
Approximate Proximal-Gradient Methods

Anis Hamadouche, Yun Wu, Andrew M. Wallace, and João F. C. Mota

Abstract—We study the convergence of the Proximal-Gradient

algorithm for convex composite problems when both the gradient
and the proximal mapping are computed approximately. This
scenario occurs when the gradient is computationally expensive
and the proximal operator is not available in closed form and may
be computed only up to a certain fixed precision. We establish
tight deterministic bounds and propose new probabilistic upper
bounds on the suboptimality of the function values along the
iterations under some statistical assumptions on the perturbed
iterates. We use the Proximal-Gradient algorithm to solve ran-
domly generated LASSO problems while varying the fixed-point
machine representation and the proximal computation precision.

Index Terms—Convex Optimization, Proximal Gradient, Ap-
proximate Algorithms.

I. INTRODUCTION

Many problems in statistics, machine learning, and engi-

neering can be posed as composite optimization problems:

minimize
x∈Rn

f(x) := g(x) + h(x) , (1)

where x ∈ R
n is the optimization variable, g : R

n → R a

differentiable convex function, and h : R
n → R∪ {+∞} is a

closed, proper, and convex function, which is not necessarily

differentiable but which enables the inclusion of constraints

into (1).

An important example is empirical risk minimization

(ERM), the foundational framework in machine learn-

ing. There, g(x) = (1/m)
∑m

i=1
ℓ(w(zi; x), yi), where

{(zi, yi)}m
i=1 is a collection of training feature vectors zi and

associated labels yi that we wish to fit with a parametric

function w(·, x), and h(x) is a regularizer on the parameters

x, e.g., a norm of x. A concrete example of this framework

is logistic regression [1].

Another example is compressed sensing [2], in which one

attempts to reconstruct a sparse vector x⋆ ∈ R
n from linear

measurements y = Ax⋆, where A ∈ R
m×n has more columns

than rows, i.e., m < n. One way to achieve this is by solving

(1) with g(x) = ‖Ax − y‖2
2 and h(x) = ‖x‖1.

Finally, composite problems like (1) arise in control ap-

plications, for example in the control of the trajectory of a

drone, in which x encodes both a state-vector (e.g., position

and velocity of a drone) and the input (e.g., the acceleration in

a given direction and steering). In this case, g often encodes

a final goal for the state-vector as well as energy penalties,

Work supported by UK’s EPSRC (EP/T026111/1, EP/S000631/1), and the
MOD University Defence Research Collaboration.

Anis Hamadouche, Yun Wu, Andrew M. Wallace, and João F.
C. Mota are with the School of Engineering & Physical Sci-
ences, Heriot-Watt University, Edinburgh EH14 4AS, UK. (e-mail:
{ah225,y.wu,a.m.wallace,j.mota}@hw.ac.uk).

while h encodes state-space dynamics and control constraints

[3].

Resource-constrained platforms. Most algorithms that

solve (1) assume that computations can be performed with

infinite (or near-infinite) precision. While such precision can

be achieved in standard computation devices, power-efficient

platforms like FPGAs, which are commonly deployed in

battery-operated equipment, have much lower precision. Solv-

ing problems like (1) under these scenarios often requires

completely new strategies [4]. For example, if we solve (1)

with standard algorithms, e.g., proximal-gradient or interior-

point methods, the resulting solution will satisfy the finite

precision constraints of the computing machine rather than in-

finitely precise solutions satisfying optimal convergence rates.

Early termination of iterative algorithms and reduced precision

(RP) via finite precision arithmetic can save computational

time or power while tolerating losses in accuracy in resource-

constrained systems. Furthermore, many optimization software

solvers are approximate and this must be accounted for in

convergence analysis [5].

Problem statement. The aforementioned approximation

techniques come at a cost of reduced accuracy and increased

algorithmic perturbations. Given the convex composite opti-

mization problem (1), we define the approximate gradient step

operator T G
k : Rn → R

n at iteration k as

T G
k (x) := x − sk∇ǫk

1 g(x) , (2)

where sk > 0 is the stepsize, ∇ǫk

1 g := ∇g + ǫk
1 , and ǫk

1 ∈ R
n

is the gradient error. We also define the approximate proximal

operator of h, T P
k : R

n → R
n, as

T P
k (x) := prox

ǫk

2

h (x) , (3)

where

prox
ǫk

2
1

sk
h
(y) :=

{

x ∈ R
n : h(x) +

1

2sk

‖x − y‖2
2 ≤ ǫk

2

+ inf
z

h(z) +
1

2sk

‖z − y‖2
2

}

, (4)

where ǫk
2 ∈ R is the error associated to the proximal com-

putation. Then, the approximate proximal gradient operator is

given by the following operator product

T P G
k = T P

k T G
k . (5)

