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SUMMARY

The problem of calibrating Synthetic Aperture Radar (SAR) data
for 3D image formation will be investigated here. A source of errors
in modern radar systems is inaccurate range estimations, during the
data collection. This is caused by two ambiguities in the platform
location and the scene topography map. Such range estimation errors
induce some asynchronization in the dechirping process, i.e. a shift in
the range direction. When such an error is small, the final image will
be blurred and possibly compensated using conventional autofocus
techniques. In multipass SAR image formation, this error between
the passes is large and we need a different machinery to correct it.

We formulate the problem of SAR pulse compression with the
range estimation error, in a general setting. The range estimation
error appears as some structured phase error in the phase history.
We then introduce a new phase recovery technique for compensating
the phase error. Some simulation results show the capabilities of the
introduced method.

EXTENDED ABSTRACT

The main principle of SAR systems is to generate a synthetic
aperture, using a moving platform and collect the pulse information
from different spacial locations. The accurate knowledge of location
of the platform and the scene topography is the necessary part of a
high resolution SAR image formation. However, none of these two
information are precisely known for various reasons, including an
inaccuracy of the navigation systems and the imaging of an unknown
area. The conventional approach to calibrate the location information
is to use some reference targets with the ground truth information
about their locations. While such techniques are generally successful,
such reference targets may not exist in the real experiments or the
precise location is unknown. As a result, many digital focusing
techniques, i.e. called the autofocus techniques, have been proposed,
including Phase Gradient Algorithm (PGA) [1], map drift [2], [3]
and sparsity based autofocus [4], [5] techniques. In these techniques,
we often assume a small aperture, a far-field setting and/or small
errors [6]. As a result, such techniques have limitations in the wide-
angle, with a large error and possibly digitally chipped SAR image
[7]. Particularly, any autofocus techniques, based on the single phase
error per pulse model, i.e. the most frequent approach for single pass
SAR autofocus, cannot correctly compensate the range error, when
it is larger than λ/16, where λ is the wavelenght [6], [8].

3D-SAR imaging needs a new set of autofocus techniques which
incorporates the multipass nature of the trials [9], to compensate
relatively larger range errors [7]. The most intuitive approach is
to extend the prominent point autofocus techniques to a three-
dimensional setting [10]. This approach needs to have a single
dominant bright target in the scene to aligned the pulses with respect
to the range compressed peaks. An extension of such a technique is
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to use multiple Quad-Trihedral (QT) corner reflectors to correct the
location of the platform [11]. Another approach is to use a parametric
frequency domain linear filter and adaptively find the parameters [8],
[12].

In this work, we reformulate the effect of the range estimation
error, and show that such an error appears as a structured phase error
in the phase history. We then tackle this problem by formulating
it as a phase retrieval problem. Inspired by the Gerchberg-Saxton
phase recovery algorithm, we introduce an easy range estimation
error correction technique for multipass SAR imaging. We also
discuss about the necessary and preferred settings which allow us
to successfully recover the range estimation errors, in terms of phase
errors. Some simulation results will be presented to demonstrate the
success of the algorithm in a (controlled) synthetic and a real data
experiment.

A. Formulation

Let the reflectivity map of the scene be X and the linear (forward)
operator, which maps the scene reflectivity to the phase history, be
noted by A : CN×N → CM×J , where M is the range compressed
pulse length and J is the number of pulses. This operator includes
the range compression of the pulses generating phase history R,
with range compressed pulses as its columns. The range estimation
error appears as a delay/forward-shift before dechirping process. As a
result, we encounter some structured phase shifts in each compressed
pulse, i.e. εj = 2

c
δRj where c is the speed of light in the free space

and δRj is the range estimation error. A mathematical formulation
of this phenomenon can be presented by an element by element
phase shift, i.e. Rε = Γ�AX, where � is the element-by-element
multiplication, ε = [εj ] and Γ = [γj ]j∈J is defined as follows,

{γj}m = exp (−i(ζ(εj)m+ η(εj))) , (1)

where ζ(εj) = αεj∆t and η(εj) = εj(ω0 − ατ0 − αεj
2

) are some
functions of εj and independent of m, where α is the chirp rate, ∆t
is the sampling interval, ω0 is the starting frequency of the pulses
and τ0 is the round trip delay to the scene centre. The conventional
autofocus methods ignore the term based on m and only consider a
single phase error for each pulse, i.e. η(εj). Such methods work well
when the range estimation errors are small compared to the range cell
size. In other words, they are not designed to correct the reflectivity
map, when it needs to move a peak from one range cell to another
[1].

