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Abstract—The problem of coherent multi-polarization SAR
change detection exploiting data collected from N multiple
polarimetric channels, is addressed in this paper. The change
detection problem is formulated as a binary hypothesis testing
problem and a special block-diagonal structure for the polarimet-
ric covariance matrix is forced to design a novel detector based
on the Generalized Likelihood Ratio Test criterion. It is shown
that the new decision rule ensures the Constant False Alarm Rate
(CFAR) property. At the analysis stage, results on both simulated
and real high resolution SAR data show the effectiveness of the
proposed decision rule and its superiority against the traditional
unstructured GLRT in some scenarios of practical interest.

I. INTRODUCTION

Among all the civilian and defence applications of Synthetic
Aperture Radar (SAR) images, change detection is one of the
most challenging. Starting from a pair of co-registered tem-
porally spaced SAR images representing an area of interest,
change detection represents the capability to identify changes
occurred during the time between the two acquisitions [1],
[2]. When the change detection is performed exploiting only
the intensity information of the image pair the technique is
named incoherent change detection whereas if both amplitude
and phase of the reference and test images are exploited the
technique assume the name of coherent change detection.
In [3], [4], the multi-polarization signal model for the SAR
change detection problem is laid down, the detection problem
is formulated as a binary hypothesis test, and a decision
rule based on the Generalized Likelihood Ratio Test (GLRT)
is developed. Moreover, a performance analysis [3] of the
GLRT is given in the form of Receiver Operating Character-
istics (ROC), namely detection Probability (Pd) versus false
alarm Probability (Pfa), quantifying the benefits of the multi-
polarization information in SAR change detection. In [5] a
new and systematic framework for change detection based on
the theory of invariance in hypothesis testing problems was
developed for the multi-polarimetric coherent change detection
problem.
In this paper we exploit the block-diagonal structure for the
polarimetric covariance matrix introduced in [6] and devise a
new decision rule based on the GLRT criterion. Remarkably,
it ensures the CFAR property with respect to the unknown
polarimetric covariance provided that it complies with a certain

design structure. At the analysis stage we assess the perfor-
mance of the new structured GLRT also in comparison with
the benchmark clairvoyant optimum detector and the GLRT
derived in [3] without the exploitation of the special covari-
ance structure forced by polarization diversity. The analysis,
conducted both on simulated as well as on real high resolution
SAR data, shows the effectiveness of the structured GLRT and
its superiority over the classic unstructured GLRT is some
scenarios of practical interest.

The remainder of the paper is organized as follows. In
Section II, the multi-polarization SAR change detection prob-
lem is formulated and the GLRT proposed in [3] is reported.
In Section III the derivation of the novel structured GLRT
is introduced while, in Section IV, the performance of the
new detector is assessed for both simulated and real multi-
polarization SAR images. Finally, in Section V, conclusions
are provided.

A. Notation

We adopt the notation of using boldface for vectors and
matrices. The conjugate transpose operator is denoted by the
symbol (·)† while tr (·) and det(·) are respectively the trace
and the determinant of the square matrix argument. Finally,
0 denotes the matrix with zero entries (its size is determined
from the context), while H++

N denotes, the set of N × N
Hermitian positive definite matrices.

II. PROBLEM FORMULATION

A multi-polarization SAR sensor measures for each pixel of
the image under test N = 3 complex returns, collected from
different polarimetric channels (HH, VV, and HV). The N
returns from the same pixel are stacked in the specific order
HH, VV, and HV (to form the vector X(l,m), where l =
1, . . . , L and m = 1, . . . ,M (L and M represent the vertical
and horizontal size of the image, respectively). Therefore, the
sensor provides a 3-D data stack X of size M×L×N which
is referred to in the following as a datacube and is illustrated
in Figure 1.

For SAR change detection applications, we assume that
two datacubes X (reference data) and Y (test data) of the
same geographic area are available. Furthermore we assume
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Fig. 1: Construction of the datacube.

that they are collected from two different sensor passes and
are accurately pixel aligned (co-registrated). We focus on the
problem of detecting the presence of possible changes in a
rectangular neighbourhood A, with size K = W1×W2 ≥ N ,
of a given pixel. To this end, we denote by RX (RY ) the
matrix whose columns are the vectors of the polarimetric
returns from the pixels of X (Y ) which fall in the region
A and SX = RXR†X (SY = RYR

†
Y ).