The approximate proximal gradient algorithm sequence is

generated by sequentially applying the mapping sequence

{T P G
k }k>0, i.e.,

xk+1 = T P G
k (xk) = prox

ǫk

2

h (xk − sk∇ǫk

1 g(xk)). (6)

978-1-6654-3314-3/21/$31.00 ©2021 IEEE

20
21

 S
en

so
r S

ig
na

l P
ro

ce
ss

in
g

fo
r D

ef
en

ce
 C

on
fe

re
nc

e
(S

SP
D

) |
 9

78
-1

-6
65

4-
33

14
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SS
PD

51
36

4.
20

21
.9

54
15

09

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

More precisely, our goal is to establish conditions on the

problem and on the errors ǫk
1 and ǫk

2 under which (6) con-

verges. In such cases, we also aim to obtain the respective

rate of convergence. Summary of prior work. It is known

that when (1) is convex and g has an L-Lipschitz-continuous

gradient, then the exact proximal method, i.e., with ǫk
1 = 0n

and ǫk
2 = 0 for all k, and its accelerated counterpart, require,

respectively, O(1/ρ) and O(
√

1/ρ) iterations to achieve an

error ρ in the objective function [6], [7]. Although this seems

promising in noise-free applications, running the same type of

algorithms in resource-constrained environments often leads to

unexpected outcomes, as the well-known optimal convergence

bounds no longer hold in the presence of gradient and proximal

computation errors.

Following [8], the work in [9] showed that the above nearly

optimal rates can still be achieved when the computation of the

gradients and proximal operators are approximate. This variant

is also known as the Inexact Proximal-Gradient algorithm. The

analysis in [9] requires the errors to decrease with iterations

k at rates O(1/ka+1) for the basic PG, and O(1/ka+2) for

the accelerated PG for any a > 0 in order to satisfy the

summability assumptions of both error terms. The work in

[9] established the following ergodic convergence bound in

terms of function values of the averaged iterates for the basic

approximate PG:

f
(1

k

k
∑

i=1

xi
)

− f(x⋆) ≤ L

2k

[∥

∥

∥
x⋆ − x0

∥

∥

∥

2
+ 2Ak +

√

2Bk

]2

,

(7)

where x⋆ is any optimal solution of (1), L is the Lipschitz

constant of ∇g, x0 is the initialization vector, and

Ak =

k
∑

i=1

(‖ǫi
1‖2

L
+

√

2ǫi
2

L

)

Bk =

k
∑

i=1

ǫi
2

L
.

Our approach. In the case of deterministic errors ǫk
1

and ǫk
2 , we get inspiration from [7] to derive, using simple

arguments, upper bounds on f
(

1

k

∑k
i=1

xi
)

−f(x⋆) throughout

the iterations. The resulting bounds not only are simpler and

tighter than (7), but also decouple the contribution of the two

types of errors, ǫk
1 and ǫk

2 . In the case of random errors, we

show that we can bypass the need to assume that ǫk
1 and ǫk

2

converge to zero. We believe this line of reasoning is novel in

the analysis of approximate PG algorithms.

Contributions. We summarize our contributions as:

• We establish convergence bounds for the approximate PG

in the presence of deterministic errors.

• We extend the analysis to incorporate random errors

and propose new parameterized probabilistic convergence

bounds with a tuning parameter.

• We propose new models for the proximal and gradient

errors that satisfy interesting martingale properties in

consistence with experimental results.

II. MAIN RESULTS

All the proofs of the results in this section will appear in a

subsequent publication.

Consider the approximate PG algorithm in (6). Before

stating our convergence guarantees for approximate PG, we

specify our main assumptions on the problem and describe

the class of algorithms that our analysis covers.

All of our results assume the following:

Assumption II.1 (Assumptions on the problem).

• The function h : Rn → R∪ {+∞} is closed, proper, and

convex.

