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Calibration of Multi-Target Tracking Algorithms
Using Non-Cooperative Targets

Branko Ristic, Daniel E. Clark, and Neil Gordon

Abstract—Tracking systems are based on models, in particular,
the target dynamics model and the sensor measurement model. In
most practical situations the twomodels are not known exactly and
are typically parametrized by an unknown random vector . The
paper proposes a Bayesian algorithm based on importance sam-
pling for the estimation of the static parameter . The input are
measurements collected by the tracking system, with non-cooper-
ative targets present in the surveillance volume during the data
acquisition. The algorithm relies on the particle filter implementa-
tion of the probability density hypothesis (PHD) filter to evaluate
the likelihood of . Thus, the calibration algorithm, as a byproduct,
also provides a multi-target state estimate. An application of the
proposed algorithm to translational sensor bias estimation is pre-
sented in detail as an illustration. The resulting sensor-bias esti-
mation method is applicable to asynchronous sensors and does not
require prior knowledge of measurement-to-target associations.

Index Terms—Bayesian estimation, calibration, importance
sampling, PHD filter, sensor bias estimation, target tracking.

I. INTRODUCTION

M ULTI-TARGET multi-sensor tracking systems [1] are
based on mathematical models which typically include

many parameters. The two main models are the target dynamic
model (for target birth and motion) and the sensor measure-
ment model. The typical parameters used in the two models are
the process noise level, the false alarm rate, the probability of
detection, sensor biases, various factors such as the propaga-
tion losses, receiver gains, etc. Calibration of tracking systems,
through estimation of their model parameters, is an important
prerequisite for their operational deployment. Yet, apart from
sensor registration and clutter estimation, calibration has re-
ceived little attention by the research community and is mainly
done in an ad-hoc manner.
This paper is devoted to the estimation of static parameters

which may feature in the probabilistic models that describe
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target dynamics (the transitional density) and sensor measure-
ments (the likelihood function). Let a random vector
represent the (static) vector of parameters of interest for es-
timation/calibration. The paper proposes a batch method for
Bayesian estimation of the parameter vector . Since is
unknown we ascribe to it a prior density and carry out Bayesian
inference on the joint space of the multi-target dynamic state
and the parameter vector . The multi-target state, modeled
by a random finite set [2], determines the number of targets
and their location in the target state space at a particular time.
The multi-target state, conditioned on , is estimated using the
first moment approximation of the Bayesian multi-target filter,
known as the probability hypothesis density (PHD) filter [3].
The data used for estimation of are the sets of measurements
collected by the sensor(s) on non-cooperative targets, which
happen to be in the surveillance volume during the data collec-
tion interval.
The approach is motivated by a new class of PHD filters

based on hierarchical point process models [4]. The resulting
framework is general and hence applicable to a variety of
problems characterized by a hierarchy of two point processes,
the parent and its offsprings. So far it has been applied to solve
the following problems: tracking groups of targets [5], tracking
an extended target [6], simultaneous localization and map-
ping (SLAM) [7], [8]. The preliminary results of a recursive
approach to calibration of tracking algorithms were reported
in [9]. The main advantage of the family of algorithms based
on hierarchical models is that it treats the two point processes
separately but interactively, thereby avoiding computationally
expensive joint estimation on an augmented state space.
Calibration of tracking algorithms using the PHD filter has

been considered recently in the context of sensor bias estimation
[10], [11] and clutter estimation [12], [13]. In order to solve the
sensor bias estimation, Lian et al. [10] andMahler and El-Fallah
[11] proposed to augment the target state space of the PHD filter
with the bias vector. Our approach is distinct from these ap-
proaches since we approximate the prior with a single-cluster
Poisson process. Themathematical expression for the likelihood
is similar to that used in the maximum likelihood clutter map
estimation algorithm proposed in [12]. Our method differs from
[12] in the fact that we use this likelihood for estimation of the
bias parameter within a Bayesian paradigm. Augmented target
state spaces have also been used in [13] for the purpose of esti-
mation of the probability of detection.
The proposed Bayesian estimator of tracking parameters

