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Abstract—The performance of Fourier based methods for
the detection of frequency modulated signals is considered. In
particular an adaptation of the fractional Fourier transform is
compared to the conventional Fourier transform. The perfor-
mance assessment focuses on the capability of the methods for
detecting vocalisations; this analysis exploits measured data from
a variety of cetacean species.

I. INTRODUCTION

This paper is concerned with the detection of frequency
modulated (FM) narrow-band signals often referred to as
’chirps’. Narrow-band or tonal signals are common place in the
underwater environment but can be difficult to detect due to the
high levels of background noise which can occur. In contrast
to constant frequency signals (tonals), the signal-to-noise of
the Fourier transform of a chirp signal does not increase
monotonically with the observation time. The characterisation
of chirps is useful in various applications in underwater
acoustics, for example to determine whether a signal is of
man-made or biological origin. This is particularly important
for the passive sonar operator who will need to determine
whether a signal detected derives from a vessel of interest or
one of the many sources of biological sound. Furthermore,
as we endevour to become evermore responsible custodians
of the underwater environment, it is important that the risk
to the natural habitat is minimised. So, for example, before
any active sonar transmission an awareness of local biological
activity is paramount. It is with this in mind that this work
seeks to improve the detection of delphinid whistles [1], [2].

An optimal detector for a signal with a known structure
is based on the matched filter [3]. For a tonal signal, ap-
proximately optimal detection can be realised using a spec-
trogram (the squared magnitude of the short-time Fourier
transform) [4]. The spectrogram is an analysis tool which
is relied upon in a wide range of practical problems in
acoustic analysis. This is despite of the availability of alterna-
tive, higher-resolution, time-frequency methods [5], [6]. The
spectrogram’s computationally efficiency and its robustness at
low signal-to-noise favors its use in detection problems. The
spectrogram can only be regarded as attaining some degree of
optimality for signals which are approximately tonal. However,
it continues to be be used as the basis of detection schemes
for more general FM narrow-band signals. This paper explores

extensions to the spectrogram, which broadens the range of
signals for which it is nearly optimal to include signals with
linear frequency modulations.

This extension is based on a short-time implementation
of the Fractional Fourier Transform (FrFT) [7], realised via
the Chirped Fourier Transform (CFT), which is efficient to
implement. The FrFT is a signal decomposition based on linear
FM signals; so is optimal for such signals. In practice the
performance of a detector strongly depends on how well the
measured signals conform to the underlying model: constant
frequency model for the Fourier Transform (FT) and linear
FM for the FrFT. This study quantitifies performance of the
FrFT compared to the FT as a detector of synthetic FM signals
in Gaussian white noise and also compares their performance
using acoustic recordings of cetacean vocalisations made in an
oceanic environment. Crucially for the first time, the analysis
reveals the inherent noise statistics of FrFT peak-picking
process and shows how these are different to the FT. This
detail is required for a fair comparison of the two methods.

II. THE CHIRP FOURIER TRANSFORM

A. The Fourier Transform

As already discussed the Fourier transform (FT), as defined
in (1), uses a set of complex sinusoids as its basis function and
consequently is particularly well suited to the analysis of tonal
signals. The FT can be seen as a bank of matched filters and
therefore an optimal detector if the tonal signal has a frequency
which corresponds to that of one of the basis functions of the
FT. The detection performance of the FT is degraded if the
frequency of the signal changes over the duration of the FT
window. It is a desire to retain good performance under these
conditions that motivates this study.

X(f) =
∫
x(t)e−2πiftdt (1)

B. The Fractional and Chirp Fourier Transforms

The Fractional Fourier Transform (FrFT) [8] (2) creates
a signal representation using basis functions that are linear
frequency modulated (LFM) complex sinusoids and as such
the FrFT is tailored to the processing of such signals. The
transform is parameterised by the fractional order, α, which



defines the rate of frequency modulation of the basis functions.
Equivalently, one can define an angle ϕ = πα/2 which can
be regarded as angle of rotation of the time-frequency plane.

Xα(u) =A
∫
x(t)eiπ(t2 cotϕ−2ut cscϕ+u2 cotϕ)dt

A =
√

1− i cotϕ (2)

This work concentrates on the problem of signal detection
based on the (squared) magnitude of the FrFT and therefore
one can use an intuitively appealing and efficient transform,
referred to the as the Chirp Fourier transform (CFT) [9] (3).
The CFT consists of pre-multiplying the input signal by a
synthetic LFM signal of the form exp(−2πiat2), prior to
taking a FT. To illustrate, consider a LFM signal with known
chirp-rate, if it is multiplied by a chirp whose rate is the
negative of that in the signal, then the resultant signal is
sinusoidal and suited to detection using the FT.

