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Abstract—Over the past few years, the use of Multiple Input
Multiple Output (MIMO) radar has gained increased attention as
a way to mitigate the degredation of micro-Doppler classification
performance incurred when the aspect angle approaches 90
degrees. In this work, the efficacy of co-located MIMO radar
is compared with that of distributed MIMO. The performance
anaylsis is accomplished for three different classification prob-
lems: 1) discrimination of a walking group of people from a
running group of people; 2) identification of individual human
activities, and 3) classification of different types of walking. In
the co-located configuration each radar is placed side by side
so as to form a line. In the distributed configuration, the radar
positions are separated to observe the subjects from different
angles. Starting from the cadence velocity diagram (CVD), the
Pseudo-Zernike moments based features are extracted because
of their robustness with respect to unwanted scalar and angular
dependencies. Two different approaches to integrate the features
obtained from multi-aspect data are compared: concatenation
and principal component analysis (PCA). Results show that a
distributed MIMO configuration and use of PCA to fuse multi-
perspective features yields higher classification performance as
compared to a co-located configuration or feature vector con-
catenation.

I. INTRODUCTION

A typical radar system transmits electromagnetic waves and
receives echoes scattering from a target. If the target is not
stationary, the received signal is modulated as consequence of
the known Doppler effect. The main Doppler shift is directly
related to the targets velocity toward the radar. Any other
secondary motion of the target, such as rotation or vibration,
may introduce additional modulation around the main Doppler
shift. This phenomenon, which is known as micro-Doppler
effect, is widely described by Chen in [1]. The micro-Doppler
information may be used to extract reliable information for
target recognition. For example, a remote detection of humans
and animals is examined in [2], ballistic missile warhead
recognition in [3], while discrimination for helicopters is
examined in [4] and human activity classification in [5], [6].

However, as several recent works have shown [7], [8],
the performance of micro-Doppler classification algorithms
is heavily dependent upon the aspect angle of the target
relative to the radar’s line-of-sight. For example, in [9], a

correct classification rate of 95% is obtained when the aspect
angle is 0 degress, while this rate drops to 65% when the
aspect angle is 90 degrees. Because this is effect is caused
by radar only measuring radial, not absolute, velocity, the
use of multiple radars to collect multi-perspective data has
been proposed to improve classification performance [7]. The
Multiple Input Multiple Output (MIMO) concept, which has
been widely used in communications, was first investigated
for radar applications by Fishler in [10]. Widely separated
radars were shown to yield an improvement in detection
performance in [11], while in [12] a novel technique was
proposed to improve output SINR for co-located arrays. In
[13], the effect of vibrating targets on MIMO Synthetic
Aperture Radar (SAR) was investigated by considering target
micro-Doppler. In [14], a majority voting scheme was utilized
to improve the classification performance of armed/unarmed
personnel from a three node, linearly aligned, multi-static
radar network. Although in [15], information theoretic feature
selection was used to choose which node in a radar network
was best positioned to give the best possible classification
result, a detailed performance analysis of different MIMO
configurations for micro-Doppler classification has yet to be
investigated.

In this work, the micro-Doppler classification performance
attainable using co-located and distributed MIMO configura-
tions is evaluated using features fused through two different
approaches: concatenation and principal component analysis
(PCA). There are many different features that have been
proposed in the literature for micro-Doppler classification,
including physical features, transform-based features, and even
speech features, such as mel-frequency cepstrum coefficients
(MFCC) and linear predictive coding. In this work, however,
a recently proposed novel feature set extracted using pseudo-
Zernike moments is utilized. Pseudo-Zernike moments are
geometric moments introduced by Hu [16] enhanced in [17]
and improved by showing orthogonality in [18]. This approach
provides interesting elements of robustness with respect to
unwanted dependencies such as angle and scale dependencies
in micro-Doppler signatures [19]. Performance analysis is



conducted for three different but important classes of micro-
Doppler classification: 1) discrimination of a walking group
of people from a running group of people; 2) identification of
individual human activities, and 3) classification of different
types of walking.

The remainder of the paper is organized as follows. Section
II gives information about the experimental test setup and pro-
grammable radar hardware used to collect data. Subsequently,
Section III describes the micro-Doppler analysis techniques
employed, while results for the different MIMO configurations
are presented and discussed in Section IV.