cannot be derived in a closed-form and is therefore approxi-
mately solved by a two-layer Monte-Carlo method. Parameter
estimation, in the upper level, is carried out using the impor-
tance sampling method [14]. The key component at this level
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plays the likelihood function of the measurement data set. This
likelihood is provided by the PHD filter, which is implemented
in the sequential Monte Carlo framework, as a particle filter.
Monte Carlo batch methods for parameter estimation of dy-

namic stochastic systems have been studied in the past [15];
see also [16, Sec.IV] and references therein, for an overview.
One such a method, known as the particle MCMC [17], [18]
has particularly become popular among the practitioners. These
methods, however, are formulated and solved in the context of
a single-target in the absence of false detections. Our paper can
therefore be seen as an extension from single-target to multi-
target nonlinear non-Gaussian Monte Carlo parameter estima-
tion, in the presence of clutter. This extension is difficult be-
cause it has to cope with additional uncertainty due to false
detections, missed-detections and an unknown number of ap-
pearing/disappearing targets.
After describing the algorithm in the general framework of

parameter estimation of a tracking system, the paper focuses
on a particular problem: estimation of translational biases in
measurements from multiple sensors. Whereas most standard
algorithms for multi-sensor bias estimation require access to
track-associated observations from the sensors [19], [20], (some
even require the multi-sensor observations to be synchronous
[21]), the proposed sensor registration method is free of such
restrictions.
The paper is organized as follows. The background to the

problem and its formulation are given in Section II. The con-
ceptual solution and its Monte Carlo implementation are pre-
sented in Section III. The application of the proposed theoretical
solution to the problem of multi-sensor bias estimation, with a
numerical example, is described in Section IV. Finally the con-
clusions are drawn in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

Suppose at time there are targets with states
taking values in the state space . Both

the number of targets and their individual states in are
random and time-varying. The multi-target state, represented
by a finite set

(1)

can conveniently be modeled as a random finite set on . Here
is a set of finite subsets of . The targets are non-coop-

erative and their states are unknown.
The detection process is imperfect and some of the targets

in are detected, while the others are missed. In addition, the
detector typically creates some false detections. Suppose at time
there are detections in the measurement set, each taking a

value in the observation space . Then the multi-target
observation set,

(2)

whose cardinality and individual points in the measurement
space are random, is also modeled by a random finite set.
is a set of finite subsets of .
The hidden multi-target Markov state process is character-

ized by its initial density and the multi-target

transitional density , for some static parameter
. The multi-object process is not observed directly, but

through the observation process. The observation process is
assumed to be conditionally independent given the multi-target
state process, and fully specified by the multi-target likelihood

, again conditioned on . Standard cases of
multi-target densities, and , are
derived in [2]. The unknown parameters of
may include the process noise variance, birth and survival
probabilities, birth process intensity, etc. The unknown param-
eters of may include sensor or environmental
characteristics, such as the probability of detection, propagation
factors, clutter parameters, sensor biases, measurement noise
variances, etc.
The problem is to estimate the posterior density ,

where is the observation set sequence
accumulated over time steps . Having the prior

, the solution in the Bayesian framework is
. The computation of , however, will

require us to perform the inference on the joint space of the pa-
rameter vector and the multi-target trajectory (history) .
Thus we can consider our problem as a component of a broader
problem where the goal is to find the posterior density:

(3)

where is the posterior of the multi-target tra-
jectory given all observation sets and conditioned on .

III. THE PROPOSED SOLUTION

The proposed solution follows the same line of thought as
the Monte Carlo batch techniques for parameter estimation of
stochastic dynamic systems, reviewed in [16, Sec.IV]. The key
idea is to run a sequential Monte Carlo method to obtain an esti-
mate of for a given value of . This provides a
simple way of evaluating the observation likelihood
and thus to a practical solution for .
In practice, however, the difficulty is that the sequential

Monte Carlo implementation of the multi-target Bayes filter,
which estimates , can be implemented only
for a small number of targets [22], [23], [24]. This is because
its state includes all individual states of the existing targets at
the time, and consequently its computational complexity grows
exponentially with the number of targets. For this reason we
propose to approximate (3) with its first-order moment (ex-
pected value) with respect to , also known as the intensity
function or the probability hypothesis density (PHD).
Using the relationship between the PHD and the multi-target

density [2, Eq.(.16.14)], we replace (3) with (see Appendix for
further explanation):

