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Abstract—Modern radar systems, such as co-located or dis-
tributed MIMO radar, often operate in very hostile environments.
In such a scenario the selection of the best waveform to be
used is an important aspect in order to maximize the perfor-
mance. In this paper we introduce the use of the Fractional
Fourier Transform as a tool to generate libraries of phase coded
waveforms. The analysis of the performance of the generated
libraries demonstrates how the novel approach can introduce
benefits for specific applications with a relatively simple effort
and with limited or no extra resource requirement.

I. INTRODUCTION

In the modern battlefield scenario radar systems typically
operate in a congested electromagnetic environment and often
with severe constrains in terms of interference mitigation,
frequency occupancy, security and performance. Coexistence
of different systems for different applications, high accuracy
in target detection, tracking and recognition, low probability
of intercept, jamming and MIMO radar are example where a
hostile environment, from an electromagnetic point of view,
can cause dramatic consequences on the overall performance.
It is in this scenario that the selection of the most suitable
waveform can play an important role. Fixed and adaptive
radar waveform design has been widely investigated [1],
[2], providing waveforms that can suit different applications,
however each of them presents a trade-off between some of
their characteristics such as range resolution versus side lobe
levels. The opportunity to form novel libraries of waveforms
that are able to maintain the same or higher level of perfor-
mance is of interest to the radar community and other related
disciplines.[3].

In this paper the use of the fractional Fourier Transform
(FrFT) based phase coded waveforms are introduced to
generate new family of waveform libraries. The FrFT, is a
generalization of the Fourier transform and has already been
applied in radar signal processing [4] and OFDM modulation
[5] demonstrating the potential of this signal processing tool
for various applications [6]. In particular in [5] the FrFT has
been used to modulate OFDM signals providing improvement
in the overall bit error rate (BER), this improvement was
mainly due to a reduction of the overall interference between
the novel fractional sub-carriers, increasing the signal to
interference ratio leading to an improvement in BER.

In our approach for the generation of the novel radar
waveform libraries the FrFT is applied to the waveforms (e.g.
the code sequence). We analyse the ambiguity functions [7] of
the generated waveforms in order to quantify the performance
provided by the proposed libraries. A deeper analysis about the
orthogonality and reuse of the proposed library is presented
in [8].
The remainder of the paper is organized as follows. Section II
introduces the fractional Fourier transform, while in Section III
the novel modulation approach and the relationship between
the ambiguity functions are introduced. The analysis the
performance for sample novel libraries is presented in Section
IV, while Section V concludes the paper.

II. FRACTIONAL FOURIER TRANSFORM

A Fourier transformation (FT) maps a one-dimensional
time signal x(t) into a one-dimensional frequency function
X(f), the signal spectrum. The Fourier transform operator
can be visualized as a change in representation of the signal
corresponding to a counter clockwise rotation of the axis by
an angle π/2 in the time-frequency plane . Although the
Fourier transform provides the spectral content of the signal, it
fails to indicate the time location of the spectral components,
which is of great importance when non-stationary or time-
variant signals are considered. In order to describe and analyse
such signals, time-frequency representations (TFRs) are used.
A TFR maps a one-dimensional time signal into a two-
dimensional function of time and frequency. The fractional
Fourier transform which belongs to the class of linear TFRs
was introduced by Namias in 1980 [9], then rediscovered
in optics [10], [11], [6], [12] and introduced to the signal
processing community by Almeida in 1994 [13].

The fractional Fourier transform, which is a generalization
of the ordinary Fourier transform, can be considered as a
rotation by an arbitrary angle in the time-frequency plane or a
decomposition of the signal in terms of chirps. It also serves
as an orthonormal signal representation for chirp signals and
is also called rotational Fourier transform or angular Fourier
transform [14]. The fractional Fourier transform is computed
using the angle of rotation in the time-frequency plane as the
fractional power of the ordinary Fourier transform. Letting
x(u) be an arbitrary signal, its ath-order FrFT is defined as
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[6]:

Xa(u) =

∫
Ka(u, u

′)x(u′)du′ (1)

where a is the fractional transformation order (corresponding
to a rotation angle θ = aπ2 with a ∈ R) and Ka(u, u

′) is the
FrFT kernel and is defined as [6]:

Ka(u, u
′) =


A0 exp {jπ[(u2 + u′2) cot θ − 2uu′ csc θ]}
if θ is not a multiple of π
δ(u− u′) if θ is a multiple of 2π
δ(u+ u′) if θ + π is a multiple of 2π

(2)
where A0 = ej

θ
2√

j sin θ
Equation (2) shows that for angles that are not multiples of
π, the computation of the FrFT corresponds to the following
steps:
1-A product by a chirp;
2-A Fourier transform (scaled by csc θ);
3-Another product by a chirp;
4-A product by a complex amplitude factor.
In summary, the FrFT is an invertible linear transform,
continuous in the angle θ, which satisfies the basic conditions
for it to be meaningful as a rotation in the time-frequency
plane.

III. FRFT BASED WAVEFORMS

In this section the new approach to obtain a novel library
of waveforms is introduced.. To describe the performance of
the proposed library the relationship between the ambiguity
function of the canonical waveform and that of its generic
FrFT is described.
The Fractional Fourier Transform introduced in Section II can
be applied to common waveforms, such as phase modulated
waveforms with different codes (i.e. Barker or P4 codes).
Let s(u) be the canonical waveform (e.g. the traditional Barker
13 code) from which the Fractional Fourier transform library
Sai(t) i = 1, ..., L is obtained, by applying (1). Thus we define
the fractional waveform library as:

S = [Sa1(t), Sa2(t), . . . , SaL(t)] (3)

where ai ∈ [0, 1] , and L represents the total number of
waveforms populating the library. Note that for ai = 0 the
canonical waveform is obtained. The value of L depends
on different aspects such as the original waveform used,
waveform reuse, orthogonality requirements and applications.

Understanding the properties of the resulting fractional
modulated waveform is a critical aspect, and is accomplished
using the ambiguity function (AF) of the signal Sa(t). The
Ambiguity function for the signal s(u), in the time - frequency
plane (u, v), is defined as [7]

|χ(u, v)|2 =

∣∣∣∣∫ ∞
−∞

s
(
u+

ε

2

)
s∗
(
u− ε

2

)
e−jωεdε

∣∣∣∣2 (4)

By replacing in s(·) in (4) with Sa(·) we obtain the ambiguity
function of the fractional waveform |χa(·, ·)|2.

Almeida [13] and Djurovic [15] studied the relationship
between the Fractional Fourier Transform and the Wigner Ville
Distribution (WVD) χ(u, v). In particular they showed that the
WVD of a signal and its Fractional Fourier Transform of order
a are equivalent:

χa(t, ω) = χ(u, v) (5)

with the relationship between the variables described by the
rotation u = t cos θ + ω sin θ and v = −t sin θ + ω cos θ, and
θ = aπ/2, thus∫ ∞

−∞
Sa

(
t+

τ

2

)
S∗a

(
t− τ

2

)
e−jωτdτ =∫ ∞

−∞
s
(
u+

ε

2

)
s∗
(
u− ε

2

)
e−jvεdε (6)

As the Ambiguity Function is the squared modulus of the
Wigner Ville Distribution the relationship in (6) allows the
expected ambiguity function for any fractional order a given
the ambiguity function of the original signal s(u) to be
calculated.

IV. ANALYIS OF THE NOVEL LIBRARIES

In this section the performance of two sample novel libraries
are analysed. In particular the libraries for the conventional
Frank and Barker codes are analysed. For each waveform
library the analysis has been performed using the toolbox
provided in [1] modified by introducing the Fractional Fourier
Transform modulation for different fractional orders and ex-
tracting significant performance parameters.
In order to quantify the effectiveness of the novel libraries, for
each waveform library, different performance parameters are
analysed for the different fractional orders (L = 100):
• Delay resolution, computed as the −3 dB width of the 0

Doppler cut of the ambiguity function;
• Doppler resolution, computed as the −3 dB width of the

0 delay cut of the ambiguity function;
• Delay side lobe level, computed as the level of the first

side lobe of the the 0 Doppler cut of the ambiguity
function;

• Doppler side lobe level, computed as the level of the first
side lobe of the the 0 delay cut of the ambiguity function;

• Modulated signal bandwidth, computed as the −3 dB
width of the transmitted signal spectrum;

• Interfering power, computed as the power present outside
the main lobe;

• Interfering power ratio, computed as the ratio between the
power in the side lobes of the ambiguity function and the
main lobe power.

