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Abstract—Video based multiple human tracking often involves
several challenges including target number variation, object
occlusions, and noise corruption in sensor measurements. In this
paper, we propose a novel method to address these challenges
based on probability hypothesis density (PHD) filtering with
a Markov chain Monte Carlo (MCMC) implementation. More
specifically, a novel social force model (SFM) for describing the
interaction between the targets is used to calculate the likelihood
within the MCMC resampling step in the prediction step of the
PHD filter, and a one class support vector machine (OCSVM)
is then used in the update step to mitigate the noise in the
measurements, where the SVM is trained with features from both
colour and oriented gradient histograms. The proposed method
is evaluated and compared with state-of-the-art techniques using
sequences from the CAVIAR, TUD and PETS2009 datasets based
on the mean Euclidean tracking error on each frame, the optimal
subpattern assignment (OSPA) metric, and the multiple object
tracking precision (MOTP) metric. The results show improved
performance of the proposed method over the baseline algorithms
including the traditional particle PHD filtering method, the
traditional SFM based particle filtering method, multi-Bernoulli
filtering and an online-learning based tracking method.

Index Terms—multiple human tracking, PHD filter, social force
model, MCMC resampling, OCSVM

I. INTRODUCTION

IDEO based multiple human tracking plays an important

role in many applications such as surveillance, guidance,
and homeland security, especially in enclosed environments
such as an airport, campus or shopping mall. Tracking mul-
tiple human targets in the above situations presents several
challenges including varying number of targets, object occlu-
sion, and the adverse effect of environmental noise within
measurements [[L][2]. Moreover, it is not always possible to
associate measurements with particular targets which results
in false alarms and missed detections [3]. In this work we
attempt to address aspects of these challenges and focus on the
problem of estimating the position of an unknown number of
human targets, based on noisy observations, with the possible
presence of missed detections and false alarms due to clutter.
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A. Related Work

Most multiple human tracking approaches fall into one of
three categories: achieving a more accurate dynamic model
for prediction such as using an interaction model when pre-
dicting the position and velocity of a target [4]][5]; generating
more stable recursive mathematical models such as unscented
Kalman filters and MCMC particle filters [6]; and searching
for more accurate measurement models [7][8], for example,
the tracking-learning-detection (TLD) [9] approach. However,
the almost universally accepted mathematical framework used
to describe multiple target tracking is that of filtering theory
and, in particular, Bayesian filtering [[10]], where the posterior
probability distribution is recursively predicted by propagating
this distribution with the state model, which describes the mo-
tion of a target, and updates the state when a new observation
becomes available [11]. The two such popular algorithms are
the Kalman filter and particle filter. The Kalman filter is well-
known to be optimal with the Gaussian linear model, while
the particle filter can be employed to address the tracking
problem with a non-Gaussian and non-linear model. These
two methods can address the basic multiple target tracking
problem when the number of targets is assumed to be known
and fixed, however, they are not designed for dealing with the
problem of a variable number of targets.

The random finite set (RFS) [12] probability hypothesis
density (PHD) filter has been recently proposed to deal with
the problem of tracking a varying number of targets. The
advantage of the PHD filter is that it can estimate both the
cardinality of targets and their states, and thus avoids the need
for data association techniques as part of the multiple target
framework [13][[14]. Moreover, it mitigates the computational
complexity issue as often occurs in other multiple target track-
ing approaches such as multiple hypothesis tracking (MHT)
[14] since it simply utilizes the first-order moment of the multi-
target posterior rather than the posterior itself. The PHD filter
will be used here and is the focus of this paper.

However, the tracking accuracy of the PHD filter is compro-
mised due to the first order approximation of the RFS in both
the prediction and update steps, as well as noise in the mea-
surements [[15]]. To address these limitations, we propose two
new methods. First, the prediction of the states of the human
targets is improved by considering the dynamics of the targets
and the interactions between them via an interaction model [5]].
This is different from conventional Bayesian filtering, where
a fixed model is often used to predict the state of the target
and then random noise is employed to generate new candidate
states. Second, a background subtraction algorithm is used



to generate the measurements for new born targets (detailed
later in Section [II-DI), and then a classifier is employed to
distinguish the clutter from the human targets based upon their
different spatial characteristics, so that the measurement noise
is mitigated effectively and the probability of false alarms and
missed detections is thereby reduced.

In our work, the interaction information is exploited by a
model constraining the motion between the targets. Within
existing interaction models, the social force model (SFM) [4]]
is considered due to its ability in handling the interaction
between human targets as well as their typical behaviour.
Several researchers have used social force models to predict
the states of humans based on their behaviour [4][16]. Within
the social force model, the behaviour of human targets is
modelled via energy potentials which are adjusted by other
targets and obstacles through repulsive forces [17]. We pro-
pose a product model suitable for likelihood calculation to
characterise the social force interactions between the human
targets based on multiple exponential-terms. This improves the
MCMC resampling [18] of the PHD filter used in our work. To
the best of our knowledge, no previous work has considered
the interaction model in the prediction stage of MCMC-based
PHD filtering algorithms. To compare the social force models
for human tracking in [4], [16] with that proposed in this
paper we consider their similarities, differences, advantages
and disadvantages. In all these approaches, interaction forces
between the targets are used to simulate the dynamic model of
pedestrians; distance and angle between the targets, change of
velocity and destination of individual targets are considered
in the models; and the models are designed to use domain
knowledge and thereby improve the performance of multiple
human tracking. The major differences are that in [4]] a sum
function is used to combine the components of the social
force model, but in [16] an exponential-term model is used
and, as in (21) in Section [, a summation form is used to
combine the model parameters. Our approach instead uses a
product function as described by (27) and the influence of
each model parameter is controlled by the variance terms in
the exponential models. Moreover, a threshold is introduced
to avoid calculating social forces when two targets are a large
distance apart. The model in [4] has the advantage that it is
simple, but the model in [16] is more flexible offering better
tracking accuracy. Equation (21) also allows the influence from
different model components to be more easily matched to
different environments. Our model offers further improvement
in accuracy in more complicated environments and these are
demonstrated in Table in the simulation section. Finally,
in terms of disadvantages, the approach in [4] has much less
flexibility for use in different environments than our approach
and that in [16].

B. Summary of Contributions

Our novel contributions include:

1) A new model is used to describe the social forces between
targets to calculate likelihood values in the prediction
stage of the particle PHD filter.

2) An MCMC resampling step is exploited to improve the
prediction part of the particle PHD filter.

3) An OCSVM classifier which is trained by features from
both colour and oriented gradient histograms to mitigate
measurement noise in background subtraction results,
thereby further reducing the probability of false alarms
and hence improving the performance of the PHD filter.

The remainder of the paper is structured as follows: In Sec-
tion II, the background preliminaries of the traditional particle
PHD filter and social force model are introduced, then the
complete proposed multiple human tracking system framework
is described in Section III, including the novel social force
model, the MCMC resampling step and the OCSVM classifier;
results and comparisons between the proposed approach and
baseline methods are presented in Section IV. Finally, Section
V provides a short conclusion and a discussion about the
possible directions for future work.