(4)

where denotes the PHD. Note that the posterior PHD
, as opposed to the posterior density
, is defined on a single-target state space

over time. The sequential Monte Carlo implementation of
the PHD filter (also known as the particle PHD filter), which
recursively estimates the posterior PHD , has
received widespread attention, eg. [25]–[28]. It will play the
crucial role in estimation of .
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A. PHD Filter

For completeness this section reviews the PHD filter for the
recursive estimation of . The prediction equation
of the PHD filter is given by [3]:

(5)

where: is the PHD of new target births between time
and is the probability that an object in

state will survive until time is the
single-target transitional density. The update equation of the
PHD filter, applied upon receiving the measurement set , is
given by[3]:

(6)

where: is the probability that a target in state will be
detected at time is the single-target measurement
likelihood and is the PHD of clutter. The integral of the
PHD over is the posterior expectation of the
number of targets in the set .
The observation likelihood , defined as [3]:

(7)
(note that the integral here is a set-integral [2]), is a by-product
of the PHD filter. It can be expressed as [3, Eq.(116)]:

(8)

where is a constant of proportionality, which will be shown
later to be unimportant (it cancels out). Therefore, without loss
of generality, we adopt . One can compute ,
the likelihood of the measurement set sequence which features
in (4), using (8) and the decomposition:

(9)

It can be easily verified that the conventional, single-target
recursive Bayesian estimator (nonlinear filter) [29] is a special
case of the PHD filter. In this special case, the target exists (i.e. a
dynamic system is turned on) all the time and hence and

. Furthermore, detection is perfect and therefore
and . Consequently both and are singletons, and
can be replaced by and , respectively. Finally, the inte-
gral of the posterior PHD over the state space equals one, and

therefore the posterior PHD is identical to the posterior density
function.

B. Particle PHD Filter

The particle PHD filter approximates the PHD
by a weighted set of samples (particles) ,

where the weights satisfy , . The sum
of the weights results in an estimate of the expected number of
targets. Next we briefly summarize the particle PHD filter im-
plementation following [25].
Let the particle approximation of be:

(10)

Then the particle approximation of the predicted PHD
is:

(11)

where

(12)

(13)

Here and are the importance
(proposal) densities for the surviving and newborn targets,
respectively, while is the number of newborn targets par-
ticles. The bootstrap PHD particle filter (which we assume
onwards) replaces the proposal with the
single-target transitional density . The design of

is discussed in [27]. The birth intensity is
then typically replaced by , where is
the expected number of target births in interval from to
. Consequently, the birth particle weights are uniform.
According to (6), the particle weights are updated as follows:

(see equation (14) at the bottom of next page). At this stage it is
also convenient to estimate the expression in (8), that is

(15)
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The estimate of the number of targets in is computed as

Finally, the particles are resampled times from
to obtain a new particle

set as an approximation of
, the PHD at time . Following the resampling

step, the MCMC move step [30, p.55] is usually necessary to
increase the diversity of particles.
Note that (4), as opposed to (3), does not provide the posterior

over the multi-target history , but over . Although we
are primarily interested in the estimation of , an estimate of
the multi-target history may be desirable as a by-product.
The particle PHD filter can provide this estimate. Details of an
accurate and fast method for the estimation of multi-target state
from a particle representation of the PHD (10) are given in [31,
Sec.4].

