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Abstract—In wireless sensor networks, intruders can manipu-
late some sensors’ observations locally, which results in outliers
in distributed detection. These outliers can be detected and
removed by a fusion centre as all the sensors’ observations are
available. For wireless sensor networks without a fusion centre,
however, the detection performance can be significantly degraded
as distributed consensus algorithms are vulnerable to outliers. In
this paper, we consider the outlier detection for wireless sensor
networks without a fusion centre when a distributed consensus
algorithm is employed for distributed detection.1

I. INTRODUCTION
Wireless sensor networks (WSNs) are becoming more pop-

ular as they can be employed for various civil and military
applications including environmental and industrial monitoring
and surveillance. In general, a WSN consists of a number of
sensor nodes that can perform sensing and wireless communi-
cations to send their measurements or data to a fusion centre
(FC). Because of the limited capability of sensor nodes that are
usually small and have limited power sources (e.g., batteries),
the operations at sensors nodes have to be simple and efficient.
For example, each sensor can decide the presence of a certain
target using hypothesis testing and transmit its decision to a
FC so that the FC can combine the decisions from sensor
nodes [1].
In performing distributed detection for WSNs, there are

various problems. As wireless channels from sensors to a FC
are not ideal due to fading and noise, the FC can receive the
decisions of sensor nodes with errors. For decision fusion,
these channel impairments can be taken into account [2]. An-
other problem is that the required bandwidth for transmitting
sensors’ decisions increases with the number of sensor nodes
if orthogonal channels are used. To avoid this problem, all the
sensors can transmit signals to a FC in a common channel
using multiple access schemes [3], [4]. In this case, the FC
has a superposition of the transmitted signals that is a decision
statistic for the FC to make a global decision.
Since WSNs are prone to munipulation by adversaries,

outlier detection is required [5], [6], [7], [8]. For example,

1This work has been supported by EPSRC-DSTL, Grant No.
EP/H011919/1.

some sensor nodes may have biased observations and transmit
manipulated decisions to a FC. In [5], a kernel-based technique
is used to detect outliers provided that each sensor can have
a sufficient number of observations in the absence of a
parametric model for outliers. In [6], for an event boundary
detection, an outlier detection problem is formulated. Using
spatial correlation, it is shown that the event boundary can be
detected. In [7], statistical hypothesis testing is employed for
outlier detection with Markov models that can capture spatial
structures of WSNs. In [8], an overview of outlier detection
techniques for WSNs is provided. As discussed in [8], there are
various problems where outlier detection is required in WSNs.
Furthermore, the formulation of outlier detection relies on a
given application and problem.
If sensor nodes can have sufficient computing power, the

WSN can have a distributed architecture for the distributed
detection without a FC. Using a certain iterative algorithm,
sensor nodes can exchange their information so that each
sensor node can have a common global decision. This kind
of iterative algorithm is called distributed consensus algorithm
[9], [10] and its application to distributed detection in WSNs
can be found in [11]. The main advantage of distributed con-
sensus algorithms for distributed detection is that i) no central
processing is required; ii) the global decision is available at
every sensor node. There are also disadvantages. For example,
in order to converge to a final result (or to get a consensus),
sensor nodes should repeatedly exchange and update their
information, which might result in an excessive burden of
communication between sensor nodes. Furthermore, if some
sensors’ observations are outliers (due to imperfect sensing
or manipulation by intruders), these distributed consensus
algorithms could provide biased results.
In this paper, we focus on the outlier detection for WSNs

when a distributed consensus algorithm is employed for
distributed detection. Outliers are the observations at some
sensors where the observations are inconsistent with the obser-
vations of the other sensor nodes. In the context of distributed
detection, the outliers are the observations that are generated
from a different distribution. For example, the observations
of some sensor nodes can be totally different from those of
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the others due to sensors’ malfunction or manipulation by an
intruder. When a distributed consensus algorithm employed,
these outliers can result in a wrong decision as averaging
is prone to outliers (while the median is robust against
outliers [6]). As there is no FC, central processing for the
outlier detection is not available. Since most outlier detection
techniques (c.f., [8]) are based on central processing, we need
to consider a distributed outlier detection method that can be
performed at each sensor node when a distributed consensus
algorithm is employed. To the best of our knowledge, the
outlier detection in the context of distributed detection by a
distributed consensus algorithm has not been studied yet. In
this paper, assuming that statistical models for outliers are
available, we study the outlier detection in conjunction with a
distributed consensus algorithm for distributed detection.

