) + λ1(i)x̄(i)x̄H(i). It should be

remarked that the second expression of (8) is obtained under

an assumption that λ1(i) → 1, which is in accordance with

the setting of the forgetting factor [2].

By substituting (8) into the first constraint in (6) and

employing the matrix inversion lemma [2] to solve λ2, we

get

w̄(i) =
γP̄ (i)ā(θ0)

āH(θ0)P̄ (i)ā(θ0)
, (9)

where P̄ (i) = R̄
−1(i) is calculated in a recursive form

k̄(i) =
P̄ (i − 1)x̄(i)

1 + λ1(i)x̄H(i)P̄ (i − 1)x̄(i)
(10)

P̄ (i) = P̄ (i − 1) − λ1(i)k̄(i − 1)x̄H(i)P̄ (i − 1). (11)

Taking the gradient of T r(i) with respect to (7), making it

equal to a zero matrix, and consider the assumption λ1(i) → 1,

we obtain

T r(i)w̄(i) = −λ2R
−1(i)a(θ0), (12)

where R(i) = R(i−1)+λ1(i)x(i)xH(i). If we define f(i) =
R−1(i)a(θ0), the solution of T r(i) in (12) can be regarded

to find the solution to the linear equation T r(i)w̄(i) = f(i).
Given a w̄(i) �= 0, there exists multiple T r(i) in general. We

derive the minimum Frobenius-norm solution for stability. The

details of this derivation can be found in [12]. The projection

matrix can be expressed by

T r(i) = −λ2R
−1(i)a(θ0)

w̄H(i)
‖w̄(i)‖2

. (13)

The Lagrange multiplier λ2 can be solved by substituting

(13) into the constraint w̄H(i)T H
r (i)a(θ0) = γ. After several

rearrangements, the resultant projection matrix becomes

T r(i) =
γP (i)a(θ0)

aH(θ0)P (i)a(θ0)
w̄H(i)
‖w̄(i)‖2

, (14)

where P (i) = R−1(i) is calculated by

k(i) =
P (i − 1)x(i)

1 + λ1(i)xH(i)P (i − 1)x(i)
(15)

P (i) = P (i − 1) − λ1(i)k(i)xH(i)P (i − 1). (16)

The coefficient λ1(i) is important to the updates of the

projection matrix T r(i) and the reduced-rank filter w̄(i).
It guarantees an effective exchange of information between

T r(i) and w̄(i), and keeps the constraint on the amplitude of

the array output upper bounding a specific value following the

time instant. We utilize the proposed reduced-rank SM scheme

to compute λ1(i) and perform data-selective updates to adjust

pairs of {T r(i), w̄(i)} with low complexity. Specifically,

substituting the expressions of (9) and (14) into the second

constraint in (6) and making a rearrangement, yields,

λ1(i) ={
aH(θ0)P (i−1)[δ(i)a(θ0)−γ2x(i)]

aH(θ0)k(i)xH(i)P (i−1)[δ(i)a(θ0)−γ2x(i)]
if |y(i)|2 ≥ δ2(i)

0 otherwise,

(17)

where k(i) has been given in (15). The coefficient λ1(i)
is calculated only if the constraint |w̄H(i)x̄(i)|2 = g2(i)
cannot be satisfied, so as the updates of T r(i) and w̄(i).
It provides the data-selective updates for the full-rank and

reduced-rank filters’ design, reduces the computational com-

plexity significantly, and encompasses pairs of {T r(i), w̄(i)}
in the feasibility set Θ(i) proposed in Section 3.
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In (17), λ1(i) is sensitive to the selection of the time-

varying bound δ(i), which impacts the update rate and the

tracking performance of the proposed algorithm. We describe

a parameter dependent bound (PDB) that is similar to the

work reported in [7], and considers the evolution of the full-

rank weight vector w(i) = T r(i)w̄(i) to make the proposed

algorithm work effectively. The proposed time-varying bound

is

δ(i) = βδ(i − 1) + (1 − β)
√

α‖T r(i)w̄(i)‖2σ̂2
n(i), (18)

where β is a forgetting factor that should be set to guarantee

an appropriate time-averaged estimate of the evolution of the

weight vector w(i), α (α > 1) is a tuning coefficient, σ̂2
n(i)

is an estimate of the noise power, and ‖T r(i)w̄(i)‖2σ̂2
n(i) is

the variance of the inner product of the weight vector with the

noise term n(i) that provides information on the evolution of

w(i). The proposed time-varying bound provides a smoother

evolution of the weight vector trajectory and thus avoids too

high or low values of the squared norm of the weight vector.