II. BACKGROUND AND PRELIMINARIES
A. Adapted Particle PHD Filter

In order to track a variable number of targets, the PHD
filter is employed because of its relatively low computational
complexity and good tracking performance. There are typically
two forms of implementation of PHD filtering. One is based on
numerical solutions [19] of the integrals in the prediction and
measurement updating step of the PHD filter. The other is the
Sequential Monte Carlo (SMC) approach based on the particle
PHD filter. Here we use the SMC-PHD method because it
performs well in the scenarios of non-Gaussian noise and non-
linear models; besides, it offers the flexibility to incorporate
an OCSVM classifier to improve the update of the PHD filter
in the presence of noisy measurements.

Assuming  the  set  {x7}7=M  includes  the
states of all the human targets, where xj° =

[P s DRy Vit 0 Bt wi]T € RE denotes  the  state
of the mth target at discrete time k, including the 2D position
(Pk's Pisy)» velocity (v, vi", ), height and width of targets
R, wi; where (-)T denotes the transpose operator and
subscripts z, y are the horizontal and vertical coordinates of
the target; M} is the number of targets at time k. Denote
the measurement set at time k as Zj, which includes zj for
each target. The basic principle of importance sampling in
the particle filter is to represent a PDF p(Xy|Zy) by a set of
random particles x),"* having associated weights w; """, where
Xp=A{x"",m=1,..,My,i=1,..., N}, which denotes all
the particles utilized to describe the states of all human targets
at time k, where N is the number of particles employed to
describe the state of a target; in this paper, the notation with
superscript (-)™ denotes a particle with index i employed to
describe the state of the target with index m. Given a set of
targets with states at time k — 1, {x}cnfl}nm;f/lk‘l, the set of
predicted particles and the associated weights from the state
model at time k is given by [10]

~m, m,i
{x,""w

mi m=M,,i=N 1)

m=1,i=1

The particles are independently drawn from importance
sampling density ¢(-) [10] to represent the prior distribution
for the next step p(Xy|Zi—1) [20], where < denotes the value



resulting from the estimation step. Then the weights for the
particles are calculated as [21]]

mi mii p(zk‘i;nyi)p(‘vmﬂxm’il)
wy, oS wk:—71 ~m,i (2)
(X" xp” 1azk)

and by using the suboptimal choice of the particle sampling
described in [22], the importance sampling density function
q(+) is chosen as

AR ) = PR ) ©)
so the weights for each particle are calculated as [22]]

wk O( wZ’L le(zk|x7n ’L) (4)

thus the posterior distribution for a single target p(x
be approximated as

7Zy) can

X' Z) ng (I — &) (5)
where 0(-) denotes the Dirac delta measure and the posterior
distribution for all targets p(Xjy|Zy) can be calculated as
p(x], \Zk)M" In this way, the traditional particle filter is
obtalned Wthh can be utilized to implement the PHD filter.
To formulate the PHD filter, the RFS framework is em-
ployed. Assuming the particles for the PHD filter are inde-
pendently drawn from the PDF p(Xj_1|Zj_1), the resulting
particles are employed to describe the states of M) targets
at time k, which are approximately distributed as p(Xy|Zx)
[L9]. In this case, the proposed filter is an approximation of the
relationship between the prediction and updating step of the
filter. Denoting D(-) as the PHD at a discrete time associated
with the multi-target posterior density, the prediction and
updating steps for the particle PHD filter can be described
as follows: 4
1. Prediction: Particles X, " are drawn from the predicted
particle set as (1) and fed into the prediction model of the
particle PHD filter, which is described as [23]]

D(Xy|Zk—-1) /¢ (XX ) D(X 1| Zr—1) 0% + Tr(Xi)

(6)

where Y, is the intensity function of the new target birth RFS,

$(x,"") is the analogue of the state transition probability in
the single target case which is calculated from

SR X) = e(X][Xn) + B Xr) @)

in which e(-) is the probability that the target still exists at time
k and B(-) is the intensity of the RFS for spawned targets.
When exploiting the PHD filter with the particle filter, the
PHD of states is represented by the weights of the particles,
which include the survived particles and new-born particles.
In the traditional particle PHD filter, the particles employed
to describe the new-born targets are selected randomly in the
scene, however, in human tracking, the new-born targets can
be obtained by employing a background subtraction step, as
proposed in Section to be described later. In this case,
assuming at time k, J;, new-born targets are obtained from the
background subtraction, the initial weights assigned to the new

born particles, which are employed to represent the new-born
targets, are calculated as

~b,i 1

Uk - Jyx N ®
where ¢ = 1, ..., Jp X N index the particles utilized to represent
the new-born targets, then the weights are fed into (6). Since
in a later step, the likelihood of all particles and the weights
are calculated in the same way, for convenience, the new-born
particles are added to the survived particles. With this method,
we can obtain a particle set, which includes particles for both
survived targets and new born targets

(&, Wy Jio M TN )

where ¢ is the index of the ¢-th particle. The weights obtained
from the prediction step are given as

PEROwE_, i=1,...,M_1 x N

Wi|k—1 =
Ty
Tox N i =Mr_1 xXN+1,..,

(M k—1+J k) x N
(10)
In this way, the predicted PHD D(Xy|Z;—1) at time k
for target states Xy is obtained based on the weights of the
particles.
2. Measurement update: The update step of the PHD filter
is defined as [23]:

D(Xk|Zy) = D(Xg|Zg—1) x
i wk,zk(i?c) an
) Y S )

where pps(-) is the probability of missed detection,
Vron (82) = (1 — par(R3))g (7], and ge(zx[%L) is the
single-target likelihood defining the probability that a mea-
surement zy, is generated by a target, sy, is the clutter intensity,
and (f,g) = [ f(z)g(z)dx [14].

In the partlcle PHD ﬁlter, the PHD D(-) is represented by
the weights of particles. Once the new set of observations is
available, we can substitute the approximation of D(Xy,|Zy—_1)
into (TI) and the weights of each particle are updated based
upon the receipt of the measurement Zy, as [23]

W z Xk i

i
Wy, = |pm(X vZkZez v + Crlz) Wy (12)
where
(My_1+Jx)x N
Cr(zr) = Z Uk, (X} ) W1 (13)

i=1
Then the number of targets is calculated by the sum of all
the weights for particles as follows [23]

(M1 +Ji)x N

My= Y @ (14)
i=1
My, = int(My,) (15)

where int(-) takes the integer nearest to Mj.
At each iteration k, Ji x N new particles are added to the
old My _1 x N particles for the new born targets. To limit the



growth of the number of particles, and to avoid the problem
of degeneracy, a resampling step is performed after the update
step. Firstly, the weights for the particles are normalized as

~1
Wi

M,
The algorithm for the adapted particle PHD filter with a
resampling step at each time k: 1s described as Algorithm 1
[24]), where the input {x} |}~ Mk=1 represents the survived
targets from the previous time k— 1 and the output {x}}7"=
denotes the tracking results in the form of the states of the
targets.