Compensation of a large range error, which can be observed in
various publicly available 3D-SAR databases [7], [10], needs a new
machinery to cope with such a phase error correction. Some of
canonical autofocus techniques, which have been used for range
estimation error compensation, are based on gradually focusing the
image using a gradient descent technique, e.g. PGA and sparsity
based autofocus. We here present a fundamentally different approach
which can solve the problems with much larger range estimation
errors. The new approach is based on the reformulation of the
problem and solving with a canonical technique called Grechberg-
Saxton (GS) or error reduction algorithm [13].

GS algorithm is based on the assumption that phase of an observa-
tion system in Fourier domain has been disrupted. On the other hand,
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Fig. 1. Backprojection of unfocussed phase history.

we have some prior information about what has been measured in
time and frequency domains. We can then use an iterative method
alternating between time and frequency domains and enforcing the
prior information as some constrains. A schematic diagram of GS
algorithm has been shown in Figure 2. Some conventional constraints
for the signals in the time/space domain are to be real, bounded and/or
structured and the Frequency domain to be band-limited and have
particular magnitudes.
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Fig. 2. Gerchberg-Saxton (error reduction) algorithm.

The SAR forward operator is not Fourier or a unitary operator. As
a result, such an iterative scheme cannot be used in its original form.
We introduce a modified algorithm, inspired from GS method, in the
next subsection.

B. Range Estimation Error Reduction with a Phase Recovery Tech-
nique

When the measurements of a system are linear with some phase
ambiguity, which includes the case of completely losing the phase
information, we need some phase recovery techniques. Such tech-
niques use the fact that the system has some properties, including
linearity, harmonicity, randomness or an overdetermined nature, and
the signal of interest has some properties in spatial/time and/or
frequency domain. Such features of the sensing system and the signals
have helped researchers of various fields to introduce fundamentally
different phase recovery algorithms [13]. While some attention have
recently been given to the convex and gradient based techniques,
they are not often practical for real size problems [14]. We here
introduce a practical iterative phase recovery algorithm for the

Fig. 3. SAR image after range focusing.

recovery of Γ, which is structurally similar to the standard form
of GS algorithm. The schematic of the GS algorithm is presented in
Figure 2. We normally start from one point of the loop, which is more
convenient for our sensing structure, and continue until convergence.
GS iteratively calculates the Fourier, respectively inverse Fourier,
transform and apply signal structures, i.e. constraints, in that domain,
and alternate the operator, i.e. Fourier with inverse Fourier and vice
versa, in the other iteration. We can interpret the Fourier and inverse
Fourier transforms respectively as forward and backward operators.
With some modifications we can instead use other forward/backward
operator pairs, to impose the signal constraints in a custom sensing
setting. We therefore use SAR forward and backward operators, i.e.
A and AH .

We assume that the SAR imaging system provides us some
erroneous phase history R̃0 as follows:

R̃0 = Γ0 �AX0.

where we do not know the phase error matrix Γ0 and would like
to retrieve X0 from such measurements. We therefore would like to
find a pair (Γ∗,X∗) that minimises the following program,

min
(Γ,X)

‖R̃0 − Γ�AX‖F .

To simplify the problem and make it suitable for volumetric SAR
experiments, we choose a reference flight pass and would like to
calibrate another flight pass phase history with respect to this data,
to be able to coherently use the whole phase history. While other
scenarios can be interesting, they need some extra requirements,
e.g. existence of an isotropic target in the scene. We have another
simplification: we assume that the (unknown) induced delay is fixed
across the selected aperture, i.e. ∀j, εj = ε. This is a reasonable
assumption for the short apertures, while it may not be correct
for the large apertures. A solution is to break the long aperture to
some smaller apertures, when it is possible. This approach has been
prefered in some settings, where there are anisotropic target(s).

We start the GS framework with Γ = 1N×J , where 1N×J is
the matrix with unit value elements, i.e. no phase error and initialise
Xini = AHR̃0. The signal structure in the phase history domain can
be applied by finding the best delay shift ε and using the following
optimisation program,

ε∗ = argmin
ε
‖R̃0 − Γε �AX[k]‖F , (2)
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Fig. 4. The range error correction factor for synthetic experiment:
estimated range (solid blue) and ground truth (dash-dot red).

where Γε is the phase error matrix when ε = ε1J and 1J is a
vector of length J with unit value elements. Solving this optimisation
program looks difficult, but can be done by exhaustive or line
search. As it is a one-dimensional program, it is a computationally
tractable task. To induce the sparse (compressibility) structure of the
reflectivity map X, we simply soft-threshold [15] the back-projected
ε∗−delayed phase history X[k+ 1