A summary of the proposed JIO-SM-RLS algorithm is

given in Table I, where ρ and 
 are small positive values for

regularization, and T r(0) and w̄(0) are given to ensure the

constrained condition. It is clear that the projection matrix

and the reduced-rank filter exchange information and rely

on each other, which leads to an improved convergence and

tracking performance for the proposed algorithm. The pro-

posed reduced-rank SM scheme with the time-varying bound

is employed in the devised algorithm to update the pairs of

{T r(i), w̄(i)} only when the constraint on the array output

power cannot be satisfied, which results in substantial savings

in computation that is much less than that of its conventional

counterparts.

V. SIMULATION RESULTS

In this section, we evaluate the output signal-to-interference

plus-noise ratio (SINR) performance of the proposed JIO-SM-

RLS algorithm and compare it with the existing methods,

including the full-rank (FR) SG and RLS type algorithms

with or without SM techniques [2], [9], [11], and reduced-

rank algorithms based on the AVF [3], the MSWF [4], and

the JIO [6] schemes. We assume that the DOA of the desired

user is known by the receiver. In each experiment, we consider

BPSK signals and set input SNR= 10 dB and INR= 30
dB with white Gaussian noise. Simulations are carried out

with a ULA containing m = 64 sensor elements with half-

wavelength interelement spacing. A total of K = 1000 runs

are performed to obtain each curves.

In the first experiment, q = 25 users, including one desired

user, exist in the system. The related coefficients for the

proposed algorithm are set γ = 1, r = 5, α = 26, β = 0.992,

ρ = 1.3 × 10−3, and 
 = 1.0 × 10−4. It should be remarked

that λ1(i) should be in accordance with the setting of the

forgetting factor, which is a small positive value less than 1.

In simulations, we limit its range 0.1 ≤ λ1(i) ≤ 0.998 for

TABLE I
THE PROPOSED JIO-SM-RLS ALGORITHM

Initialization:
T r(0) = [Ir×r 0r×(m−r)]

T

w̄(0) = T H
r (0)a(θ0)/(‖T H

r (0)a(θ0)‖2)
P (0) = ρIm×m

P̄ (0) = �Ir×r

For each time instant i = 1, . . . , N

x̄(i) = T H
r (i − 1)x(i)

y(i) = w̄H(i − 1)x̄(i)
δ(i) in (18)

if |y(i)|2 ≥ δ2(i)
λ1(i) in (17)
k(i) in (15)
P (i) in (16)
T r(i) in (14)

ā(θ0) = T H
r (i)a(θ0)

x(i) = T H
r (i)x(i)

k̄(i) in (10)
P̄ (i) in (11)
w̄(i) in (9)

else
T r(i) = T r(i − 1)
w̄(i) = w̄(i − 1)

end

implementation. In Fig. 1, the curve of the proposed JIO-SM-

RLS algorithm achieves superior convergence compared with

existing ones. The steady-state performance of the proposed

algorithm is quite close to that of the minimum variance dis-

tortionless response (MVDR) that assumes the knowledge of

the covariance matrix R [2]. Although the JIO-RLS algorithm

[6] also enjoys relatively good performance, it requires 100%
updates (1000 updates for 1000 snapshots) for the filter design,

which is quite higher than that of the proposed algorithm with

only 14.2% updates for the pairs of {T r(i), w̄(i)}.
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Fig. 1. Output SINR versus the number of snapshots

The next simulation includes two experiments, which com-

pare the proposed and existing algorithms with the time-

varying and fixed bounds, respectively. The scenario is the
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same as that in Fig. 1. Fig. 2 (a) shows the results for the

full-rank algorithms. We find that the FR-SM-RLS algorithm

converges quickly to the steady-state with relatively low update

rate (τ = 20.5%). Due to the BPSK modulation scheme, it

implies that the algorithm with the fixed bound δ = 1.0 should

achieve a good performance. However, it requires more up-

dates (τ = 61.4%) and thus increases the computational cost.

The curves with higher (δ = 1.4) or lower (δ = 0.8) bounds

exhibit worse convergence performance. The same result can

be found in Fig. 2 (b) for the reduced-rank algorithms. The

proposed algorithm with the time-varying bound uses even less

updates to realize a high output SINR performance.
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Fig. 2. Output SINR versus the number of snapshots for (a) full-rank SM
algorithms; (b) reduced-rank SM algorithms

VI. CONCLUSION

We have introduced a new reduced-rank SM scheme and

develop a RLS algorithm for implementation. The proposed

scheme incorporates the SM mechanism with the time-varying

bound into the reduced-rank JIO scheme to realize the data-

selective updates of the full-rank and reduced-rank filters. The

time-varying bound is combined in the LCMV optimization

problem as a new constraint on the array output power to

encompass the pairs of {T r(i), w̄(i)} in the feasibility set of

the proposed scheme. A RLS algorithm has been derived for

implementation. The proposed algorithm achieves an improved

performance with exchange of information between the projec-

tion matrix and the reduced-rank weight vector, reducing the

computational cost primarily with the data-selective updates.
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