W}, = (16)

Algorithm 1 Adapted particle PHD filter
Input: {x}" ,}, —
Output: {x}"}"—] —hr, w1th Mj, targets.

1: Generate (1) from {x!" | }"=1"** and feed into l@

2: Select new-born particles as described in Section

3: Obtain (9) with weights as (I0).

4 fori=1: (Mg_1+ Jg) X N do

5

6

7

kal

Calculate g(zg|X%).
Update particle weights with (12).
. end for; % Achieve particle set {X%, ! }:—
with updated weight.
Calculate M, by (I4) and (T3).
9: Normalize W}, wit.
10: Initialize the cumulative probability ¢; = 0
11: Update ¢; = ¢;—1 + W, i = 2, ..., (M—1 + Jg) x N
12: Draw a starting point 1 ~ [0, (Mg x N)™1]
13: for j =1,..., M} x N do

Mk71+Jk)><N

®

4 gy =+ (J—1)/(Mg x N)

15: while ;> ¢; do

16: t=1+1

17: end while

18 xfﬁ =X

19 w], =N~!

20: end for

21: Clusterm%/[ {xi, N}l MiexN " calculate H and output
fxp e

The above method underpins the traditional particle PHD
filter for multiple human tracking. However, using this method,
the prediction of the states cannot be achieved accurately. We
therefore exploit a social force model to improve the prediction
of the states after step 3 and before step 4 of Algorithm 1
described in Section[[lI-B] and an OCSVM classifier is utilized
to improve the accuracy in step 5 as detailed in Section [[II-D2}

B. Social Force Model for Multiple Human Tracking

Recently, modeling the behavior of pedestrians has been an
important area of research mainly in evacuation dynamics and
traffic analysis. Helbing et al. [25] [26] proposed the social
force model for human tracking, where the human behavior,
destination and velocity information are utilized to model the
prediction for human targets.

Given a current set of target states {x7*}"=M* based on

m=1
the position, velocity and walking behaviour of each target

including its destination and avoiding collision with others
[16], it is assumed in a social force model that every human
target knows its current position and velocity, as well as its
destination. In addition, it has social force with other targets
if they are closer in distance than a pre-defined threshold.
It is also often assumed that each target will predict the
movement of other targets via a constant velocity model. Thus,
the position information py* = [p}",, pz’fy]T and the velocity
information vi* = [v}",, v",]", as the state of target xj
at time k, can be used to represent the social force between
the targets. The social force model for target m is calculated
between target m and all other targets. For example, the
social force between targets m and n (n # m) is calculated
based upon the following parameters: the distance and angular
displacement between m and n: dj*(n) and A7'(n); the
change of velocity compared with target m: U} and the cosine
between velocity and destination path of target m: W [4].
The distance d}’(n) can be calculated as [16]

di*(n) = Ipi" + tvi® — pi — tvie|| (17)
where || - || denotes the Euclidean norm and ¢ is the time
interval between frame k — 1 and k. Since we assume each
target intends to avoid collisions with other targets, the angular
displacement between the velocity of the two targets is also
considered as one of the important parameters for the social
force model, which can be represented as factor A7*(n) [4]
(Vk )"
v lllvel

Vi

A(n) =1+ (18)

We also assume that each target m walks towards a desti-

nation pJ* = [py,,ps",]", and in doing so tries to maintain a
desired speed u™ = [u?,u;”]T. These two components can

be described as two energy functions U]* and W;", which
denote the change of velocity and cosine between the current
velocity and destination path for target m respectively

u™)]|

(P —pp) vy
HPZ” e ||||Vk ||

Uit = Il(vi! = (19)

m

W =

(20)

where v} denotes the velocity of target m at time £.
After calculating the above parameters, the overall social
force for target m at time k can be written as [[L6]

Sp=Ydi'(n)

n#m

where A\; and \» € RT control the influence of the two
regularizers. After the social force is obtained for each target,
it can be incorporated into the prediction step of the particle
filter. As mentioned earlier, the PHD filter can be easily
influenced by the measurement noise, which may cause false
alarms and missed detections; to address this problem, we use
an OCSVM in the updating step to mitigate the noise effect. In
the next section, we present details for our proposed particle
PHD filter with a social force model-aided MCMC resampling
step in prediction and an OCSVM in the updating step.
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Fig. 1. Flowchart of the proposed system for multiple human tracking, where

the red parts in the flowchart represent our contributions in the proposed
system.

III. SOCIAL FORCE MODEL-AIDED MCMC PHD FILTER

A. Overview of the Proposed System

Fig. [T] gives an overview of our proposed algorithm. When
an input frame is obtained from the video sequence, two main
steps are performed based upon the fundamental Bayesian
filtering framework: firstly, a social force model is established
and an MCMC resampling step is performed which serves
as the prediction part; secondly, background subtraction is
employed in the PHD update step with an OCSVM classifier
to obtain the states of the human targets as the resulting output.

B. Exponential-term based Social Force Model

We exploit an exponential-term based energy function sim-
ilar to that in [16] to describe the social force model for the
likelihood calculation in the prediction stage of the MCMC-
PHD filter. When a particle X,"" is predicted to represent the
state of target m, x}*, at time k, its weight is predicted by the
social force model representing interactions with other existing
targets. Based upon , the distance between particle X,
from target m and the state xj} of target n can be used within
an energy term

‘ i (n)
Ej(n)=e i

(22)

where o4 controls the influence of the distance factor (denoted
by subscript d) on the social force model. So the larger the
distance between the predicted particle and the selected target,
the higher the energy from the distance aspect, and E;";(n)
becomes minimum if the linear trajectories collide with each
other. In this paper, obstacles in the scenes are also considered;
the states of which are considered as targets with velocity
vi® = [0,0]” to calculate the social force model for each
particle. Since the pedestrians will change their speed and
angular velocity in order to avoid collision with others, by
employing (I8)), the angular displacement factor for the social
force model can be represented as

EPn) = (A7 ()7

k.o (23)

where (3 controls the influence from the direction of the
velocity and the subscript ¢ is used to represent angular
displacement. Based on and (23), the influence of multiple
subjects can now be modeled as a weighted product. For
example where particle X, is assigned an energy with respect
to each target n (n # m) depending on its current distance
and angular displacement ¢ [16] of the form
B (n) = B (n) Y (n) 4)
Two energy functions which denote the change of velocity
and cosine between current velocity and destination path for
particle x, " respectively can also be represented:

B U;nz

Ek,U(m, i)=¢e 203 (25)
_wpt

Epw(m,i)=e *0 (26)

where o, and o p control the influence of changing the velocity
and destination on the social force of the target respectively.
To represent the state of target m, the overall interaction
energy for particle x, " is predicted as
Set =TI Er () Exy(m, i) B w (m,i)  27)
n#m

where the calculation of S}T’i is different from those in [4]
and [16] where a sum function instead of a product function
was used.