• The function g : R
n → R is convex and differentiable,

and its gradient ∇g : R
n → R

n is Lipschitz-continuous

with constant L > 0, that is,

∥

∥∇g(y) − ∇g(x)
∥

∥

2
≤ L

∥

∥y − x
∥

∥

2
, (8)

for all x, y ∈ R
n, where ‖ · ‖2 stands for the standard

Euclidean norm.

• The set of optimal solutions of (1) is nonempty.

The above assumptions are standard in the analysis of PG

algorithms and are actually required for convergence to an

optimal solution from an arbitrary initialization.

Error models and assumptions. Our analysis assumes two

different scenarios:

1) The sequences of errors {ǫk
1}k≥1 and {ǫk

2}k≥1 are deter-

ministic, or

2) The sequences of errors {ǫk
1}k≥1 and {ǫk

2}k≥1 are dis-

crete stochastic processes, in which case we use ǫk
1Ω

and

ǫk
2Ω

to denote their respective realizations at iteration k.

In scenario 2), the sequences {xk}k≥1 and {yk}k≥1 become

random as well. And we also use xk
Ω

and yk
Ω

to denote the

respective random vectors at iteration k, where Ω denotes

the sample space of a given probability space. We make the

following assumption in this case:

Assumption II.2. In scenario 2), we assume that each random

vector ǫk
1Ω

, for k ≥ 1, satisfies

E
[

ǫk
1Ω

∣

∣ ǫ1
1Ω

, . . . , ǫk−1
1Ω

]

= E
[

ǫk
1Ω

]

= 0 , (9a)

P
(

|ǫk
1Ωj | ≤ δ

)

= 1 , for all j = 1, . . . , n, (9b)

E
[

ǫk
1Ω

⊤
xk

Ω

∣

∣ ǫ1
1Ω

, . . . , ǫk−1
1Ω

, x1
1Ω

, . . . , xk−1
1Ω

]

= E
[

ǫk
1Ω

⊤
xk

Ω

]

= 0 ,
(9c)

where ǫk
1Ωj in (9b) denotes the j-th entry of ǫk

1Ω
, and δ > 0 is

some finite constant.

The first assumption, (9a), states that ǫk
1Ω

is independent

from past realizations and has zero mean. The second assump-

tion, (9b), states that the absolute value of each entry of ǫk
1Ω

is bounded by δ almost surely. Finally, the third assumption,

(9c), states that ǫ1
1Ω

, . . . , ǫk−1
1Ω

, ǫk
1Ω

and x1
1Ω

, . . . , xk−1
1Ω

, xk
1Ω

are

mutually independent.

Let us define the residual error vector as follows:

rk
Ω

= xk
Ω

− xk, (10)

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

where xk
Ω

and xk stand for the perturbed and gradient-error-

free iterates, respectively. Similar assumptions can be made

about rk
Ω

, mainly:

E
[

rk
Ω

∣

∣ r1

Ω
, . . . , rk−1

Ω

]

= E
[

rk
Ω

]

= 0 , (11a)

E
[

rk
Ω

⊤
xk

Ω

∣

∣ r1

Ω
, . . . , rk−1

Ω
, x1

1Ω
, . . . , xk−1

1Ω

]

= E
[

rk
Ω

⊤
xk

Ω

]

= 0 .
(11b)

Lemma II.3. Let xk and xk be the approximate and exact

proximal-gradient iterates and let ǫk
2 be the proximal error at

instant k. Assume a constant stepsize sk = s > 0, for all k.

Then, the norm of the residual vector rk = xk − xk satisfies

∥

∥rk
∥

∥

2
≤
√

2sǫk
2 , ∀k>0. (12)

Lemma II.3 bounds the norm of the residual vector rk as a

function of ǫk
2 . Therefore, boundedness of the latter implicitly

implies boundedness of the norm of the former.

We start by considering deterministic error sequences

{ǫk
1}k≥1 and {ǫk

2}k≥1, and then we consider the case in which

these sequences are random, as in Assumption II.2.

Deterministic errors. Our first result provides a bound for

the ergodic convergence of the sequence of function values,

and decouples the contribution of the errors in the computation

of gradient and in the computation of the proximal operator.