II. BACKGROUND
We discuss distributed detection using a distributed consen-

sus algorithm in WSNs.

A. Distributed Detection
Suppose that a WSN consists of L sensors to detect a

common target. We consider binary hypothesis testing, where
H0 and H1 represent the absence and presence of the target,
respectively. Let Pr(Hm) denote the a priori probability of
Hm, m = 0, 1. Let xl denote the log-likelihood ratio (LLR)
from local observation(s) at sensor l. If each sensor has an
observation that is conditionally independent, the sum of the
LLRs at sensors is the global LLR that is obtained when all
the observations are available. For convenience, the LLR at
each sensor is called local LLR. For example, if sensor l has
the following observation:

sl =
{

μ0 + nl, if H0 is true;
μ1 + nl, if H1 is true,

(1)

where μ1 > μ0 and nl ∼ N (0, σ2) is an independent noise,
the local LLR at sensor l, denoted by xl, is given by

LLR(sl) = xl = log
f(sl|H1)
f(sl|H0)

=
μ1 − μ0

σ2
sl − μ2

1 − μ2
0

2σ2
. (2)

The global LLR becomes

LLR(s1, . . . , sL) = log
f(s1, . . . , sL|H1)
f(s1, . . . , sL|H0)

= log
∏L

l=1 f(sl|H1)∏L
l=1 f(sl|H0)

=
L∑

l=1

xl. (3)

In the presence of a FC within the WSN, each sensor can
transmit its local LLR to the FC so that it can compute the
global LLR to make a final decision. This results in the optimal
detection (e.g., the ML or MAP decision rule [12] can be
carried out at the FC with the global LLR in (3)). Depending

on communication limits imposed on the transmission from
sensors to the FC, various suboptimal approaches can be
employed [1]. For example, each sensor performs binary
hypothesis testing with its observation only and sends a local
binary decision to the FC for decision fusion.

B. Iterative Distributed Algorithm
In some WSNs, it may not be desirable to have a dedicated

FC for central processing. Provided that each sensor has
sufficient computing and communication power, it is possible
that each sensor can make a final decision as a FC does
through distributed consensus algorithms [9], [10]. Suppose
that the network topology of a WSN is given by G = (V, E),
where V = {1, . . . , L} is the set of the sensor nodes and
E = {(l, m)} is the set of the edges. Here, an edge is the pair
of two connected sensors that can communicate with each
other directly. Throughout the paper we have the following
assumptions.
T1) G = (V, E) is a connected and undirected graph.
T2) the communication between two connected sensors is

perfect.
Let Nl denote the set of the sensors that are connected with
sensor l, i.e., Nl = {m|(l, m) ∈ E}.
Distributed consensus algorithms are iterative algorithms

that are based on information exchange between neighbor
sensor nodes at each iteration. Let xl(t) denote the updated
LLR at sensor l at time l with xl(0) = xl, where t is the index
for iteration. Then, each sensor can have the average of {xl}
by using the following iterative distributed algorithm [9]:

xl(t + 1) = xl(t) + μ
∑

m∈Nl

(xm(t) − xl(t)) , l = 1, . . . , L,

(4)

where μ is the gain for the disagreement, xm(t) − xl(t). Al-
though there are other approaches (e.g., generalized algorithms
of (4) in [10]), we only consider the distributed consensus
algorithm in (4) in this paper. The convergence properties of
the iterative algorithm in (4) depends on the Laplacian matrix.
For a given graph (V,E), the adjacency matrix is given by

[A]l,m =
{

1, if (l, m) or (m, l) ∈ E;
0, otherwise.

The Laplacian matrix is given by

L = diag(d1, . . . , dL) − A.

where dl = |Nl| is the degree of node l. The iterative algorithm
in (4) is now rewritten as

x(t + 1) = x(t) − μLx(t)
= (I − μL)x(t), (5)

where x(t) = [x1(t) . . . xL(t)]T. While the largest eigenval-
ues of I−μL is 1, the magnitudes of the other eigenvalues are
less than 1 if 0 < μ < 1

maxl dl
. Since the eigenvector corre-

sponding to the largest eigenvalue of I−μL is 1√
L

[1 . . . 1]T
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[13], it can be shown that

lim
t→∞xl(t) =

1
L

L∑
l=1

xl = x̄, l = 1, . . . , L. (6)

Each sensor can make a global decision through an optimal
decision rule as the global LLR, x̄, is available.