The above equations can be used as the social force weight
functions for establishing a posterior distribution within the
prediction stage of the particle PHD filter. By calculating
the social force from other targets, the estimated weight for
prediction s, can be obtained by normalizing S;"". After
calculating the social force, the particle set with their social
force model results is obtained, which is used to derive
the likelihood for particles in the MCMC resampling step
described in Section [[II-C] to achieve more accurate prediction
for particles.

C. Social Force Model based MCMC Resampling

In the traditional particle filter, an importance function is
used in the sample selection step [27] [22l], however, the
MCMC based particle filter replaces the importance sampling
step by building a Markov chain which exploits the posterior
distribution [22], and thereby improves diversity among parti-
cles. In this paper, the MCMC resampling step is employed to
improve the accuracy of the prior distribution, where the social
force model is utilized to replace the likelihood function in the
traditional MCMC particle filter [28]].

As described in [18]], during the MCMC resampling, a
particle X} is propagated to a new state X, " based on
the following model

(28)



where q denotes a zero-mean Gaussian noise vector. From the
Metropolis-Hastings acceptance probability [22]], we have the
acceptance ratio calculated as

N {1 Pl R R R alRE R L*)}

Pl 3P g R %)
29)

. . ~myiy L.
Since in our work, ¢(:|X; ") is symmetric in its arguments,
that is:

MLtk | =myiy
X

q(xy,
we can calculate the acceptance ratio « as:
) ( |X7" 7*)p(xm 7,* |X7n )
a:mm{L i k . 3D
p(zk X}, )p(xk |Xk71)

In this work, the likelihoods of particle state p(z|-) are
replaced by the results obtained from the social force model,
thus

( m, L|~ml*)

(30)

mZ* ml*
. 1, Sp p( ka 1)
o =min —i .
Sk p(Xk 1)

The state to be preserved is determined by drawing a point j
from a uniform distribution. If j < « then the new state x; """
is retained, otherwise it is rejected. In this way, the social force
model is fed into the MCMC resampling step for achieving
more robust prediction.

Fig. [2] shows the steps of the social force model aided
MCMC resampling step with an example target m.

(32)

=i 0 i, i
(X Wy i 1

_r —0

\
Social force model based - ~. N
MCMC resampling >

Fig. 2. The basic operation of the proposed social force model-aided MCMC
based particle filter.

As shown in Fig. l a particle X, predicted from the state
model is chosen as the initial value of the Markov chain. A
new state X, s propagated as (28), then the acceptance ratio
« [28] is calculated as in (32), where the likelihood for the
particles p(zy|-) is obtained from the exponential term social
force model si, described in Section After resampling
the particles, which are obtained from the state model, a more
robust prior distribution is achieved. The example pseudocode
of this MCMC particle filter for target m is then summarised
as Algorithm 2, where the inputs are the predicted particles for
target m and the output is the posterior distribution from the
prediction stage, and B denotes the number of burn-in period
particles.

Algorithm 2 Social force model based MCMC resampling
step (SFM-MCMC)

Input: Predicted particles for target m from state model
~m l
Y
Output Partlcles with predicted weights from the social force
model aided MCMC resampling {X;"" wz‘lkz =N
1: Initialize the Markov chain by the predicted particles from
the state transition function using the states of target at
k—1.
2: for i = I:N + B do
3 Propagate X" from ”,? o w1th 28) .
4 Calculate s} and s}"" for %" and %}""* with .
5 Compute o with (32).
6: Draw a point j from a uniform distribution.
7: if 7 < o then
8 =m, ’L*
9
10

retain the new state: xk =X’
else reject the new state.
end if
11: end for
12: Discard the first B particles of the iterations.

We note that the acceptance of a proposed state depends on
the likelihood found by calculating the social force from the
other targets. The predicted weight for particles ﬁ)]i‘ 41 can be
replaced by the results obtained from the social force model,

@iy = S (33)

In this case, after resampling all the predicted particles, we can
obtain a set of predicted particles with estimated weights from
the social force model {X, w,g‘kfl};jM’c“WN. In the next
section, we will present the measurement we use for updating.

D. Robust Measurement Model

Besides the state model, another important step is the
measurement model for particle updating, in this work, two
main steps are employed to obtain a robust measurement
model: background subtraction and a one class support vector
machine.

1) Background Subtraction: In multiple human tracking,
the measurement and the new-born targets are difficult to
select from the video sequence. In the prediction part, instead
of sampling particles for a new-born target, we employed a
background subtraction step to facilitate the sampling step.
The background subtraction results can also be utilized as
the random measurement set for the proposed particle PHD
filter [24]. In this paper, we used the codebook method [29]]
[30] for background subtraction which is robust to capture
structural background motion over a long period of time
under limited memory. In this method, samples at each pixel
are clustered into the set of codewords based on a color
distortion metric together with brightness bounds. Not all
pixels are represented with the same number of codewords.
The background is encoded on a pixel-by-pixel basis. Back-
ground/foreground detection involves testing the difference of
the current image from the background model with respect to
color and brightness differences. If an incoming pixel satisfies
two conditions, it is classified as background: first, the color



distortion to a codeword is less than the detection threshold;
second, its brightness lies within the brightness range of
that codeword. Otherwise, it is classified as foreground [30].
Some background subtraction results are shown in Section
The results can be used to select the new-born targets
and build up an RFS for the measurement set [31]. The
center of each block ¢ = [cg 4, k)7 which contains the
localization information, can be employed as one part of the
measurement [24], so the likelihood for each particle based
upon the foreground position g,(ck|X%) can be calculated as

_ eL—e) (Pl —ck)

gb(ck|5(§€) =e 7% (34)

which shows the distance between the state of the particles and
the foreground information, where p,C = [pk - pk y] denotes
the position of the targets taken from the partlcle X} and oR
is the standard deviation of the measurement model in the
Bayesian filtering model.

However, the raw background subtraction results generally
contain many artifacts, which include small ‘salt and pepper’
terms and large noise patches caused by the problem of poor
illumination and similar colour between the foreground and
background. The noise patches may be regarded as a new
born target in the prediction step of the PHD filter and cause
the occurrence of false alarms [32]. To address this issue, in
this paper, we propose to use an OCSVM classifier [33] to
distinguish the human targets from noise as described next.

2) One Class Support Vector Machine: The basic idea is
that given a data set drawn from an underlying probability
distribution p, the OCSVM estimates a function f to describe
its ‘support region’ (where a sample of p most likely comes
from), where the corresponding values of the function f are
larger than a particular threshold value [34].