The matrices RX and RY are modelled as statistically
independent random matrices. Moreover, the columns of RX

(RY ) are assumed statistically independent and identically dis-
tributed random vectors drawn from a complex circular zero-
mean Gaussian distribution with positive definite covariance
matrix ΣX (ΣY ), complying with the structure introduced in
[6], i.e.

ΣX ∈ Ξ (ΣY ∈ Ξ),

where

Ξ =

{
Σ ∈ H++

N : Σ =

(
Σ1 0
0 σ2

)}
, (1)

Under the aforementioned settings, the change detection
problem in the region A can be formulated in terms of the
following binary hypothesis test{

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY
(2)

where the null hypothesis H0 of change absence is tested
versus the alternative H1. Exploiting the Gaussian assumption
together with the covariance structure (1), we can write the
joint probability density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX,1ΣY,1, σ

2
X,1, σ

2
Y,1) =

1

π6K detK(ΣX,1) detK(ΣY,1)σ2K
X,1σ

2K
Y,1

exp

{
−tr

[
Σ−1X,1SX,1 + Σ−1Y,1SY,1 +

σ̂2
X,1

σ2
X,1

+
σ̂2
Y,1

σ2
Y,1

]}
,

(3)

and

fRX ,RY
(RX ,RY |H0,ΣX,1, σ

2
X,1) =

1

π6K det2K(ΣX,1)σ4K
X,1

exp

{
−tr

[
Σ−1X,1(SX,1 + SY,1) +

σ̂2
X,1 + σ̂2

Y,1

σ2
X,1

]}
,

(4)

where SX and SY are partitioned as

SX =

[
SX,1 SX,2

S†X,2 σ̂2
X,1

]
SY =

[
SY,1 SY,2

S†Y,2 σ̂2
Y,1

]
,

(5)
and σ̂2

X,1 and σ̂2
Y,1 are scalars.

In [3], the GLRT has been devised without considering the
special structure (1) for ΣX and ΣY . The resulting detector,
referred to in the following as unstructured GLRT, is

det2(SX + SY )

det(SX) det(SY )

H1
>
<
H0

TU , (6)

where TU is the detection threshold set to ensure a given
Pfa level. In the next section, we exploit the special covariance
structure (1) induced by polarization diversity and derive the
structured GLRT.

III. STRUCTURED GLRT DESIGN

This approach is equivalent to replacing the unknown pa-
rameters in the likelihood ratio with their maximum likelihood
estimates, under each hypothesis [7]. Specifically, the struc-
tured GLRT is the decision rule (7), and after substituting the
pdfs defined in (3) and (4), we get (8).

Hence, performing the maximizations over the parameters
we can recast (8) in the equivalent form

det2K(SX,1 + SY,1)

detK(SX,1) detK(SY,1)

(
σ̂2
X,1 + σ̂2

Y,1

)2K
(
σ̂2
X,1σ̂2

Y,1

)K H1
>
<
H0

TS,1 ,

(9)
with TS,1 a modified version of TS,0. Finally, after a

monotonic transformation, we get the following equivalent
form of the GLRT

det2(SX,1 + SY,1)

det(SX,1) det(SY,1)

(
σ̂2
X,1 + σ̂2

Y,1

)2
σ̂2
X,1σ̂2

Y,1

H1
>
<
H0

TS , (10)

with TS the modified detection threshold. It can be proved
that (10), ensures the CFAR property with respect to both
ΣX,1 and σ2

X,1. Otherwise stated, the detection threshold en-
suring a given False Alarm Rate (FAR) can be set independent
of the two aforementioned parameters.