II. EXPERIMENTAL TEST SETUP

All experimental data was collected using two National
Instruments (NI) Universal Software Defined Radio Peripheral
(USRP) RIO 2943r units, each of which has two channels
functioning as a transmitter and a receiver, thereby establishing
a 4-node MIMO network. The channels in each USRP share
the same oscillator, and thus are capable of transmitting at
exactly the same center frequency. When two devices are
operated simultaneously, however, slight differences in trans-
mit frequency are possible. Thus, each USRP was synchro-
nized through a common reference signal. Each USRP was
programmed to transmit a CW waveform, thus requiring a
total of eight printed circuit board (PCB) directional antennas.
Each antenna utilized has a 5 - 6 dBi directional gain and
operates over a 850 MHz to 6.5 GHz frequency range. To
avoid channel confusion, each channel transmitted at the same
4.4 GHz center frequency, but with varying modulation of 7,
13, 19, and 24 kHz sinusoids. Experiments were conducted
for three different classification problems:

1) Group Classification, distinguishing between group of
walking people and running people;

2) Person Classification, making an discrimination between
a walking, running or crawling person;

3) Walking Classification, categorizing person who is walk-
ing, walking with a backpack or walking with a limp.

Towards this aim, a database of micro-Doppler signatures
was constructed from radar measurements of human motion
collected in an indoor facility, and in particular in an approxi-
mately 30 meter square room without any special covering for
clutter suppression. Data is collected for two different configu-
rations: 1) co-located and 2) distributed positioning of the 4x4
MIMO system depicted on Figure 1. For each configuration,
human motion has been observed over 3 different angles,
namely 30 ◦, 60 ◦ and 90 ◦, relative to the radar’s observation
direction. Activities observed include
• Walking
• Running
• Crawling
• Walking with a backpack
• Limping
• Group Walking
• Group Running
Thus, 16 different micro-Doppler signatures were recorded

by the 4 x 4 MIMO system for each test run. Each activity

(a) Co-Located MIMO (b) Distributed MIMO

Fig. 1: MIMO configurations experimentally tested.

was recorded for a duration of 60 seconds, as enacted by 4
test subjects, thereby yielding a total of 240 recordings in the
micro-Doppler database.

III. MICRO-DOPPLER CLASSIFICATION

In this work, the micro-Doppler signature is represented
in the time-frequency domain using a Short-Time Fourier
Transform (STFT), or spectrogram, which was preferred over
other time-frequency representations due to its robustness
to interference [20]. First the received echoes skrx(n) are
formed into a zero mean and unit variance signal s̃rx(n). The
pre-processed received signal s̃rx(n) contains kth channels
micro-Doppler components and consist of Ns samples. The
spectrogram is computed with the modulus of short time
Fourier transform (STFT) of each kth signal s̃rx(n) as follows

χ(v, k) =

∣∣∣∣∣∣
Ns−1∑
n=1

s̃rxh
∗(n− k)e

j2πvn
Ns

∣∣∣∣∣∣ (1)

k = 0, . . . ,K − 1

where K is the total number of channels, v is the normalized
frequency and h∗(·)is the smoothing window.

Fig. 2: Block Scheme of the Algorithm

After computation of the spectrogram, the classification
process then proceeds through extraction of features that ex-
hibit statistical differences for the classes under consideration.
In MIMO systems, however, individual feature vectors are
obtained for each node in the network. Thus, after feature
extraction, a single, composite feature vector formed from the
individual feature vectors is computed and supplied to the
classifier. The overall micro-Doppler classification process is
shown in 2.



A. Feature Extraction

Features are extracted from the spectrogram by first com-
puting the cadence velocity diagram (CVD), which may be
found from

∆(v, ε) =

∣∣∣∣∣∣
K−1∑
k=1

χ(v, k)e
j2πvε
K

∣∣∣∣∣∣ (2)

where ε is the cadence frequency. The motivation of using
CVD is its robustness and lack of dependence upon the initial
target position [20]. Each CVD obtained from all channels
is then projected onto a basis constituted by pseudo-Zernike
polynomials. Before calculating moments, normalization and
CVD dimensional scaling should be done as the pseudo-
Zernike polynomials are defined on the unit circle. This
ensures the prevention of information loss due to dimension
mismatch. The normalized CVD is acquired with the following
formula;

∆̄k(v, ε) =
∆k(v, ε)−min

v,ε
∆k(v, ε)

max
v,ε

[∆k(v, ε)−min
v,ε

∆k(v, ε)]
(3)

Finally, the pseudo-Zernike moments are computed from the
normalized CVD. The feature extraction process is summa-
rized in Figure 3.