To design the classifier, based on a training dataset, the
following quadratic optimisation problem needs to be solved:

min 7Hw||2 —|— — ZC:

W,S,p0

subject to (w T@(xk))zp— 5 &>0 (35)

where w is the normal vector, v € (0,1], p is from the
Lagrangian model of the SVM, which is set to be zero in
this work and the nonzero slack variables ¢ = [¢1, ..., <] are
introduced to allow for the possibility of outliers (the data
points which are not drawn from the supporting region) and
®() is a nonlinear kernel function which maps the original
data into a different space for better separation. For a test
particle X;, the decision function for estimating whether it
comes from the determined distribution is:

FE) = (W (X)) —p

In the application of multiple human tracking, the features
from both colour and oriented gradient [35] of multiple human
regions are employed for training the OCSVM classifier, which
can be used to estimate the likelihood function value for each
particle. Given a particle X} at time instance k, the features

from both the color and oriented gradient histogram are ex-
tracted based upon the position, width and height information

(36)

of X{ and the corresponding likelihood function, ¥ (X%) can
be estimated as:

Dy (XL) = e(= /) (37)
where w is a constant we set for calculating the weights
for the particles, thereby controlling the influence of the sub-
likelihood from the OCSVM. Its value is chosen empirically
in our work. In this way, the likelihood for each particle is
obtained and these weights can then be taken as the input to
the updating step of the PHD filter.

E. Particle PHD Updating and Resampling

After obtaining the particles from the MCMC resampling
step, we can achieve a particle set with their estimated weights
described by their social force as described in Section [[II-C
and the likelihood ¢(zj|X%) is calculated based upon the
results from both background subtraction and the OCSVM
(38)

9(zk|X},) = Ok (X)) gs(crlX})

By feeding (38) into (I2)), the weights for particles are updated.
The number of human targets and the particles are resampled
as in Algrorithm 1 described in Section

F. Summary of the Proposed System

A summary of the proposed system is given in Algorithm
3, which we refer to as SFM-MCMC-OCSVM-PHD.

Algorithm 3 Social force model-aided MCMC-OCSVM par-
ticle PHD filter (SFM-MCMC-OCSVM-PHD)
Input: Video sequence with ¢ frames.
Output {x* M | and M.
: OCSVM classifier training.
2: Initialize targets states in the first frame {x}
3: for k = 2:/ do
4: Background subtraction to extract the measurement set
Z;, for targets and the estimated positions of the new-
born targets.
5: Predict particles for both survived targets and new born
targets separately as described in Algorithm 1.
6: Calculate social force si for each particle.
7: SFM-MCMC resampling with Algorithm 2.
8
9

}m My

Calculate g(zx|X},) by ( . 37) and (3§ .

: Update the PHD welghts with (12] .
10: Calculate Mj, by (14).

11: Resampling of particles with the method described in
Algorithm 1.

12: Output tracking results at time k, {x} M’;l and Mj,.

13: end for

IV. SIMULATION EXPERIMENTS

In this section, simulations are provided to examine the
performance of our system and to compare with results from
other recent methods.



A. Dataset Selection and Parameter Setup

In order to evaluate the performance of the proposed sys-
tem for multiple human tracking, particularly to handle the
situation of varying number of targets, close interactions and
occlusions, we firstly chose sequences from three different
publicly available video datasets: one from the PETS2009
dataset [36] where 3-6 human targets are walking in an outdoor
campus environment, one sequence from the CAVIAR dataset
[37] where 1-5 human targets are walking in a shopping mall
environment and one from the TUD dataset [38] where 5-
7 human targets are walking in an outdoor-shopping mall
environment. In order to make more reliable evaluation, 17
more sequences from the CAVIAR dataset are also employed.
All sequences are recorded at a resolution of 320 x 240
pixels at 25 frames/sec and each sequence contains around
200 frames, including human targets appearing, disappearing
and occlusion in the scenario, selected example frames are
given in Fig. 100 particles are employed for each target
and for the MCMC step, 20 burn-in particles are used for
each target in the MCMC resampling step. The set up of the
remaining parameters is discussed in the following sections.
The dynamic and measurement models which were used to
predict and update the particles are described as

Xy =Fxp_1+wi 39

z;, = Hx;, + v 40)

where the state and measurement transformation matrices F
and H are given as

10 At 0 0 0 1 0\"
01 0 At 0 0 0 1
00 1 0 00 0 0
F=t0o0 0 1 00| ™ |0 o S
00 0 0 1 0 0 0
00 0 0 01 0 0

where At is the time interval between frame k and k + 1
which is set as 1 in the simulations, the zero-mean noise
vector wy, for prediction in the state model has covariance
structure cov{wy,} = Diag{25,25,16,16,4,4} and for vy
cov{vy} = Diag{25,25}. The missed detection probability
py = 0.01, the survival probability e = 0.99, the new
born intensity T = 0.1 and clutter intensity « = 0.01.
The parameters for background subtraction, exponential-term
based social force model and OCSVM classifier are selected
empirically, which are shown as follows:

1) Parameters for Background Subtraction: For the back-
ground subtraction method described in Section the
parameters that need to be set include the shadow bound «y,
the highlight bound [, and the colour detection threshold
ep which for each sequence are given as Table [l which
were found empirically to yield best performance. For other
parameters, we used the default values as those set in [30], for
example, the colour sampling bandwidth is set to be 20 for all
these three datasets. Due to space limitation, the set-up for the
remaining parameters is omitted but can be found from [30].

TABLE I
BACKGROUND SUBTRACTION PARAMETERS FOR EACH SEQUENCE
ap B Ep
CAVIAR dataset 0.5 2 30
PETS 2009 0.7 1.5 20
TUD dataset 0.7 1.7 10

2) Parameters for Exponential-Term based Social Force
Model: The exponential-term based social force model intro-
duced in Section has many parameters, such as o4, 3,
0y, and o p, which control the influence from distance, angular
displacement, change of velocity and destination respectively.
In this paper, the parameters are selected based on pilot tests,
we use a sequence from PETS2009 to perform simulations
with different values of the above four parameters and use the
mean Euclidean error for each target position as the evaluation
measure to select the best parameter set, which is shown in
Table @ From the experiment and comparison, we found when

TABLE I
EXPERIMENTAL VALUES FOR PARAMETERS USED IN SOCIAL FORCE
MODEL

Mean of
Euclidean error
5.15
5.11
5.33
5.12
5.15
5.14
5.33
5.53
5.21
5.41
5.12
5.05
5.22
5.09
5.18
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the parameters are chosen as: o4 = 4, § = 4, 0, = 4,
and op = 2, the exponential-term based social force model
performs the best, therefore these settings are adopted for
simulations in subsequent sections.