Theorem II.4 (PG, deterministic errors). Consider prob-

lem (1) and let Assumption II.1 hold. Then, for arbitrary error

sequences {ǫk
1}k≥1 and {ǫk

2}k≥1, the sequence generated by

approximate PG in (6) with constant stepsize sk := s ≤ 1/L,

for all k, satisfies

f
(1

k + 1

k
∑

i=0

xi+1
)

− f(x⋆) ≤ 1

k + 1

[

k
∑

i=0

ǫi
2

+

k
∑

i=0

(

ǫi
1 − 1

s
ri+1

)⊤
(x⋆ − xi+1) +

1

2s

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2

]

− 1

k + 1

[1

2s

k
∑

i=0

∥

∥ri+1
∥

∥

2

2
+

1

2s

∥

∥x⋆ − xk+1
∥

∥

2

2

]

, (13)

where x⋆ is any solution of (1) and ri is the residual vector

associated with error ǫi
2 defined in (10).

This result implies that the well-known O(1/k) convergence

rate for the gradient method without errors still holds when

both ǫk
2 and (ǫk

1 − 1

s
rk+1)⊤(x⋆ −xk) are summable. Note that

a faster convergence of these two errors will not improve the

convergence rate but will yield a better coefficient.

Consider now the case in which the sequence {rk}k>0

cannot be observed [as xk in (10) is usually unobservable],

but is bounded, e.g., if {ǫk
2} is bounded as in Lemma II.3.

Then, to obtain a convergence bound that is independent of

the particular sequences {xk}k≥0 and {rk}k>0, we can apply

Cauchy-Schwarz’s inequality to the first term involving rk in

the right-hand side of (13) followed by Féjer’s inequality (see

[7, Thm. 10.23]):

Corollary II.5. Under the same conditions as Theorem II.4,

the sequence generated by approximate PG in (6) satisfies

f
(1

k + 1

k
∑

i=0

xi+1
)

− f(x⋆) ≤ 1

k + 1

[

k
∑

i=0

ǫi
2

+
k
∑

i=0

∥

∥ǫi
1 − 1

s
ri+1

∥

∥

2

∥

∥x⋆ − xi+1
∥

∥

2
+

1

2s

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2

]

− 1

k + 1

[1

2s

k
∑

i=0

∥

∥ri+1
∥

∥

2

2
+

1

2s

∥

∥x⋆ − xk+1
∥

∥

2

2

]

, (14)

where, again, x⋆ is any solution of (1) and we used Lemma

II.3 to bound
∥

∥rk
∥

∥.

Notice that, by Féjer’s inequality [7, Thm. 10.23],
∥

∥x⋆ − x0
∥

∥

2
upper bounds all residuals

∥

∥x⋆ − xi
∥

∥

2
. Since

{ǫk
1}k≥1 is a centered sequence, the use of Cauchy-Schwarz’s

inequality followed by Féjer’s inequality yields a bound looser

than the one in (13). Yet, the O(1/k) convergence rate is still

guaranteed with weaker summability assumptions of {ǫk
2}k≥1

and {
∥

∥ǫk
1

∥

∥}k≥1. If we set both errors to zero for all k ≥ 1,

we recover the error-free optimal upper bound L
2k

∥

∥x⋆ − x0
∥

∥

2

2

[7].

Next we relax the summability assumption on ǫk
1 and ǫk

2

and replace it with the weaker assumption of boundedness.

Random errors. Let us now consider the case in which ǫk
1 ,

ǫk
2 and therefore xk, are random, and let ǫk

1Ω
, ǫk

2Ω
and xk

Ω be

the corresponding random variables/vectors, respectively.

Theorem II.6 (Random errors). Consider problem (1) and

let Assumption II.1 hold. Assume that the rounding error

{ǫk
1Ω

}k≥1 and residual error {rk
Ω

}k≥1 sequences satisfy As-

sumption II.2 and P
(

ǫk
2Ω

≤ ε0

)

= 1, for all k > 0, and for

some ε0 ∈ R. Then, for any γ > 0, the sequence generated by

approximate PG in (6) with constant stepsize sk := s ≤ 1/L,

for all k, satisfies

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) ≤ 1

k

k
∑

i=1

ǫi
2Ω

+

γ√
k

(

√
n|δ| +

√

2ε0

s

)

∥

∥

∥
x⋆ − x0

∥

∥

∥

2
+

1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
,

(15)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

For large scale problems,1 we typically have n ≫ 1

s
≥ L;

therefore, we obtain the following approximated bound,

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) .
1

k

k
∑

i=1

ǫi
2Ω

+ γ

√

n

k
|δ|
∥

∥

∥
x⋆ − x0

∥

∥

∥

2

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
, (16)