Xc,a(f) =
∫
x(t)e−2πi(ft+at2)dt (3)

It is important to note that the multiplying chirp,
exp(−2πiat2), should have a mean frequency of zero, which
is the case assuming that the data is evaluated on a centred
interval, [−T/2, T/2]. The zero mean frequency condition
ensures that in forming the product, the frequency the signal
being analysed is not altered. It can be shown [8], [10] that
the CFT and FrFT can be related in the following manner

Xα(u) =Aeiπu
2 cot(ϕ)Xc,a(u csc(ϕ)) (4)

|Xα(u)|2 =
|Xc,a(u csc(ϕ))|2

| sin(ϕ)|
(5)

From which it is evident that the magnitude of the CFT and
FrFT are identical, up to a known scale factor.

III. THE PEAK-PICKED CFT

An optimal CFT is simple to construct if the signal’s chirp
rate is known a priori, as may be the case in some applications.
However in the majority of cases the chirp-rates present in a
signal are not known a priori and have to be estimated from the
data [11]. The joint estimation of the chirp rate and detection
of the signal, which essentially forms a generalised likelihood
ratio (GLR) test [3], is performed via a scheme we refer to
as the peak-picked CFT (ppCFT). To form the ppCFT a set
of CFTs are computed at different chirp-rates a; the CFT
which yields the maximum peak level is identified and that
CFT forms the output spectrum, the corresponding value of
a provides an estimate of the signal’s chirp-rate. This scheme
mimics that suggested by other authors, e.g. [11]

One approach is to consider a symmetric uniform grid of
values for a between −amax and amax with a fixed increment
∆a. Reasonable values for the maximum chirp rate amax and
increment ∆a can be determined for a digital signal, of N
samples, at a sampling rate fs Hz. If the signal observed over
an interval [-T/2, T/2], the bandwidth of a real digital signal is

fs/2 and so for a LFM signal which remains with in this band
the fastest possible chirp rate that can be present is ±fs/(2T )
Hz/s. Further, one can estimate the chirp rate resolution by
consideration of the frequency resolution ∆f which is given
by 1/T . The chirp rate resolution can be said to correspond to
the difference in chirp rates that creates a resolvable frequency
difference over the T seconds data. Accordingly the chirp rate
resolution is ∆a = ∆f/T = 1/T 2 Hz/s. In order to cover the
full range of chirp rates using steps of ∆f , requires one to
compute N + 1 different CFTs [12].

The implementation of the ppCFT can be performed using
the following steps, assuming the data is in the form of a real
value sampled time series.

1) The Hilbert transform is used to obtain the analytic form
of the signal

2) Form a set of N + 1 complex LFM signals
3) Multiply the signal by each of the complex LFM signals

to form N + 1 modified signals
4) Compute the squared magnitude of the FFT for each of

the modified signals
5) Identify the CFT which yields the maximum peak level

of all the CFTs, this constitutes the ppCFT
The analytic form of the signal is constructed in step 1,

since in that form of the signal has no negative frequency
components, which can cause interference effects.

Further one can apply the ppCFT in a short-time fashion,
to form an CFT based spectrogram-like representation. This is
achieved using the ppCFT, in place of the FT, when computing
a spectrogram. Specifically, a series of spectra are formed by
analysing finite segments of the signal; the segments being
windowed and overlapped. The ppCFT is then computed for
each segment of the signal; the window serves to localise the
analysis around a particular point in time, and the resulting
distribution provides representation of the signal in terms of
time and frequency [11].

IV. APPLICATION TO SYNTHETIC SIGNALS

Initially results of applying this approach to synthetic FM
signals in noise are presented. Fig 1 illustrates the process
of forming the ppCFT for a synthetic LFM signal in Gaus-
sian white noise. Horizontal lines through this plot represent
individual CFTs for different chirp-rates. The central line, a
chirp-rate of zero, corresponds to the classical FT. It can be
seen that along this line the signal energy is not concentrated,
but smeared across many frequency bins. Whereas along the
line corresponding to the signal’s true chirp rate (60 Hz/s) the
energy in the representation is concentrated and a strong peak;
the ppCFT extracts this single line as the output spectrum.