3) Parameters for OCSVM-Classifier: In our work, to ob-
tain the OCSVM classifier, the training dataset S = [sq, ..., S|
is employed, where each training data s is a 593 x 1 vector,
containing human features extracted from the training frame,
including 512 parameters from the colour histogram and 81
from oriented gradient histogram. The OCSVM classifier is
trained by 82 sets of features extracted from different human
targets. The influence of the OCSVM is controlled by param-
eter w in , which is also chosen based on experiments.
The OSPA results with respect to the different values of w are
shown as Table From the comparison, o = 75 is found to
perform the best, hence is employed in the later simulations.

TABLE III
PARAMETERS VALUES USED IN OCSVM CLASSIFIER AND SYSTEM
EVALUATION
w value 1 25 50 75 100
OSPA value 4.49 4.77 4.86 4.25 4.77




B. Performance Metrics

Several measures are employed to examine the performance
of the proposed particle PHD filter and compare the results
from the related algorithms, including the Euclidean error
in each frame, the optimal subpattern assignment (OSPA)
[40][41], and the multiple object tracking precision (MOTP)
[42]]. For a sequence with ¢ frames, assuming at time k, the
tracking system gives the tracking results Oy, = {o},...,0}}
with n targets while Y = {y},...,y?'} is the ground truth
information with m targets. These measures are defined be-
low. In addition, the computational complexity has also been
considered in our evaluations.

1) Mean and Standard Deviation of Euclidean Error on
Each Frame: The localization error for each target in terms
of mean and variance can be used as a performance metric to
evaluate the accuracy and stability of our proposed tracking
system. The mean of Eucidean errors (MEE) at frame number
k is denoted by

I~y s

MFEE, = — =Y
k=7 Z ok — ¥kl (42)

i=1
and its standard deviation (SD) is given by
1N, . ,
SDy = | = (loj — il - MEE:)?  (43)
i=1

2) OSPA: In multiple human tracking, the accuracy not
only depends on the error between the estimated position and
the ground truth information of the targets in the scenario, but
also the missed detections and false alarms. Dominic et al.
proposed a metric to evaluate the tracking system by error from
both distance and the number of targets [39] which is used
by Ristic et al. [40] for evaluating multiple human tracking
algorithms. As described in [39]], given the set of tracking
results Oy, and the ground truth information Yy, the distance
between Oy and Y}, df (o}, y7*) := min(c, d(o}, yi*)) with
cut off at ¢ > 0 and 1 < p < o0, is calculated as [40]

=

1 = i (e
di. »(Ok, Yi) = <n (mﬁl d° (0}, y3 V)P + ¢ (n m)))
™i=1
(44)

for m < n, and df ,(0,Y) = d;(Y,0) for m > n. The
function dj, is named as the OSPA metric of order p with
cut-off c. In this paper, we use ¢ = 20 and p = 2 in
our evaluations. Based on the OSPA metric, a new evalua-
tion measure for multiple target tracking has been recently
proposed, named optimal subpattern assignment for multiple
target tracking (OSPAMT) [41]], however, in this paper OSPA
and the following MOTP measure, which is also employed in
[43], are sufficient for comparative evaluation.

3) MOTP: The MOTP [42] is the total error in the esti-
mated position for matched object-hypotheses pairs over all
frames, averaged by the total number of matches made. It

shows the ability of the tracker to estimate the precise object
positions, which can be calculated as
i=n,k=~{

errory,
i=1k=

I
P

-

MOTP, = (45)

where errorj, denotes the Euclidean error for target 7 at time
k and ¢y is the total number of matched targets at time k.

C. Evaluation of Tracking Results

In this section, our proposed exponential-term based SFM-
MCMC is compared with the traditional SFM proposed in
[4] and the S-SFM proposed by Pellegrini et al. in [16]. The
proposed SFM-MCMC-OVSCM-PHD filter is compared with
the traditional particle PHD filter in [24]. First, the comparison
between the particle PHD filter and SFM-MCMC-PHD filter is
made, followed by the comparison between the SFM-MCMC-
PHD and SFM-MCMCOCSVM-PHD filters.

1) Background Subtraction Results: In Fig. [3] we show
some selected frames and results from the background subtrac-
tion for three datasets we employed, from which, we can find
most of the targets appearing in the scenario, however, there is
still much noise from the environment, which may cause false
alarms and hence influence the performance. What’s more,
sometimes it may fail to detect the targets because of occlusion
and the poor lightning. In this case, the OCSVM classifier is
employed to aid calculation for each particle, in this way, the
noise is mitigated, in the later section, the improvement made
by employing OCSVM will be shown.

(a) (b) ©

Fig. 3. Selected frames and examples for background subtraction results from
the three selected sequences from three different datasets, i.e. (a) is from the
‘EnterExitCrossingPathscor’ sequence from the CAVIAR dataset, (b) is from
the ‘PETS09_View001_S2_L1’ sequence from the PETS2009 dataset and (c)
is from ‘TUD_Stadtmitte’ sequence from the TUD dataset, where we can find
the human target boundaries are extracted successfully, but there is still much
environmental noise which may cause missed detections and false alarms. In
order to mitigate such noise, an OCSVM classifier will be employed based
upon the features from both color and oriented gradient histograms of human
targets.

2) Social Force Model Results: By employing the parame-
ters in Table [lIl and three example sequences selected from
different datasets, our proposed social force model is first
compared with the traditional SFM [4] and the S-SFM [16].
Fig. f] shows the comparison of Eulidean tracking error in each
frame between the above methods for the three sequences.
The MEE over all the frames and their SD are also compared
in Table From Table and Fig. ] we can see that
the proposed social force model consistently attains better
performance for the three sequences in terms of both the
MEE and SD, as compared with the two baseline social

force models. The improvement of the proposed social force



TABLE IV
COMPARISON OF THE MEAN OF THE EUCLIDEAN TRACKING ERRORS OVER THE FRAMES AND THEIR STANDARD DEVIATION BY THREE SOCIAL FORCE MODELS FOR THE
‘ENTEREXITCROSSINGPATHS 1COR’ SEQUENCE FROM THE CAVIAR DATASET, THE ‘PETSO9_VIEw001_SZ_L1/ SEQUENCE FROM THE PETS2009 DATASET AND THE
‘TUD_STADTMITTE’ SEQUENCE FROM THE TUD DATASET.