1And for same levels of error magnitudes δ and ε0.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

with the same probability. In the absence of computational

errors, (15) coincides with the results of Theorem II.4 and

Corollary II.5, which reduce to the deterministic noise-free

convergence upper bound, i.e, L
2k

∥

∥x⋆ − x0
∥

∥

2

2
. With exact

proximal operation and approximate gradient computations

(i.e., ǫk
2 = 0 and ǫk

2 6= 0 for all k ≥ 0), if we let the machine

precision δ to decrease at O(1

k0.5+δ), i.e, progressively increase

computation accuracy, then we obtain the optimal convergence

rate O(1

k
). In order to recover the same convergence rate

for the approximate proximal case, we also need the sum of

the ensemble means E(ǫi
2Ω

) to decrease as O(1

k1+δ), which

is a weaker than what [9] [cf.(7)] requires: O(1

k2+δ). This

result also suggests that a slower O(1√
k

) convergence rate

(same as noise-free subgradient method) is achieved when the

sequence of ensemble means {E(ǫk
2Ω

)} is summable for all

centered and bounded sequences {ǫk
1Ω

}, and consequently the

proximal error is the main contributor to any divergence from

the optimal set X⋆.

Notice that for a fixed machine precision δ and probability

parameter γ we obtain a computable error residual constant

rather than variable running error terms as in Theorem II.4,

Corollary II.5 or (7) without making any summability assump-

tions on {
∥

∥

∥
ǫk

1Ω

∥

∥

∥
} (as in Corollary II.5) or {ǫk

1Ω
} in general.

Moreover, the effect of the dimension n of the problem

variable appears explicitly in (15), but neither in Theorem II.4,

nor in Corollary II.5, nor in (7). The latter suggests that

using progressively sparser gradient vectors2 can potentially

accelerate the convergence speed (e.g, by using n′ ≪ n), but

never faster than the optimal (limit) speed of O(1

k
). Overall,

better design parameter selections would result in better error

residuals rather than exceeding the optimal convergence rate.

The following result applies if we relax the summability of

{ǫk
2Ω

} but still assume statistical stationarity.3

Theorem II.7 (Random errors). Consider problem (1) and

let Assumption II.1 hold. Assume that the rounding error

{ǫk
1Ω

}k≥1 and residual error {rk
Ω

}k≥1 sequences satisfy As-

sumption II.2, and that the proximal computation error is

upper bounded, i.e., ǫk
2Ω

≤ ε0 for all k ≥ 1, and also

stationary with constant mean E(ǫ2Ω
). Then, the sequence

generated by approximate PG in (6) with constant stepsize

sk := s ≤ 1/L, for all k, satisfies

f

(

1

k

k
∑

i=1

xi
Ω

)

− f(x⋆) ≤ E
(

ǫ2Ω

)

+
γ√
k

(

ε0

2
+

√
n|δ|

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

)

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
,

(17)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

The following corollary applies to approximate PG with

uniformly distributed proximal error.

2As is the case in Proximal-Gradient algorithm when applied to LASSO.
3This means that the ensemble mean and the variance are time-invariant.

Corollary II.8 (Random uniformly distributed proximal

error). Let the proximal computation error be upper bounded,

i.e., ǫk
2Ω

≤ ε0, for all k ≥ 1. If the latter is stationary and

uniformly distributed over its range, i.e., ǫk
2Ω

∼ U{0, ε0}, then

substituting E(ǫ2Ω
) = ε0

2
in the bound of Theorem II.7 gives

f

(

1

k

k
∑

i=1

xi
Ω

)

−f(x⋆) ≤ ε0

2
+

γ√
k

(

ε0

2
+

√
n|δ|

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

)

+
1

2sk

∥

∥

∥
x⋆ − x0

∥

∥

∥

2

2
, (18)

with probability at least 1 − 2 exp(− γ2

2
), where x⋆ is any

solution of (1).

In terms of the proximal error ǫk
2Ω

, using a concentration-

based probabilistic bound, i.e., ǫk
2Ω

≤ (1/2 + γ/
√

k)ε0 results

in a sharper bound than what we would have obtained if we

used the more conservative deterministic upper bound ǫk
2Ω

≤
ε0.

III. QUANTIZATION ERRORS

We start by briefly reviewing the theory behind hardware

quantization. Quantization is a critical step between data-level

and hardware-level, which can be thought of as a type of

contract between the two levels of the application in order to

allocate a certain (finite) number of bits (resource) to represent

an infinitely precise parameter or a value from a continuous

signal in the digital circuit with finite precision. This very

initial step of data type/hardware design plays a major role in

determining the overall precision for the application as well

as the complexity of the implementation.