C. Importance Sampling With Progressive Correction

This subsection deals with the computation of the posterior
distribution , whose solution in the Bayesian frame-
work is given by:

(16)

An estimate of the likelihood function is provided
by the particle PHD filter, as described in (8), (9) and (15). The
solution to (16), however, cannot be found in the closed form
and again is approximated by a Monte Carlo technique. This
time we apply an importance sampling method with progressive
correction.
Quantities of interest related to can be computed from the

posterior, for example, the posterior mean is

(17)

Approximation of (17) via importance sampling involves
drawing a sample , where is the sample size,
from an importance density and approximating the integral
in (17) by a sum,

(18)

The weights , are specified as:

(19)

Note that the calculation of weights requires only a function
which is proportional to the posterior density. As discussed ear-
lier, we can only compute an estimate of using
the particle PHD filter. Now we see why the factor of propor-
tionality is not important: it cancels out by the normalization
of weights.
For a large class of importance densities , approximation

(18) becomes increasingly accurate as the sample size .
However, for a finite , the accuracy of the approximation de-
pends greatly on the particular importance density. A desirable
property of an importance density is that it produces weights
with a small variance. Equation (19) implies that a good impor-
tance density should resemble the posterior. Since the posterior
is unknown and importance sampling using the prior is inaccu-
rate for any reasonable sample size, we propose to apply impor-
tance sampling with the progressive correction [32].
The progressive correction constructs a sequence of target

distributions from which we draw samples sequentially. The
first target distribution is typically similar to the prior, while the
final target distribution is the posterior. The consecutive target
distributions in the sequence should not differ too greatly. Sim-
ilar ideas have been proposed under different terms, e.g. tem-
pering [14, p.540] and bridging densities [33]. The particle flow
with log-homotopy [34] achieves the same result, without the
need for resampling.
Let denote the number of stages and , de-

note the target distribution for the th stage. Note that at the final
stage we have . A series of target distribu-
tions which starts from the prior and gradually becomes similar
to the posterior can be constructed by setting, for

(20)

where with and . In this
way is an increasing function of , upper bounded by one.
Note that the intermediate likelihood used for will be
broader (more spread) than the true likelihood, particularly in
the early stages. In the later stages the intermediate likelihood
sharpens (becomes more focused) so that the sample gradually
concentrates in the area of the parameter space suggested by the
true likelihood.
The procedure for sequentially drawing samples from target

distributions is described next. Suppose a sample
from is available and we wish to produce a

sample from . Note that for , the sample
is drawn from the prior . The first step is to compute
weights for samples in as:
for . The weights are then normalized, i.e. for

,

(14)
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In order to derive any benefits from tempering, it is neces-
sary to remove the lower weighted members of the sample

and diversify the remaining ones. Hence the
next step is resampling, followed by the MCMC move step.
Resampling involves selecting indices such

that . The resampled sample will
almost certainly contain duplicate members since the weights

will most likely be uneven. In order to remove dupli-
cation and thus increase the sample diversity, the MCMC move
step is applied to the resampled sample . For each

member of , a new sample member is proposed as
a draw

where denotes the proposal density for the th stage. Then
the Metropolis-Hastings scheme is applied, whereby is ac-
cepted with certain probability or rejected. In this way we form
a new sample , where , if the move is ac-

cepted, and , if the move is rejected. The acceptance
probability is adopted as

The proposal density should produce candidates over a rea-
sonably large area of the parameter space (in order to increase
diversity), but within the area of high likelihood. A suitable pro-
posal can be selected as follows [35]:

(21)

where
is the Gaussian distribution; and are the sample mean
and covariance matrix, respectively, of a weighted sample

, and is a user defined parameter.
The computational expense of tempering depends on the

number of stages and the correction factors .
While a small value of is favored for computational reasons,
the successive intermediate distributions are made more
similar by choosing large . An adaptive scheme proposed in
[32] is used here to balance the conflicting requirements for .
The pseudo-code of the proposed algorithm for joint estima-

tion of and is given in Alg.1. It incorporates the adap-
tive selection of correction factors , in lines 11 and 12. Here

and are user defined parameters which
control the number and values of correction factors. The rea-
soning behind the adaptive scheme for the selection of correc-
tion factors is explained in [32]: the increments are smaller if
particles are characterized by small values of likelihoods, and
vice versa. A smaller value of or a larger value of , reduces
the increment between the correction factors and thus increases
the number of stages .
The proposed parameter estimation algorithm is primarily de-

signed to compute the sample which approximates
the posterior . As a by-product, however, it can also
compute an estimate of the multi-target history (see lines
30 and 31).