CAVIAR PETS2009 TUD
SEM [4] | S-SEM [16] SFM-MCMC SFM [4] | S-SEM [16] SFM-MCMC SFM [4] | S-SEM [16] SFM-MCMC
MEE (pixel) 31.81 14.28 13.22 68.25 40.76 39.41 188.70 89.60 71.0
SD (pixel) 39.55 9.99 8.26 17.20 14.95 13.29 85.12 41.06 33.64

model comes from the exponential-term model employed to
describe the parameters such as the distance, angle, change
of velocity, and the destination used in the model, with their
influence controlled by the variance terms in the exponential-
term model. In addition, in the proposed social force model,
we have employed a threshold to control the modelling of
the social forces between two targets, by excluding those
that are far apart from each other in terms of distance (i.e.
greater than the pre-defined threshold). This essentially avoids
the influence from unnecessary targets, hence improving the
tracking accuracy when more targets are present in the en-
vironment. After the SFM-MCMC resampling, the predicted
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(c) Social force model comparison for the TUD dataset

Fig. 4. Comparison in terms of Euclidean tracking error of the three social
force models when employed by the particle PHD filter for multiple human
tracking. Subfigure (a) is the comparison for the ‘EnterExitCrossingPaths1cor’
sequence from the CAVIAR dataset, (b) is for the ‘PETS09_View001_S2_L1’
sequence from the PETS2009 dataset and (c) is for the ‘TUD_Stadtmitte’
sequence from the TUD datasett. The blue line denotes the traditional SFM
[4], the green line denotes S-SFM [16] and the red line denotes the SFM-
MCMC algorithm proposed in our paper.

weights for particles are updated. Fig. [5] shows an example
distribution of predicted particle weights, for frame 11 of

the ‘PETS09_View001_S2_L1’ sequence from the PETS2009
dataset.

From the figure we can find that the particles with higher

social force are given higher weights than others, the redundant
peaks in the figure are because of the noise patches which
will be mitigated in the updating step. Compared with the
traditional particle PHD filter, where the particles are given
the same weights in the prediction stage, the weights in our
SFM-MCMC-PHD filter are determined based on the SFM
which leads to more accurate prediction.
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|-,

120
100
20 250 60 o0 y

x10°
2

Predicted weights

140

=)
So

(@)

Predicted particle weights from SFM-MCMC resampling

ol
@

14
3

Predicted weights
o o
N >

120

=
So

110
150 200
X

250 100

(b)
Fig. 5. Comparison between the two distributions of the predicted particle
weights, where (a) is from the traditional particle PHD filter and (b) is from
the SFM-MCMC-PHD filter; for frame 11 of the ‘PETS09_View001_S2_L.1/
sequence from the PETS2009 dataset, where the ground truth position of the
targets are (142,102), (233,115) and (200,95).

3) OSPA Evaluation: In order to evaluate our proposed
system in terms of both localization and cardinality, the OSPA
metric has also been employed. In this paper, we use ¢ = 20
and p = 2. Comparisons for the three example sequences as
in the previous experiment are shown in Fig. [6| where the
black line denotes the OSPA value from the traditional PHD
filter, the blue line corresponds to our proposed SFM-MCMC-
PHD particle PHD filter and the red line denotes our proposed
SFM-MCMC-OCSVM-PHD algorithm.

To perform more reliable evaluation, the average OSPA
values for all the 20 sequences based upon different methods
have been obtained and are shown in Table [Vl From the

TABLE V
COMPARISON OF OSPA OVER 20 SEQUENCES FOR PROPOSED PHD
FILTERS
PHD SFM- OCSVM- SFM-
[24] MCMC- PHD MCMC-
PHD OCSVM-
PHD
OSPA (pixel) 21.93 13.54 12.42 8.83
Improvement - 38.25% 43.36% 59.73%

above comparison, we can observe that the improvement of the
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Fig. 6. Performance evaluation with OSPA measure for our proposed social
force model aided MCMC particle PHD filter and the traditional particle
PHD filter for multiple human tracking. The performance is examined with
the ‘EnterExitCrossingPathslcor’ sequence from the CAVIAR dataset, the
‘PETS09_View001_S2_L1’ sequence from the PETS2009 dataset and the
‘TUD_Stadtmitte’ sequence from the TUD dataset. The black line in the figure
denotes the OSPA value from the traditional PHD particle PHD filter; the blue
line shows the result by adding a social force model aided MCMC resampling
step in the prediction stage of the particle PHD filter; and the red line denotes
the OSPA value from our proposed SFM-MCMC-OCSVM-PHD filter.

proposed system comes from both the exponential-term based
SFM-MCMC resampling step and the OCSVM likelihood
calculation step. The background subtraction is an integrated
component as in [25] which is used to determine the measure-
ment foreground pixels. Without background subtraction, none
of the methods under study would operate, so the individual
improvement from background subtraction is not provided in
this paper. By using the OCSVM, the average OSPA value for
the 20 sequences is further reduced by 4.71 pixels since the
OCSVM can distinguish the measurement of the human targets
from the noise in the environment. To examine the difference
in OSPA results between the traditional particle PHD filter
and our proposed SFM-MCMC-OCSVM-PHD filter, one-way
ANOVA based F'-test [44]] is performed. We obtained F' =
8.74, p-value = 0.0051 and the degree of freedom (1,42), where
the F' value is the ratio of the between-group variability to the
within-group variability and the p-value is the probability of a
more extreme result than the value we actually achieved when
the null hypothesis is true. Using the degree of freedom value
and significant value 0.05, the critical value F,; is found to
be 4.07 from the F'-distribution table given in [44]. According
to the test, the results are accepted as statistically significant
if F > F,.;: and the p-value is less than the significant

value. From the test results, we can confirm the difference in
OSPA results between our proposed SFM-MCMC-OCSVM-
PHD and traditional PHD filter is statistically significant.

4) MOTP Evaluation: Besides the Euclidean error in each
frame, standard deviation and OSPA are used for evaluation,
MOTP is also employed to evaluate the proposed tracking
system. The MOTP results for the three selected sequences
from different datasets are shown in Table [VIl From the MOTP

TABLE VI
MOTP COMPARISON FOR THREE SEQUENCES USING THE TRADITIONAL
AND PROPOSED PARTICLE PHD FILTERS

CAVIAR PETS2009 TUD

PHD [24] 12.49 8.23 16.42
SFM-MCMC-PHD 6.35 6.56 13.86
OCSVM-PHD 5.73 6.15 14.21
SFM-MCMC-OCSVM-PHD 3.64 4.84 12.07

comparison, it can be observed clearly that our proposed
method can greatly improve the tracking accuracy over the tra-
ditional PHD filter. For the CAVIAR dataset, the MOTP value
is reduced by 6.14 pixels by employing the SFM-MCMC-PHD
filter and then further reduced by 2.71 by employing the SFM-
MCMC-OCSVM-PHD filter. For the PETS2009 dataset, the
MOTP value is reduced by 1.67 and 2.92 pixels respectively.
For the TUD dataset, the MOTP value is reduced by 2.56 and
a further 1.79 pixels respectively. The average MOTP value
over all the 20 sequences is reduced from 10.70 to 8.63 pixels
by employing the SFM-MCMC-PHD filter and a further 6.31
pixels by SFM-MCMC-OCSVM-PHD filter. The reduction of
MOTP is mainly due to the utilization of the social force
model aided MCMC step for resampling in the prediction
stage, so that a more accurate posterior distribution is achieved.
Moreover, the OCSVM classifier in the updating step helps
to mitigate the measurement noise from the environment so
that the problems of missed detections and false alarms are
mitigated. By performing a one way ANOVA based F' test
for our proposed SFM-MCMC-OCSVM-PHD filter and the
traditional particle PHD filter, we obtained F' = 6.86, p-value
= 0.0131 and the degree of freedom (1,34). By setting the
significant value to be 0.05, the critical value F,;; is found to
be 4.13 from the F-distribution table given in [44]. From the
test results, we can observe the difference in MOTP results
between our proposed SFM-MCMC-OCSVM-PHD and the
traditional PHD filter is statistically significant.