Quantization errors can be reduced by choosing an ap-

propriate number of bits (usually the higher the number of

used bits the less the error will be). However, this reduction

comes at the cost of using more hardware resources for storage

and computation. The trade-off between error attenuation and

calculation precision, energy and speed (or latency), is subject

to application constraints.

Fixed-point number system. Fixed-point machine repre-

sentation can be interpreted in different ways, and we discuss

here the two most common approaches. In the first case, all the

word (W) bit elements are allocated for value representation

assuming all signal values are always positive. As can be

deduced from the machine representation system’s name, i.e,

”fixed-point,” the set of bits in W are split by a fixed-point

into I most significant bits (MSBs) and F least significant

bits (LSBs) representing the integer and the fractional parts,

respectively. This quantization is called unsigned I.F or uI.F

for short. The quantized value is evaluated by the following

formula,

uI.F (x) =
W −1
∑

i=0

bi(x)2i−F , (19)

with F, W ∈ N+. The corresponding dynamic range (DR) is

given by DRuI.F = [0; 2I − 2−F]. The signed I.F, or sI.F

can be obtained from I.F by encoding the sign of the value

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

using one bit and this is typically done by taking the most

significant bit (MSB) of the integer part I as being a sign

bit. Although this operation would reduce the integer part’s

number of bits I to I − 1, the two’s complement approach

handles negative numbers and therefore extends the DR in the

negative direction, i.e., DRsI.F = [−2I−1; 2I−1 − 2−F], and

the quantized value is now given by

sI.F (x) =
W −2
∑

i=0

bi2
i−F − bW −12I−1. (20)

Quantization Rules. Once a machine representation is

defined, quantization rules need to be established in order to

define the quantization behaviour under decreasing accuracy

and/or overflow in subsequent operations. Although the IEEE

754 standard uses round-to-nearest integer4, other modes of

rounding also exist in the literature. For instance, rounding

towards the standard limits (0, +∞, −∞) is also known as

directed rounding. Moreover, rounding can be deterministic

in a pre-defined rule or stochastic according to a random

distribution.

IV. EXPERIMENTAL RESULTS

We now apply the proposed bounds to analyze the conver-

gence of the approximate proximal gradient algorithm when

applied to solve randomly generated LASSO problems:

minimize
x∈Rn

1

2
‖Ax − y‖2

2 + λ‖x‖1 ,

where n = 100 (dimension of x) and A ∈ R
m×n has

m = 500 rows. We run a total of 5 random experiments

for every algorithm parameter selection. We mainly vary the

bitwidth (BIT), the fraction width (FRAC.) of the fixed-

point representation in (20), the CVX [10] solver’s precision

(PRECISION) to approximate the proximal step (4), and the

tolerance bound of the approximate PG (ABSTOL in Table I).

We record and take the average over all 5 experiments of

the residual error in the iterates ‖x − x⋆‖2, the residual error

(suboptimality) in the function values f − f⋆, and the total

number of iterations k (k, iters.). The results are summarized

in Table I. We also plot the proposed convergence bounds,

the error-free optimal bound as well as the original bound

in (7) for the different tests as depicted in Figs. 1-3. Note

that for the probabilistic bounds we tune the parameter γ to

obtain 3 different bounds which hold with probabilities 1,

0.5 and 0.25, respectively. From Figs.1-3, we can clearly

see that our proposed bounds give better approximations of

the discrepancy caused by perturbations, and consequently

we obtain better error terms. As a necessary condition for

convergence, we only required the partial sums
∑k

i=1
ǫi

2 and
∑k

i=1

∥

∥ǫi
1

∥

∥

2
to be in o(k), in contrast to the stronger condition

o(
√

k) of (7). For the probabilistic bounds, we do not assume

summability of the error terms but only require them to be

4If the correct answer is exactly halfway between the two, the system
chooses the output where the least significant bit of the fraction (mantissa
M) is zero.

Fig. 1. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

Fig. 2. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

Table I
RESULTS OF OUR EXPERIMENTS.

PRECISION BIT FRAC. ABSTOL ‖x − x⋆‖2 f − f⋆ k, iters.