III. SYSTEM MODEL WITH OUTLIERS
In a WSN, the observations of some nodes can be ma-

nipulated by intruders. In this case, the local LLRs of these
nodes become outliers and can lead to a biased result when a
consensus-based algorithm is used for distributed detection. If
no intruders exist, each sensor has the observation as in (1). On
the other hand, if intruders are present, they can manipulate
the observations of some sensors. As a result, a sensor can
have the following observation:

sl =
{

μm + nl; if there is no interference under Hm;
A + nl; if there is interference (outlier),

(7)

where A is the level of interference. Throughout the paper, for
the sake of simplicity, we assume that μ1 = −μ0 = μ > 0.
Depending on the value of A, there will be different impact on
the global decision. In general, it is expected that the magni-
tude of A is large and the sensors’ local LLRs with interfering
signals become outliers. Consensus-based distributed detection
algorithms are vulnerable to these outliers. To model local
observations when intruders exist, we consider the following
assumptions:
A1) sl is conditionally independent as in (1) and (7).
A2) Let PU denote the probability that intruders exist. In the

presence of intruders, each sensor can have interference
independently with PU . That is, sl = μm + nl with
probability 1 − PU and sl = A + nl with probability
PU if intruders exist.

The nodes that have strong interference, i.e., whose observa-
tion is A + nl, are called outlier nodes in this paper. Under
A1), we can see that the local LLR is a scaled observation.
Thus, for convenience, we assume that

xl = sl, l = 1, . . . , L.

Based on the model in (7) and the associated assumptions
(i.e., A1) and A2)), there can be three different hypotheses:
H0, H1, and U , where U denotes the hypothesis that there
exist manipulated sensors by intruders. The ML decision rule
is given by

θ̂ = arg max
θ∈{H0,H1,U}

f(s|θ), (8)

where f(s|θ) is the likelihood function of θ ∈ {H0,H1, U} for
given s = {s1, . . . , sL}. Provided that prior probabilities are
available, the MAP decision rule is applicable. A Bayesian
approach can also be obtained by assigning costs. These
approaches may not be practical due to the following reasons:
i) s may not be available for each sensor node (this usually

requires extensive inter-communications between sensors); ii)
f(s|U) does not have a simple expression.
We have

f(s|U) = f(s|U,H0) Pr(H0) + f(s|U,H1) Pr(H1), (9)

where f(s|U,Hm) is the likelihood function when outliers
exist among {sl} under Hm, which is given by

f(s|U,Hm) =
L∑

k=1

f(s|Uk,Hm)Pk, (10)

where f(s|Uk,Hm) denotes the likelihood function when
k sensors have interference under Hm and Pk denotes the
probability that k sensors have interference. Since

f(s|Uk,Hm) =
∑
Ik

∏
l∈Ik

fI(sl)
∏
l∈Ic

k

fI(sl|Hm);

Pk = P k
U (1 − PU )L−k, (11)

where Ik is the index set of all the possible combinations of
k sensors with interference, we can see that f(s|U) in (9)
is a Gaussian mixture. Note that each sensor node needs to
know A, PU , and {Pr(H0), Pr(H1)}. While the conventional
approaches to detect the presence of outliers are applicable
when there exists a FC for central processing and it knows
f(s|U,Hm), they may not be applicable when each sensor
node has to perform the outlier detection using distributed
consensus algorithms due to these difficulties.

IV. SELF-AWARE OUTLIER DETECTION
We present outlier detection approaches that can be carried

out at each sensor in WSNs using the test statistics that are
available using distributed consensus algorithms.