IV. APPLICATION TO SENSOR BIAS ESTIMATION

Multi-sensor bias estimation has received a considerable in-
terest by the tracking community, see for example [19]–[21] and
references therein.This section illustrates theproposedalgorithm
as a solution to multi-sensor translational bias estimation using
targets of opportunity. The sensors can operate asynchronously
with imperfect detection ( and false alarms), the tar-
gets can dynamically appear and disappear from the surveillance
volume, and the usual requirement in sensor bias estimation, to
know the association of measurements to targets, is not required.

Algorithm 1 Parameter estimation using particle PHD
importance sampling
1: Input: Accumulated measurement sets ; prior
2: Initialization:
3: Set ,
4: for do

5: Draw

6: Run particle the PHD filter using to estimate

log-likelihood
7: end for
8: Progressive correction:
9: while and do
10:

11: Sort negative log-likelihoods:

12:

13:

14: For , compute

15: Normalization:

16: Compute the sample mean and covariance matrix
17: for do

18: Select with probability and set

and

19: Draw

20: Run the particle PHD filter using to

estimate
21: Compute acceptance probability

22: Draw
23: if then

24: Set and
25: else
26: Set and
27: end if
28: end for
29: end while
30: Compute the mean or the maximum a posteriori estimate

from the sample

31: Run particle PHD filter using to obtain an estimate of
the multi-target history

32: Output: Sample and
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A. Specification of the Bias Estimation Problem

Let us adopt a 2D scenario, where measurements are col-
lected by two static sensors with overlapping coverage. The
state vector of each individual target is , where

denotes the position of the target and its velocity.
Sensor measurements are affected by two sources of error: the
systematic error (or bias) and stochastic error (measurement
noise). Let the measurement set reported at time by sensor

be denoted . For a measurement
which originates from an object , the single-object like-
lihood is given by:

(22)

We further assume that sensors provide range and azimuth mea-
surements and hence:

(23)

where is the position of sensor . Vector consist of
four components, i.e.

where , which features in (22), is the bias
vector for sensor . The covariance matrix in (22) is

. The probability of detection of

sensor is . The false detections are modeled by a Poisson
point process, that is the intensity function for sensor
, which features in (6), is , where is
the mean number of false detections (at one time instant) and

is their distribution over the measurement space .
Each object state evolves in time according to the Markov

transitional density, which is independent of the parameter
vector . In particular, we adopt the nearly constant velocity
model [36], that is:

(24)

with , , where is the Kroneker
product, is the 2 2 identity matrix,

(25)

is the time interval between and and is process
noise intensity.

B. Numerical Results

The considered scenario with a typical measurement
set sequence is illustrated in Fig. 1(a). The total
number of measurement sets available for estimation is

. A varying number of moving targets is present
in the scenario, with for , 2, 3, for

and for , 14, 15. The initial
state vectors of the three targets that exist from
onwards are: km m/s km m/s ,

km m/s km m/s , and

Fig. 1. The simulation setup: (a) the location of sensors (marked by and de-
noted and ) and the accumulated dataset ; (b) true target trajectories
and estimated multi-target state from the proposed algorithm (indistin-
guishable in this plot); note that the five target trajectories appear very short
because they are observed over 45 seconds only.

km m/s km m/s . The initial
state vectors of the two targets that appear at and exist
onwards are: km m/s km m/s and

km m/s km m/s . The time interval
between and is constant and equals . Target
trajectories (estimated and true, they are indistinguishable)
are shown in Fig. 1(b); they appear very short because the
measurements are collected over 45 seconds only. The two
sensors operate asynchronously; sensor 1 collects measurement
sets at 1, 3, 5, 7, 9, 11, 13, 15, while sensor 2 collects
measurement sets at , 4, 6, 8, 10, 12, 14. With this sensor
reporting setup, the multi-sensor PHD filter update reduces to
the standard single-sensor case. The two sensors are placed at

and km km . The proba-
bility of detection is , the clutter parameters
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TABLE I
CORRECTION FACTORS AND MCMC ACCEPTANCE RATES

DURING THE PROGRESSIVE CORRECTION

Fig. 2. A scattered plot of sensor bias particles at the end of progressive cor-
rection, , approximating the posterior . True bias values
indicated by asterisks.

are: , while are uniform dis-
tributions over km km . The standard
deviations of measurement noise are km and

. The true values of sensor biases are set to
km, , km, .