5) Computational Complexity: In this section, the compu-
tational complexity is also examined through the run-time.
Since we are using the particle PHD filter in this system, the
number of particles plays an important role in affecting the
computational complexity. In order to select the most suitable
number of particles, as an example, the OSPA measure and
run-time as a function of the number of particles are calculated
by employing a sequence from the PETS2009 dataset, the
results of which are shown in Table It can be observed
that the increase in particle number has a bigger impact on the
computational cost as compared with that on the OSPA results.
Similar results have been observed for other sequences. In our
simulations, the number of particles is selected empirically
based on these experiments. We found that the number of



TABLE VII
COMPARISON OF OSPA RELATED TO THE NUMBER OF
PARTICLES
Number of particles 50 100 500 1000
Run-time /frame 1.44s 1.84s 4.85s 5.10s
OSPA (pixel) 22.52 21.32 21.06 21.03

particles chosen as 100 tends to provide a good compromise
between run time and tracking performance.

The computational complexity of the proposed tracking
system has also been considered. Compared with RFS, the
particle PHD filter has a smaller computational cost since
only the first moment of the posterior is employed instead
of the posterior itself. However, the main growth of the
time complexity is from the background subtraction and the
OCSVM part of the proposed tracking system. If the times
needed for determining the brightness and colour conditions
are denoted as T’z and T respectively, and the update time
is Ty, the total processing time for a single image pixel can
be expressed as

T =NgTp + Nc(TB + Tc) + NU(TB + T + TU) (46)

where Np is the number of codewords rejected after testing the
brightness condition, N¢ is the number of codewords rejected
after testing both the brightness and colour conditions and
Ny is 1 if a matching codeword is found and O otherwise.
Furthermore, the computational complexity of the OCSVM
classifier is O(m?) where m is the number of the training
patterns. As compared with the traditional PHD filter [24],
the time complexity of the proposed algorithm becomes higher
due to the introduction of the SFM and OCSVM steps. The
average run-time (calculated using 20 video sequences from
the three different datasets) is shown in Table This run-
time comparison is made by implementing the algorithms with
MATLAB (version R2015a) with a 3.4GHz I5 processor.

TABLE VIII
RUN-TIME COMPARISONS FOR PROPOSED PHD FILTERS
PHD [24] SFM-MCMC- SFM-MCMC-
PHD OCSVM-PHD
Run-time /frame 1.39s 1.43s 1.95s

From this table, we can find that the run time for the
traditional particle PHD filter is 1.39s/frame, and the overhead
for the social force model aided MCMC resampling step is
0.04s/frame and for the one class SVM is 0.52s/frame, the
run-time increases 2.9% by employing the social force based
MCMC resampling step, and grows 36% by employing the
OCSVM. However, the tracking accuracy has been improved
by 38.25% and 34.9% by employing them respectively. From
the comparison, we find that the increase of time complexity
is mainly due to the use of the OCSVM classifier when
calculating the features from the colour and oriented gradient
histograms for each particle.

6) Comparison with State-of-the-art Methods: We also
compared our work with two recent multiple human tracking
methods proposed in [45] and [46]. In [45]], online learning
of non-linear motion patterns and robust appearance models
are used for multiple target tracking and in [46] a background

subtraction based multi-Bernoulli filtering method is proposed
for visual tracking. The mean of the OSPA measure is em-
ployed for evaluation, which is shown in Table All the
three methods are evaluated on the 20 sequences from the
CAVIAR, PETS2009 and TUD datasets.

TABLE IX
OSPA COMPARISON OF THREE RECENT METHODS AND THE PROPOSED
METHOD OVER 20 SEQUENCES

PHD Method in Method in Proposed
[24] [46] [45] method
OSPA (pixels) 21.93 15.39 12.95 8.83

From the comparison in the table we observe that the multi-
Bernoulli filter proposed in [46] performs better than the
particle PHD filter proposed in [24]. However, in [46], a kernel
based background subtraction method was employed instead
of the codebook method which we employed in our system.
As such, the quality of the measurement is generally worse
than that in our proposed system. Moreover, the social force
model based MCMC resampling step provides more accurate
predictions of target states. The appearance modelling based
method in [45]], however, does not address the challenge of
varying number of targets hence it generates an OSPA value
that is higher than our proposed method.

7) Examples of Tracking Failures: Nevertheless, the track-
ing results of the proposed system can be degraded by the
following factors: increase in the number of targets and varia-
tions in lighting and colour of the targets which will influence
the results from background subtraction. For example, for the
sequence Browsel from the CAVIAR dataset, the lighting in
the environment is varying, and there is a large amount of
noise in the results obtained from the background subtraction,
hence it fails to provide accurate foreground measurement,
which also leads to possible failure of the tracking system.
What is more, when human targets are very crowded in the
visual scene, the social force model can be influenced by false
alarms.

(b)

Fig. 7. Selected examples of failure cases of the proposed tracking system.
In (a) the tracking results are influenced by the failure of detection from
background subtraction; and (b) the brightness of the environment causes the
failure of the background subtraction.

Fig. [/| shows selected failure cases of the proposed tracking
system. We would like to note that these tracking scenarios



pose common challenges to many existing methods such as
[471148][49][50] as well as the baseline methods [24] [46]. The
codebook method for background subtraction is adopted in our
study as it is the preference in other works in this field [17]
[30] but there may be other approaches to further improve the
detection results and hence the quality of the measurement set.
However, a detailed comparison of such techniques is outside
of the scope of this work.

The proposed method gives advantages over the baselines
in certain scenarios especially with group target movements,
varying number of targets, and large amount of environmen-
tal noise. However, to address the aforementioned common
challenges, more powerful techniques in appearance modeling
[51][52][53], background subtraction and occlusion handling
[2] are required which will be the focus of our future research.

V. CONCLUSION

In this paper, we have presented a novel method based
upon the particle PHD filter for multiple human tracking,
where in the prediction step a novel social force model
was used in an MCMC chain for resampling the particles;
the posterior from the MCMC resampling was used as the
posterior distribution in the particle updating step; in the
particle likelihood calculation step, an OCSVM classifier was
used to mitigate the adverse impact of measurement noise. The
simulations showed improvement of our proposed method in
terms of both localization and cardinality. In our future work,
we will explore alternative classifiers, e.g. an online one-class
classifier, for dealing with the situation where only a limited
length of video sequence is available. In addition, sparsity in
either the observed feature space or the parameter space of
the tracking model could be exploited to further reduce the
computational complexity of the proposed method.
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