A. Approximation for Outlier Detection
As pointed out earlier, the standard approaches for the

outlier detection at each sensor are not feasible. Thus, we
can consider an approximation. We assume that the average
of local LLRs is a Gaussian random variable (rather than a
Gaussian mixture) under U and Hm. From A1), the condi-
tional sample mean of local LLRs has the mean and variance
as follows:

E [x̄|U,Hm]=μU,m =μm(1 − PU ) + APU ;

Var (x̄|U,Hm)=σ2
U,m =

1
L

(
σ2+(A−μm)2PU (1−PU )

)
.(12)

Then, we have

f(x̄|Hm) = N
(

μm,
σ2

N

)
;

f(x̄|U,Hm) = N (
μU,m, σ2

U,m

)
. (13)

As shown above, in the presence of outliers, the aver-
age of local LLRs depends on Hm. From this, including
U , we can consider 4-ary hypothesis testing. Let θ =
{H0,H1, (U,H0), (U,H1)}. Then, the MAP decision rule is
given by

θ̂ = arg max
θ={H0,H1,(U,H0),(U,H1)}

f(x̄|θ) Pr(θ), (14)
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where

Pr(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − PU ) Pr(H0), if θ = H0;
(1 − PU ) Pr(H1), if θ = H1;
PU Pr(H0), if θ = (U,H0);
PU Pr(H1), if θ = (U,H1).

(15)

If A is not known, the ML estimate of A can be used as in
the generalized ML detection [14], which is given by

Âm = arg max
A

f(x̄|U,Hm, A)

= arg min
A

(x̄ − μU,m)2

σ2
U,m

=
x̄ − μm(1 − PU )

PU
. (16)

The third equality in (16) results from the fact that
(x̄−μU,m)2

σ2
U,m

≥ 0 for any A. In this case, since (x̄−μU,m)2 = 0

when Âm replaces A, the resulting likelihood functions,
f(x̄|U,Hm, Âm), become

f(x̄|U,Hm, Âm) =

√√√√√
L

2π

(
σ2 +

(
Âm − μm

)2

PU (1 − PU )
)

=

√√√√ L

2π
(
σ2 + 1−PU

PU
(x̄ − μm)2

) .

(17)

Note that the ML estimate of A in (16) is unbiased under
the correct hypothesis. That is, under Hm, using (12), we can
show that

E[Âm|Hm] = E

[
x̄ − μm(1 − PU )

PU
|Hm

]
= A.

Under the incorrect hypothesis, the mean of the estimate of A
is given by

E[Âm|Hm′ ] = E

[
x̄ − μm(1 − PU )

PU

∣∣∣∣Hm′

]

= A +
(μm − μm′)(1 − PU )

PU
. (18)

In this case, we can observe that the estimate of A is less
biased if PU approaches 1. This implies that the performance
of the outlier detection in (14) can be better as PU increases.
Note that if local LLRs or sl are assumed to be Gaussian as

in (13), x̄ becomes a sufficient statistic. Thus, each sensor can
perform the outlier detection with x̄ individually. Furthermore,
when A is not known, the estimate of A can be used. Since
this estimate in (16) is a function of x̄, each sensor node can
have the same estimate of A and perform the same outlier
detection.

B. Mitigation of the Influence of Outliers
Through the outlier detection in Subsection IV-A, each

sensor can detect the presence of outliers within the WSN.
Although the MAP decision rule in (14) can provide a decision

on the target (if Hm or (U,Hm) is accepted from the MAP
decision rule, we assume that Hm is true), the decision
performance can be improved if outliers are removed. In order
to remove outliers, each sensor has to know the presence of
interference in its observation or local LLR. This requires
another hypothesis test.
Suppose that the outlier detection in Subsection IV-A ac-

cepts hypothesis (U,H0) or (U,H1). This outlier detection
is referred to as the overall outlier detection (OOD). Then,
each sensor can perform binary hypothesis testing to see the
presence of interference in its observation. This detection is
referred to as the sensor-level outlier detection (SOD) with
the two hypotheses in (7). Thus, the proposed approach in
this paper is a two-step approach: i) in the first step, the
OOD is performed once x̄ is available; ii) in the second
step, the SOD is performed if the OOD chooses (U, H0) or
(U,H1). For convenience, let G and Ḡ denote the hypotheses
of no interference under either H0 or H1 and of interference,
respectively. The MAP decision rule for SOD can be given by

θ̂ = arg max
θ∈{G,Ḡ}

f(sl|θ) Pr(θ), (19)

where, from (7),

f(sl|θ)=
{N (μ0, σ

2) Pr(H0)+N (μ1, σ
2) Pr(H1), if θ = G;