Fig 2 shows spectrograms based on the FT and ppCFT
for a synthetic signal, consisting of a quadratically frequency
modulated sinusoid embedded in Gaussian white noise. The
largest value occurring in the FT spectrogram occurs when the
signal is approximately tonal at t = 0.5 s; with the level of
the spectrogram falling progressively as the chirp rate departs
from zero. The ppCFT is more robust to these phenomena;
the level of the representation is almost constant over the



Fig. 1. Image of the CFTs using the full range of chirp rates, for the signal
exp (2πi(30t2 + 130t)) in Gaussian white noise.

signal’s duration. Further the width of the line representing
the signal is considerably narrower in this representation, i.e.
the signal’s the energy is concentrated in a few frequency
bins. This example demonstrates that the ppCFT also alters the
appearance of the background noise compared to the FT, in
particular the noise becomes textured in a manner that reflects
the direction of the chirp in the signal.

Fig. 2. A comparison between the FT spectrogram and the ppCFT for the
signal exp (2πi(−2048t3 + 3072t2)) in Gaussian white noise (fs = 4096
Hz). The spectrograms are computed using a Hanning window of length 512
points and overlapped by 87.5%.

V. METHOD OF EVALUATION

The results from the preceding section suggest that the
ppCFT may be well suited to the detection of FM signals.
Specifically the concentration of energy in such signal to a
few frequency bins, even when the chirp rate is high, means
that such bins should be prominent relative to the noise floor.
In order to determine whether such an apparent performance
advantage can be realised in a practical system a suitable
measure of performance needs to be selected and evaluated.
Probably the most complete evaluation of the performance

of a detector is achieved by computing receiver operating
characteristics (ROC) curves. The computation of a ROC curve
is not well suited to performance comparisons employing
measured data sets. Consequently in this study, wherein it is
desired to draw conclusions regarding the two methods using
measured data sets of cetacean vocalisations, an alternative
metric is employed. The approach taken is to first identify
a detection threshold which corresponds to a predetermined
false alarm rate. The ratio (computed as a difference in levels
expressed in dB) between the peak level of the signal and this
threshold is then evaluated. This ratio defines the attenuation
the signal could have undergone before detection would not
have occurred.

Using this approach a correction factor can be defined when
comparing two methods. This correction factor is the ratio
between the two thresholds, expressed in dB, for the two
methods at the selected false alarm rate. By subtracting this
correction factor from the results of the appropriate method a
fair comparison can be undertaken.

In order to determine the detection thresholds, and hence
the correction factors, the statistics of the methods for noise
only data need to be evaluated. This can be achieved for the
case of Gaussian white noise; which, then imposes the need
for a pre-whitening step in the analysis of the measured data
sets.

A. Threshold for the FT

The statistics of the FT of Gaussian white noise are known
to conform to an exponential distribution [13], [14], [15], [3],
specifically, the threshold, Λfa, expressed in dB, that realises
a false alarm rate, Pfa, can be shown to be

Λfa = 10 log10(−σ2 ln(Pfa)) (6)

B. Threshold for the ppCFT

Unlike the FT, the statistics of the ppCFT for Gaussian
white noise inputs have not been previously been detailed.
This section evaluates those statistics through Monté-Carlo
simulations. The individual CFTs for a fixed chirp rate have
exactly the same distribution as the FT, i.e. an exponential
distribution. However, the statistics of the ppCFT of Gaussian
white noise differ significantly from the individual CFTs. This
is a consequence of the peak-picking process which selects
the value of a generating the largest single value from a set
of N +1 CFTs computed with different a’s. Consequently, by
definition, the selected CFT necessarily includes, at least, one
unusually large value.

Fig 3 has been obtained through Monté-Carlo simulation.
The plot illustrates the probability of false alarm against
spectral level for the ppCFT for different window lengths.
Therefore for the ppCFT, assuming unit variance white noise,
the thresholds for false alarm rates of 10−4 and 10−5 are now
dependent on block size, but for 1024 points the thresholds are
11.44 dB and 12.11 dB respectively. The difference between
this level and the level associated with the FT is the correction
factor that needs to be applied to equalise the false alarm rates



Fig. 3. Probability of False Alarm for the ppCFT
.

of the two methods and so render the comparison fair. For 1024
points the correction factors for false alarm rates of 10−4 and
10−5 are 1.8 dB and 1.5 dB respectively. Table I summarises
these correction factors for a range of block sizes.