max
ΣX,1,ΣY,1,σ2

X,1,σ
2
Y,1

fRX ,RY
(RX ,RY |H1,ΣX,1ΣY,1, σ

2
X,1, σ

2
Y,1)

max
ΣX,1,σ2

X,1

fRX ,RY
(RX ,RY |H0,ΣX,1, σ

2
X,1)

H1
>
<
H0

TS,0 . (7)

max
ΣX,1,ΣY,1,σ2

X,1,σ
2
Y,1


exp

[
−tr

(
Σ−1X,1SX,1 + Σ−1Y,1SY,1 +

σ̂2
X,1

σ2
X,1

+
σ̂2
Y,1

σ2
Y,1

)]
π6K detK(ΣX,1) detK(ΣY,1)σ2K

X,1σ
2K
Y,1


max

ΣX,1,σ2
X,1


exp

[
−tr

(
Σ−1X,1(SX,1 + SY,1) +

σ̂2
X,1σ̂2

Y,1

σ2
X,1

)]
π6K det2K(ΣX,1)σ4K

X,1



H1
>
<
H0

TS,0 . (8)

IV. PERFORMANCE ANALYSIS

This section presents the performance analysis for the
proposed scale invariant decision rules for both simulated and
real data.

A. Performance Analysis on Simulated Data

This sub-section presents the performance analysis via com-
puter simulated data of the detectors introduced in Sections II
and III. In particular, the standard ROCs are computed for
the unstructured and structured GLRTs and compared with
the benchmark performance of the optimum Neyman-Pearson
detector. In order to set the detection threshold, Monte Carlo
simulations are used assuming 100/Pfa independent runs.
Additionally, 105 independent trials are exploited to estimate
Pd. As in [3] the theoretical covariance matrices considered
to estimate the Pd are:

ΣX =

 1 0.5 0
0.5 1 0
0 0 0.2

 ΣY = 2ΣX ,

while ΣY = ΣX was considered to estimate the Pfa.
The optimum receiver assumes that the actual covariance

matrices are known, and can be expressed as:

tr
[(

Σ−1X −Σ−1Y
)
SY
] H1

>
<
H0

T, (11)

which resorting to the special structure of ΣX and ΣY leads
to

tr

[(
Σ−1X,1 −Σ−1Y,1

)
SY,1 +

(
1

σ2
X,1

+
1

σ2
X,2

)
σ̂2
Y,1

] H1
>
<
H0

T.

(12)
The obtained ROCs for the cases of W = 3, 5 and 7 are

shown in Figures 2, 3 and 4 respectively. In all cases the
structured GLRT outperforms the unstructured one, while the

optimum receiver provides the benchmark performance. For
example for the case of W = 5 with a Pfa of 10−4 the Pd
assumes value of 0.1386 for detector (6) while it is 0.2822 for
detector (10) and 0.9913 for the detector (12). Moreover it is
worthwhile to note that for all the detectors the Pd improves as
W increases for a given Pfa. This effect is principally due to
the more accurate estimation of the covariance matrices which
exploits more homogeneous data.
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Fig. 2: Pd versus Pfa for W = 3.

B. Testing on Real Data

In this subsection the performance analysis on real X-
band data is presented. The dataset used is the Coherent
Change Detection Challenge dataset acquired by the Air Force
Research Laboratory (AFRL) [8], the data contains passes
acquired with three polarizations (HH, VV, and HV).

For our analysis we focus on two acquisitions from the
entire dataset, unfortunately the ground truths of the data is
not available (e.g. the actual changes between two different
acquisitions), so the selection of two passes providing the
opportunity to generate a sufficiently accurate ground truth
was required. For this reason the best candidates which is
those obtained for two passes: the acquisition named “FP0124”
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Fig. 3: Pd versus Pfa for W = 5.
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Fig. 4: Pd versus Pfa for W = 7.

is used as reference pass, while the acquisition “FP0121”, is
used as a test pass. The selected area of interest is a sub-
image of 1000 × 1000 pixels (i.e., L = M = 1000) and
is composed of several parking lots which are occupied by
numerous parked, (i.e., stationary) vehicles. For this particular
scenario the changes between the reference and test images
(denoted by X and Y respectively), occurred during the time
interval between the two acquisitions, and can be distinguished
in the following two cases:
• a vehicle is present in X but is not present in Y , this

case is referred as departure;
• a vehicle is not present in X but is present in Y , this

event is referred as arrival.
Using the cases defined above, a total of 34 changes between
X and Y can be visually identified (by flickering the two
images). The resulting ground truth is shown in Figure 5-a,
wherein the black rectangle represent departures and the white
rectangles indicate arrivals.