N (A, σ2), if θ = Ḡ
(20)

and

Pr(θ) =
{

(1 − PU ), if θ = G;
PU , if θ = Ḡ. (21)

Note that hypothesis G is a composite hypothesis as G =
H0 ∪ H1. If the interference level, A, is not available, the
ML estimate in (16) can be used. In this case, the conditional
distribution, f(sl|Ḡ) is replaced by

f(sl|Ḡ) = N (Â0, σ
2) Pr(H0, U) + N (Â1, σ

2) Pr(H1, U).
(22)

Through the SOD, each sensor can decide that whether or
not sl is an outlier. With this decision, the sensor nodes can
carry out the second run of the iterative distributed algorithm
to have a better average of local LLRs after removing outliers.
If sensor l accepts G (i.e., its observation does not have
interference), this sensor will set the original initial value as
xl(0) = sl in the second run. On the other hand, if sensor l
accepts Ḡ, this sensor should not participate in the second
run. Note that if this sensor sets the initial value to zero,
i.e., xl(0) = 0 for the purpose of removing its corrupted
observation, this will result in a biased decision. Since the
iterative distributed algorithm is to find the average of local
LLRs, the average will be biased to 0 as the local LLRs
of the corrupted observations are set to zero. To avoid this
problem, an adjacent sensor accepting Ḡ should be merged to
a sensor accepting G. However, this merging process reduces
the number of effective sensor nodes.
The merging process of outlier nodes plays a key role

in improving the performance of distributed detection by
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removing potential outliers in the second run of the iterative
distributed algorithm. Suppose that sensor l is an outlier node
and there is a sensor node in Nl which is not an outlier node.
For convenience, let m denote the index of this non-outlier
node. In the merging process, sensor l becomes a relay node of
sensor node m and does not involve in the iterative distributed
algorithm. The resulting merged node can have the index m,
while the index l (for the outlier node) is removed. In this
case, Nm is updated as

Nm ⇐ Nm ∪ Nl.

All the outlier node can be merged with non-outlier nodes. As
a result, if the number of outlier nodes is Lout, the number of
effective nodes for the distributed detection becomes L−Lout.
Clearly, this merging process changes the network topology in
terms of the graph and the associated adjacency matrix.

V. SIMULATION RESULTS
We present simulation results with the system model under

A1) and A2) when μ0 = −μ1 = 1. We consider the following
environments.

• L sensor nodes are uniformly located within a square area
and they are connected. In simulations, we assume that
L = 100.

• Outlier sensor nodes are uniformly located. A sensor node
can be an outlier node with probability PU independently.
Thus, the spatial correlation cannot be exploited to iden-
tify outlier nodes.

• Pr(H0) = Pr(H1) = 1
2 .

The probability of error of the target detection is given by

Pet = Pr(accept H1|H0) Pr(H0) + Pr(accept H0|H1) Pr(H1)

=
1
2

(Pr(accept H1|H0) + Pr(accept H0|H1)) .

In simulations, we will assume that A � 0. Thus,
Pr(accept H1|H0) would be negligible. It follows that

Pet ≈ Pr(accept H0|H1)
2

.

For convenience, denote by Pet,1 and Pet,2 the probabilities
of error of the target detection after the first and second runs
of the iterative distributed algorithm, respectively. Note that if
the OOD fails to detect outliers, the second run is not carried
out and the result of the first run becomes the final one. Thus,
under PU > 0, we have

Pet,2 = Pet,1Pe−ood + (1 − Pe−ood)P2, (23)

where Pe−ood denotes the probability of error of OOD and
P2 denotes the probability of error of the distributed detection
in the second run of the iterative distributed algorithm after
each sensor node performs SOD. If P2 	 Pet,1, we have
Pet,2 ≈ Pet,1Pe−ood. Thus, Pet,2 is strongly related to the
probability of error of OOD.
Fig. 1 shows the simulation results for different values

of the target SNR, |μ0|2
σ2 , when PU = 0.1 and A = 10.