These parameters are fundamental quality parameters of
a radar waveform that aid in assessing the relative possible
performance achievable and where the known trade-offs occur
[1]. In our analysis we compare the above mentioned pa-
rameters with those from the original waveform. In particular
the ratio between the parameters from the original waveform
and those from the fractional waveform are computed. As all
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the parameters requires to have small values to be considered
as ”good” an improvement can be measured for values < 1
(< 100 on the logarithmic scale used to present the results in
this paper).

For each waveform library two configurations were con-
sidered, these as summarized in Table I. The parameter r is
the number of samples per bit. Two values are considered. In
the first case the value r = 10 as suggested in [1] is used,
while in the second case an up-sampled waveform (r = 300)
is used. Other parameters are F ∗ M ∗ tb representing the
product between the maximum frequency shift, the sequence
length and the bit duration, T representing the total sequence
duration, while N and K are the total number of delay and
Doppler shifts respectively. The analysis for different values
of N and K is not presented as the AFs scale similarly for
both the original and the fractional waveforms.

TABLE I
WAVEFORM ANALYSIS PARAMETERS

Parameters Frank Barker
r 10, 300 10, 300

F ∗M ∗ tb 24.96 20.02
T 1 1
N 160 130
K 50 50

A. Frank Code

The first analysis was performed using, as the canonical
waveform, the canonical 16-element Frank code obtained with
the phase shifts [1]

[ 0 0 0 0 0 π/2 π 3π/2 0 . . .

. . . π2 0 π 0 3π/2 π π/2 ] (7)

In Figure 1 and Figure 2 the values of the quality parameter
ratios with different fractional orders are shown. In Figure 1
the delay resolution and the interference factor are reduced
over a wide range of fractional order values. However for
other important parameters, such as Doppler resolution and
Delay side lobe level, the fractional modulation results in lower
performance compared to the canonical waveform (α = 0). In
contrast, as shown in 2, by increasing the number of samples
per bit the fractional modulation results in improved delay
resolution, whilst the interference level and the delay side lobe
are both reduced for a significant range of fractional orders.
Moreover for both the analyzed cases the occupied bandwidth
is the same as that of the canonical waveform.

B. Barker Code

Barker Codes are probably the most famous family of phase
codes. The sequence of Barker Code of length 13 has been
used to perform our analysis. The Barker code considered is
the sequence

[ 1 1 1 1 1 0 0 1 1 0 1 0 1 ] (8)

In Figure 3 and Figure 4 the values of the quality parameter
ratios with different fractional orders are shown. Similar to
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Fig. 1. Ratios of the ambiguity function quality parameter for the Frank
Code library (r = 10).
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Fig. 2. Ratios of the ambiguity function quality parameter for the Frank
Code library (r = 300).

the Frank code case, in Figure 3 shows that for a wide set
of fractional order the delay resolution and the interference
factor are reduced while for other parameters, the fractional
modulation dose not result in improvements compared to
the canonical waveform. Again, by increasing the number of
samples per bit, the delay resolution improvement can be made
to occupy a wider area of the fractional domain as well as
achieving a reduction in the interference level and the level of
delay side lobe - as shown in Figure 4. Moreover for both the
analyzed cases the occupied bandwidth is the same as that of
the canonical waveform.

The dependence of the performance from the number of
samples per phase shift (the value of r) is an aspect that
will require a deeper analysis and will be subject of future
work. An important remark is that the limit of side lobe
level and delay resolution of both the canonical Barker and
Frank waveforms, dependent on the sequence length M , is
no longer valid for the novel fractional libraries. In terms
of computational complexity the novel libraries requires the
computational overload of the FrFT which corresponds to 2
multiplications by a chirp and an FFT. However, the libraries
can be pre computed and populate a Look Up Table.
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Fig. 3. Ratios of the ambiguity function quality parameter for the Barker
Code library (r = 10).
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Fig. 4. Ratios of the ambiguity function quality parameter for the Barker
Code library (r = 300).

V. CONCLUSIONS

This paper presented novel radar waveform libraries
based on the use of the fractional Fourier transform
modulation of well established radar waveforms. The novel
libraries introduce significant advantages in terms of delay
resolution, interference and side lobe level reduction. Potential
applications of the novel libraries are in the field of frequency
reuse, agile tracking-Doppler systems, low probability of
intercept radar and MIMO radar systems.
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