The particle PHD filter uses and
particles, with and . The prior

is a uniform distribution over km km
km km . The number of

samples used in the bias space is . The parameters
used in adaptive selection of correction factors are: and

. This resulted in a sequence of correction factors
listed in Table I.
The results of sensor bias estimation are shown in Fig. 2 (scat-

tered plot) and Fig. 3 (marginalized histograms). Fig. 2 indi-
cate the spread of the estimated posterior . Note that
the true bias values fall inside the two clouds of particles. The
four figures in Fig. 3 display the (normalized) histograms of
the output sample , which approximates the pos-
terior , marginalized to: (a) , (b) , (c) ,
(d) . The kernel density estimate (KDE) [37] of the cor-
responding marginalized density is also shown for each sensor
bias (red solid line), as well as the true value of the bias (vertical
dashed blue line). The maximum a posterior (MAP) estimates of
sensor biases (computed from the KDE) are: km,

, km, . While
these estimates vary on every run of the algorithm, the support
of the estimated posterior always contains the true
bias values (as in Figs. 2 and 3). Fig. 1(b) shows an estimate of

Fig. 3. Normalized histograms of the bias sample approximating
the posterior , marginalized to: (a) , (b) , (c) , (d) .
The kernel density estimates shown by red solid lines; true values indicated by
vertical blue dashed lines.

the multi-target state estimate , obtained using the MAP
estimate of the sensor bias vector.

C. Discussion and Future Work

The empirical results of Section IV-B indicate remarkably ac-
curate performance of the proposed algorithm even using a rel-
atively small dataset. Some important questions, however, re-
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main for future work. For example, while it is expected that
observability of parameter improves with the increase in the
number of targets (if , cannot be estimated), a more
rigorous study of observability remains elusive.
Since the particle PHD filter provides the estimate of the

likelihood , the accuracy of the proposed calibration
method clearly depends on the number of particles used in the
particle PHD filter. In order to reduce the Monte Carlo variance
of this estimate there is a need to use a reasonably large number
of particles. This variability, however, can be also reduced by
application of the backward pass through the data [18], as in the
PHD smoother [38], [39]. Initial results for smoothing with the
single-cluster PHD filter have been presented in [8].
The accuracy of parameter estimation also depends on the

number of samples in the parameter (bias) space, and the
selection of the correction factors in the progressive correction.
The results in Table I indicate a fairly low acceptance rate in this
example. The MCMC acceptance rate can be increased using a
lower value of parameter , which would result in smaller incre-
ments of the correction factors and consequently to an increase
in the number of stages .
Preliminary results of a recursive version of the proposed cal-

ibration technique have been presented in [9]. The recursive al-
gorithm is important in situations where the calibration parame-
ters are slowly varying. Its theoretical foundations follow from
the single-cluster first-order moment filter derived in [4].

V. CONCLUSIONS

The paper presented a Monte Carlo method for static param-
eter estimation in multi-target tracking systems. The formula-
tion is general and therefore applicable to calibration of any pa-
rameter in the target dynamic model and sensor measurement
model, including target process noise level, environmental char-
acteristics (clutter properties, propagation losses), or sensor pa-
rameters (biases, gains, detection probabilities).
The paper illustrated the proposed target system calibration al-

gorithm in the context of multi-sensor translational-bias estima-
tion. The outcome is a sensor bias estimation algorithm which is
applicable to asynchronous sensorswith imperfect detection, dy-
namic object appearance/disappearance and, most importantly,
does not require the association of measurements to objects.

APPENDIX

Here we explain the step from (3) to (4). Let be the
multi-target density of a random finite set . Its corresponding
PHD can be obtained from [2, Eq.(.16.14)]

(26)

where

and is the standard Dirac delta concentrated at . The
integral on the right-hand side of (26) is the set integral, defined
as [2, p.361]:

Using (26), the first moment of (3) with respect to is given
by:

(27)

which can be written as (4).
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