Fig. 3: Feature Extraction Scheme

Features are obtained by projecting ∆̄k(v, ε) on the pseudo
Zernike polynomials of order n which can be written in the
following form

Wn,l(x, y, ρ) = Wn,l(ρ cos θ, ρ sin θ, ρ) = Sn,l(ρe
jlθ) (4)

where the radial polynomials Sn,l(ρ) are expressed as

Sn,l(ρ) =

n−|l|∑
k=0

(−1)k(2n+ 1− k)!

k!(n+|l|+ 1− k)!(n−|l| − k)!)
ρn−k (5)

Exploiting (4), the pseudo-Zernike moments are defined as

ψn,l =
n+ 1

π

2π∫
0

1∫
0

W ∗n,l(ρ, θ)f(ρ cos θ, ρ sin θ)pdpdθ (6)

By using ∆̄k(v, ε) into (6), the pseudo-Zernike coefficients
can be obtained and if nth order pseudo-Zernike polynomials
are used, (n+ 1)2 sized output vectors is acquired. Hence the
feature vector of kth channel is

F k = [
∣∣ψ0,0

∣∣, ...,∣∣ψN,−N ∣∣] (7)

Lastly, this output vectors are statistically normalized using
the following linear re-scaling

F̃ k =
F k − µFk
σFk

(8)

where µFk and σFk are the mean and standard deviation of
the F the feature vector. As seen in Figure 4, signal skrx(n)

Fig. 4: General Flow of the Algorithm

where k = 0, 1, . . . , N2 − 1 is obtained from 4x4 MIMO
system with Ns samples. After the feature extraction stage,
F k ,k = 0, 1, . . . , N2 − 1 acquired with length (order + 1)2

where order is the pseudo-Zernike polynomials order. Since
we have 16 data vector so the same number of feature vector,
an algorithm should be used in order to make a feature vector
from feature channel matrix for classifier. Last stage is to
acquire a feature vector F whose dimension is Q associated
with the selection algorithm.

1) Feature Fusion: In the 4x4 MIMO system used for
this work, a total of 16 different feature vectors are obtained
after the feature extraction process. Especially in distributed
localization, the target is observed from different perspectives
so the feature vectors from different channels might include
added information helpful for classification. Two different
approaches for fusing the individual feature vectors into a
final, overall feature vector are considered in this paper 1)
concatenation of all the features from each channel; and 2)
principal component analysis (PCA).

Concatenation creates a vector of size 1×16N from 16×N
matrix where N is the number of features related to pseudo-
Zernike moments order introduced in the previous section.
While creating the feature vector, it exploits all features from
all channels respectively regardless of any elimination. PCA,
on the other hand, reduces the dimension of the feature space
by computing an orthogonal basis that spans the entire feature
space, thereby ensuring the minimum correlation between
PCA feature generated. Although in PCA the relevancy of
features (i.e. distance between classes) is not optimized, it is
quite efficient in terms of computational time and amount of
memory utilized [21].

IV. RESULTS

To statistically discriminate between different classes based
on micro-Doppler analysis using pseudo-Zernike feature vec-
tors, a support vector machine (SVM) classifier is used to-
gether with a Monte Carlo approach. %70 of the data is
used to train SVM classifier and the rest is used for testing.
The classification results obtained for concatenation and PCA



features for co-located and distributed MIMO configuration
is given in Table I and Table II. From these results, it
is seen that in all cases, PCA yielded better results than
concatenation of features. Moreover, when PCA was applied,
the distributed MIMO configuration outperformed the co-
located MIMO configuration for all classification problems
considered. When concatenation was applied, the distributed
configuration performed best, with the exception of the case
of individual classification, in which concatenation yielded
similar results to that of PCA.

TABLE I: Classification Results of Co-Locate Configuration

Co-Located 4x4 MIMO: PC(%)
Concatenation of

All Features PCA

Group Classification 94.07 96.57
Individual Classification 93.23 92.39
Walking Classification 75.76 80.60

TABLE II: Classification Results of Distributed Configuration

Distributed 4x4 MIMO: PC(%)
Concatenation of

All Features PCA

Group Classification 96.16 98.80
Individual Classification 93.02 95.67
Walking Classification 78.03 81.60

V. CONCLUSION

In this paper, the performance improvements attainable
with multi-perspective data and the importance of sensor
positioning is demonstrated. More specifically, it was found
that a distributed configuration yields greater classification
performance than a co-located configuration. Two different
methods for feature-level fusion of radar data is explored:
concatenation and PCA. It was found that through dimension
reduction PCA yields superior results to concatenation. Clas-
sification results are shown for three different human activity
recognition problems: 1) group classification, 2) individual
classification, and 3) walking classification (normal, limping,
and carrying a backpack).
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