The dashed line represents the probability of error of the
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Fig. 1. Performance of the distributed detection with/without outlier detection
for different values of the target SNR (PU = 0.1 and A = 10): (a) error
probabilities; (b) the number of sensors in the second run of the iterative
distributed algorithm.

target detection without the outlier detection, Pet,1, (i.e., the
results after the first run of the iterative distributed algorithm),
while the solid line with circle marks represents that with
the outlier detection, Pet,2 (i.e., the results after the second
run of the iterative distributed algorithm). The solid line with
cross marks represents the probability of a miss in OOD.
Without the outlier detection, there is almost no performance
improvement by increasing the target SNR. However, when the
outlier detection is employed, the performance is significantly
improved and this performance improvement is closely related
to the performance of OOD as shown in Fig. 1 (a). This shows
that the outlier detection is essential in the distributed detection
when intruders exist to manipulate sensors’ observations. Note
that as shown in Fig. 1 (b), the number of the sensors in the
second run of the iterative distributive algorithm approaches
N(1 − PU ) = 90, which is the average number of sensors
without outliers, as the target SNR increases. Clearly, this
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means that each sensor can perform SOD well as the target
SNR increases and this results in an improved performance in
the target detection as shown in Fig. 1 (a).
In order to see the impact of PU , simulations are carried

out with different values of PU and the results are shown
in Fig. 2. It is assumed that A = 10 and the target SNR
is 3 dB. Without the outlier detection, the performance of
the distributed detection becomes worse as PU increases (i.e.,
as more sensors have outlier observations). With the outlier
detection, the performance of the distributed detection is
improved as PU increases as shown in Fig. 2 (a). This is
an interesting result as it could imply that the performance
is improved if more outlier nodes exists. This interesting
behavior results from the performance of OOD (the solid lines
with cross marks). Since the performance of OOD becomes
better as PU increases, outliers nodes are excluded in the
second run of the iterative distributed algorithm and it results
in a better performance. Fig. 2 (b) shows that the number
of the sensors in the second run of the iterative distributive
algorithm approaches N(1 − PU ) as PU increases.
In Fig. 2 (a), the probability of error of the target detection

is shown to be a concave function of PU . Since the outlier
detection is not successful when PU is low, Pet,2 could be
close to Pet,1, which is increasing with PU . As PU increases,
the probability of error of the outlier detection decreases and
Pet,2 can also decrease. As a result, Pet,2 is a concave function
of PU . This means that there exists a certain value of PU that
maximizes Pet,2 or makes the worst performance.

VI. CONCLUDING REMARKS
We studied outlier detection for WSNs when consensus-

based distributed detection algorithms are used. Since central
processing is not available, each sensor node has to perform
outlier detection with an iterative distributed detection algo-
rithm. We showed that the proposed two-step approach for
the outlier detection can effectively detect the presence of
outliers within a WSN and mitigate them at each sensor level
without central processing. Through simulation results, we
have observed that the performance of the outlier detection
decides the performance of target detection in the second run
of the iterative distributed detection algorithm. Furthermore,
it was shown that the performance of target detection after
removing outliers is improved as PU , the probability of
intruders, increases.

REFERENCES
[1] P. K. Varshney, Distributed Detection and Data Fusion, New York:

Springer-Verlag, 1997.
[2] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware

decision fusion in wireless sensor networks,” IEEE Trans. Signal Proc.,
vol. 52, no. 12, pp. 3454-3458, December 2004.

[3] G. Mergen, V. Naware, and L. Tong, “Asymptotic detection performance
of type-based multiple access over multiaccess fading channels,” IEEE
Trans. Signal Proc., vol. 55(3), pp. 1081-1092, March 2007.

[4] H. Lee, C.C. Lim, and J. Choi, “Joint backoff control in time and
frequency for multichannel wireless networks and its Markov model
for analysis,” to appear, Discrete and Continuous Dynamical Systems -
Series B, May 2011.

[5] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, “Dis-
tributed deviation detection in sensor networks,” in Proc. Sigmod, 2003,
pp. 77-82.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−4

10−3

10−2

10−1

100

PU

E
rr

or
 P

ro
ba

bi
lit

y 
of

 T
ar

ge
t

Probability of Target Error (without Outlier Detection)
Probability of Target Error (with Outlier Detection)
Probability of Missed Outlier Detection

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
50

55

60

65

70

75

80

85

90

95

100

PU

N
um

be
r o

f s
en

so
rs

 in
vo

lv
ed

 in
 th

e 
2n

d 
co

ns
en

su
s 

al
go

rit
hm

Simulation results
N(1−PU)

(b)
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