2 ] = AH(Γ̄ε∗�R̃0), where bar sign
indicate the complex conjugate, as follows:

X[k+1]
p,q = max

„
|X[k+ 1

2 ]
p,q | − λ

2
, 0

«
. sign(X

[k+ 1
2 ]

p,q ), (3)

where λ is the threshold parameter and sign operator is the
projection onto the unit circle in the complex plane. λ controls the
sparsity of the reflectivity map and its larger value makes more
small values to become zero. This GS type algorithm continues by
alternating between reflectivity map and phase-history and using (2)
and (3) as induced structures until the new ε∗ is roughly the same as
its value in the previous iteration.

C. Simulation Results

The range estimation error has been observed in most raw data
records, see for example [7], [10]. However, we initially set up
some controlled synthetic simulations to show the potentials of the
proposed range error correction algorithm in comparison with the
ground truth information. We chose the general settings of the SAR
multipass trial in [10] with a 4◦ aperture and a reflectivity map with
four bright targets, to generate the phase history. The location of
bright targets was selected at random, and we added some speckle
noise to the reflectivity map to make it more realistic. We used the
information about the pass numbers one and two, while phase history
generated in the pass number one, did not have any range error and
we induced a 20 cm range error to the pulses recorded in pass number
two.

Figure 1 shows the back-projection image without any range error
correction. A closer look at the image shows that the range error
is in an order such that each bright target can be seen in two near,
but connected, locations. We applied our algorithm and iterated 20
times. The final back-projected image with phase correction is shown
in Figure 3. It is clear that this image is much sharper and focussed in
a comparison with Figure 1. To demonstrate the algorithm capabilities
in this experiment, we have plotted the estimated range error, in each
iteration, in Figure 4. While we have started from an assumption that
there is no range error, the algorithm managed to finally recover a
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)

Fig. 5. The range error correction factor for QT corner reflector target.

Fig. 6. Reconstructed SAR images of a Quad-Trihedral reference target
with the back-projection algorithm using the phase history of: a) path
number 1 (reference) top-left, b) path number 2 (with the range estimation
error) top-right, c) coherent joint paths before correction, bottom-left, and
d) after correction, bottom-right.

parameter of 19 cm, which is close to the ground truth. The ground
truth is shown with the red dash-dotted plot.

In the next experiment, we used the digitally chipped phase history
of a Quad-Trihedral corner reflector [7]. The data set includes the data
collected over 31 different circular orbits. We chose phase history
data of two neighbour orbits, i.e. numbered 117 and 118, which are
here respectively called the unfocussed (with some range estimation
errors) and referenced. We chose such a setting as the path 118
has visually a minimum range estimation error, see top-left panel
of Figure 6, compared to an error free QT back-projected image.
The image generated using a phase history of an unfocused orbit is
shown in the top-right panel of this figure, which clearly has some
range estimation error, i.e. delay in dechirping. Coherent combination
of the two phase history and imaging, do not increase the coherent
gain, see the bottom-left panel of Figure 6. The combined phase
history can be fed to the proposed algorithm to compensate the range
estimation error of the unfocused part. The estimated range error in
each iteration of the algorithm has been shown in Figure 5. The
algorithm terminated after 600 iterations and an image reconstructed
with the modified phase history, which has been shown in the bottom-
right panel of Figure 6. Based on our observation, the number of
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Fig. 7. Images formed using original phase history.

iterations before convergence is related to the thresholding parameter.
It is clear from this figure that the proposed algorithm have managed
to recover a suitable range error and focused the unfocussed phase
history.

The modified phase history can be fed to a 3D-backprojection
algorithm. In this setting, we have limited elevation resolution [16],
as we have only used two orbits. The range estimation error causes a
point target to be unfocussed on different elevations. This behaviour
will roughly be observed in the QT corner reflectors. The formed
images using the original phase history, which has range estimation
errors, are shown in Figure 7. When the phase history is corrected,
using the proposed method, the images will be more focussed, see
Figure 8. It can be seen that the out-of-focus representation of the
second pass data has been compensated.

D. Discussion

The problem of range estimation correction in a multipass SAR
imaging was investigated here. The range error was modelled as a
structured phase recovery problem. A new phase recovery algorithm
was used to iteratively correct the error and focus the phase history
for the coherent combination of pulses from different orbits. Further
investigation of multi-orbit, i.e. more than two, an approach to
select the thresholding parameter and volumetric reconstruction of
the corrected phase history have been left for future work.
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Fig. 8. Images formed using corrected phase history.
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