Although the acquisitions were performed during the same
day and the images were registered, the returns from a scatterer
can contribute differently to neighbour pixels, for example a
slightly different aspect angle can produce a different amount
of energy spill-over. These relative differences in the imaged
data can lead to false alarms in the change detection results.
For this reason we consider a guard area around each arrival-
departure. This allows the definition of an extended ground

truth (see Figure 5-b) used in the following to compare the
performance of the considered detection algorithms.

In order to assess the performance of the detectors both the

(a) Ground truth.

(b) Ground truth with guard cells.

Fig. 5: Ground truth superimposed to the reference image and
ground truth with the addition of guard cells.

number of detected changes and the change detection maps
are presented. For the i-th receiver, the corresponding map
of changes Ci, is a L × M matrix whose (l,m)-th entry
is the i-th decision statistic considering the N × N sample
Grammian matrix SXl,m

(SYl,m
) evaluated considering a

square neighbourhood1 with size W ×W of the pixel (l,m)
of X (Y ).

The detection map corresponding to Ci, is then defined as

Di(l,m) =


1 if Ci(l,m) > Ti l = 1, . . . , L

0 otherwise m = 1, . . . ,M .

(13)

where Ti denotes the detection threshold. In the analysis
presented in this section, the thresholds are set to ensure
Pfa = 10−3 in the complement of the extended ground truth
area, namely, in the region where no changes occur (there are
no true positives). This means that, for each detector, after
computing the decision statistics (for each pixel belonging to
the complement of the extended ground truth), the threshold
has been selected in order that

10−3 × total number of available statistics (trials) ,

1We notice that, in order to obtain Ci of size L×M we include a frame
of ε pixels width of both reference and test images with ε = W−1

2
, in order

to be able to compute the statistics on the image borders. By doing so, W
must be odd.



are greater than the threshold. This ensures that all the com-
parisons refer to the same Pfa level, namely the number of
threshold crossings in the complement of the extended ground
truth is exactly the same for all the analysed detectors. In Table
I the number of correct changes detected using receivers (6)
and (10) for the cases with W = 3, W = 5, and W = 7 are
reported.

W
Detector 3 5 7

Unstructured GLRT (6) 3802 6492 7533
Structured GLRT (10) 4949 6655 7387

TABLE I: Number of correct detections for W = 3, 5 and 7.

From Table I it is clear that the structured GLRT outper-
forms the unstructured GLRT for the smaller window sizes
(W = 3 and 5) whereas the unstructured GLRT outperforms
the structured GLRT for the larger window size of W = 7
when it is able to detect more changes in the image. This
last result can be justified in terms of a covariance model
mismatch in the sense that the off-diagonal entries of the
polarimetric covariance matrix which in the theoretical model
have been set to zero might not be exactly zero in reality (even
if very close to that value). Additionally there might be some
other deviations from the theoretical model for instance due
to environmental non-homogeneities.
Last results presented are example of detection maps for
detectors (6) and (10) for the case of W = 3 in Figure 6-
a and in Figure 6-b respectively. From the detection maps the
higher number of detection achievable with the detector (10)
is appreciable.

V. CONCLUSIONS

The block-diagonal structure for the polarimetric covariance
matrix is exploited in this paper to derive a new decision
rule based on the GLRT criterion. The proposed approach
ensures the CFAR property with respect to the unknown
polarimetric covariance. The novel structured GLRT detector
has been compared with the unstructured GLRT, with analysis
on both simulated and real full-polarimetric SAR data. The
performance analysis confirmed that a structured approach can
provide increased performance with particular benefits when
a small amount of homogeneous data is available. Future
work will concentrate on the performance analysis on other
datasets, the study of model sensitivity mismatches, and the
development of an invariant framework accounting at the
maximal invariant design stage of the block-diagonal structure
of the polarimetric covariance matrix.
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Fig. 6: Detection maps for W = 3.
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