2.22e-16 8 4 2.22e-16 0.052609 1.3818 85
0.001 0.15256 6.2202 20

16 6 2.22e-16 0.13947 5.1224 79
0.01 0.1418 5.6894 15

8 2.22e-16 0.09152 3.1661 79
0.001 8 4 0.001 0.14508 5.555 20

0.01 0.14271 5.6136 14
16 8 2.22e-16 0.096077 4.1512 84

0.001 0.13155 4.5246 18
0.01 8 4 0.01 0.12847 4.4239 14

16 6 0.01 0.13084 4.3855 14
8 0.01 0.15369 5.8671 15

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Upper bounds based on Theorems II.4 & II.7 and their corresponding
corollaries vs (7)

bounded. Consequently, the probabilistic bounds achieve better

approximations over iterations and are less sensitive to error

variations and become tighter with decreasing probability. If

we relax our original bound of Theorem II.4 and use Lemma

II.3 to bound the sequence of the proximal residual error {rk},

then our bound coincides with the one in (7), as depicted by

the overlapping dashed and red lines in Figs. 1-3.

Increasing the tolerance bound of the approximate PG from

2.22 × 10−16 to 10−3 improved the algorithm’s running time

by 65 iterations for the 8 bits representation and 66 iterations

for the 16 bits representation without affecting too much the

residuals.

Table I shows that, in general, varying the internal loop

(CVX solver’s) precision does not largely affect the number of

outer iterations of the PG, but leads to substantial bias around

the optimum when increased from 0.01 by a factor of 10.

Reducing the hardware precision from 16 to 8 bits accel-

erated the algorithm by 6 iterations, but slightly increased

the residual in the solution
∥

∥x − x⋆
∥

∥

2
by 8.6861 × 10−2

while added 3.7406 extra bias error to the function value.

Increasing the hardware precision by allocating more bits for

the fractional part in the fixed-point representation of 16 bits

caused the residual error in
∥

∥x−x⋆
∥

∥

2
to drop by 17.46% and

the error in
∥

∥f − f⋆
∥

∥

2
by 33.78% without remarkable effect

on the number of iterations.

V. CONCLUSIONS

We considered the proximal-gradient algorithm in the case

in which the gradient of the differentiable function and the

proximal operator are computed with errors. We obtained new

bounds, tighter than the ones in [9] and demonstrated their va-

lidity on a practical optimization example (LASSO) solved on

a reduced-precision machine combined with reduced-precision

solver. While we established worst-case performance bounds,

we also established probabilistic upper bounds catering for

random computational errors. Interesting directions for future

work include relaxing the assumptions in order to incorporate

more general perturbations into the analysis and consider-

ing accelerated versions (i.e., Nesterov) of the approximate

proximal-gradient algorithm.

REFERENCES

[1] J. S. Cramer, “The origins of logistic regression,” 2002.

[2] D. L. Donoho, “Compressed sensing,” IEEE Transac-

tions on information theory, vol. 52, no. 4, pp. 1289–

1306, 2006.

[3] Y. Wu, J. F. Mota, and A. M. Wallace, “Approximate

lasso model predictive control for resource constrained

systems,” in 2020 Sensor Signal Processing for Defence

Conference (SSPD), IEEE, 2020, pp. 1–5.

[4] P. Machart, S. Anthoine, and L. Baldassarre, “Optimal

computational trade-off of inexact proximal methods,”

arXiv preprint arXiv:1210.5034, 2012.

[5] M. Ulbrich and B. van Bloemen Waanders, “An in-

troduction to partial differential equations constrained

optimization,” Optimization and Engineering, vol. 19,

no. 3, pp. 515–520, 2018.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-

thresholding algorithm for linear inverse problems,”

SIAM journal on imaging sciences, vol. 2, no. 1,

pp. 183–202, 2009.

[7] A. Beck, First-order methods in optimization. SIAM,

2017, vol. 25.

[8] A. Beck and M. Teboulle, “Gradient-based algorithms

with applications to signal recovery,” Convex optimiza-

tion in signal processing and communications, pp. 42–

88, 2009.

[9] M. Schmidt, N. L. Roux, and F. R. Bach, “Convergence

rates of inexact proximal-gradient methods for convex

optimization,” in Advances in neural information pro-

cessing systems, 2011, pp. 1458–1466.

[10] M. Grant and S. Boyd, CVX: Matlab software for

disciplined convex programming, cvxr.com/cvx, 2011.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:10:20 UTC from IEEE Xplore. Restrictions apply.