TABLE I
CORRECTION FACTORS FOR THE PPCFT FOR A VARIETY OF BLOCK-SIZES

Correction Factor (dB)
Block-size (N) Pfa = 10−4 Pfa = 10−5

256 1.1 1.0
512 1.4 1.2
1024 1.8 1.5
2048 2.0 1.7
4096 2.2 1.9
8192 2.3 2.0

VI. RESULTS

The ppCFT and FT are compared mainly on the basis of
a number of recordings from various cetacean species which
utilise narrow-band FM vocalisations. It should be noted that
there are a large number of cetacean species that produce
narrow-band vocalisations and that some of the species have
diverse vocal repertoires. Consequently the data set analysed
here only aims to capture a few typical examples.

The comparison between the ppCFT and FT spectrograms
allows for the fact that the performance of each method
depends upon the chosen window size. A fair comparison
for each data sample should allow the methods to optimise
this window length independently. To this end both methods
analyse the data using a range of window sizes with the
spectrograms being normalised so that the thresholds are
independent of the different of window size. The spectrogram
that yields the largest value is then selected as the best for that
method, for that data.

The analysis of the cetacean recordings starts by pre-
whitening the data, i.e. estimating the background noise spec-

trum using the method described in [16], and filtering using
an inverse filter. Then a period containing a suitable narrow-
band FM component is identified. That period is analysed
using the spectrogram and short-time ppCFT methods, with the
optimised window size. For the ppCFT the correction values
in Table I are applied.

TABLE II
PERFORMANCE SUMMARY

Signal Chirp Best Best ppCFT
Rate FT ppCFT Gain

(kHz/s) Size Size (dB)
Synthetic
Tonal 0 8192 8192 -2.0
LFM 4 1024 8192 6.3
Odontocetes
Atl. Whitesided Dolphin
(Lagenorhynchus acutus) -36.6 2048 4096 2.2
Bottlenose Dolphin
(Tursiops truncatus) a 54.3 512 4096 2.1

b -10.4 1024 4096 3.1
Dusky Dolphin
(Lageno. obscurus) a -10.7 1024 4096 2.6

b 14.3 1024 2048 1.0
Pantropical Spotted Dolphin
(Stenella attenuata) a 15.3 2048 2048 -1.0

b 8.4 1024 4096 -0.5
c 35.9 2048 4096 1.2

Killer Whale
(Orcinus orca) 9.74 2048 4096 0.8
Mysticetes
Fin Whale
(Balaenoptera physalus) -0.003 512 512 -1.2

Table II details the performance gain (in dB) of the ppCFT
over the FT for a probability of false alarm of 10−5. Neg-
ative values relate to a degradation in detectability, i.e. a
performance loss when using the ppCFT. The synthetic data
provides results that one might expect: the FT offers the best
performance for a tonal signal, whereas for a LFM signal it
is the ppCFT which achieves best performance.

For the recorded data, the benefit of using the ppCFT is
dependent on how well the vocalisations conforms to the LFM
model. In general the detectibilty for the cetacean data is
significantly less than that for the synthetic synthetic data,
reflecting the fact that these vocalisations are not exactly
modelled as LFM signals. For the signals considered the
improvement in detectability ranges from -1.2 to 3.1 dB. The
best improvement is generally associated with the whistles
with the fastest chirp-rates, as one might anticipate. The
optimal window length of the ppCFT is never smaller than the
FT window length and in most cases is significantly longer.

Some of the variability can be explained by considering
the character of the signals. In particular the whistles of the
pantropical spotted dolphin contain short sections where the
chirp rate is close to zero and the performance advantage of
the ppCFT over the FT is compromised. The dusky dolphin
data is recorded at a relatively low SNR and in reverberant
environment, this, to a lesser extent, also compromises the



ppCFT. The fin whale call, which has a relatively low chirp
rate, is poorly suited to analysis with the ppCFT.

VII. CONCLUSION

The results show that for cetacean tonal vocalisations, the
theoretical performance of the FrFT is difficult to realise
primarily because a real signal will not precisely obey a linear
frequency law. However for these signals the FrFT can offer
modest gain of up to about 3 dB, the method also produces
an estimate of signal chirp rate within the spectrogram data
block. Future work will aim to exploit this feature to produce
a frequency line tracking scheme based on measurements of
instantaneous frequency and chirp rate. It is believed that this
approach will mitigate some of the track seduction effects
commonly seen in tracking algorithms. A successful tracking
solution will allow the extraction of FM tonal features from
the spectrogram, these features can be used to characterise or
classify the sound source and determine whether the source is
man-made or biological.
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