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Abstract—We propose a game theoretic waveform allocation
algorithm for a MIMO radar network, where the radars are
grouped into clusters. Using potential games, the clusters which
are the players of the game, are able to choose a set of orthogonal
waveforms from a set of available waveforms, that will result
in optimum performance for the radars in the clusters. The
simulation results demonstrate the superior performance of the
game theoretic waveform selection as compared to a scheme that
selects waveforms randomly.

I. INTRODUCTION

Game theory is a branch of mathematics that provides the

means to model, analyse and understand situations involving

interactions among various decision makers [1]. In a radar

network, where the radars operate in a non cooperative but at

the same time non competitive environment, the goal of the

individual radar is twofold: achieve the best possible detection

performance and also operate in a way that is not competitive

towards the other radars in the network.

The variety and flexibility of models in game theory make

it a powerful tool for modelling situations involving radar

systems. This is evident from the continuously increasing

number of publications that use game theoretic schemes in

radar applications in order to improve radar’s performance.

For example, the authors in [2] apply different polarisations

on the transmission signal, and use zero-sum games to model

the interaction between a distributed MIMO radar and an

opponent, whose goal is to avoid being detected. Operating

with different polarisations the radar aims to illuminate the

most appropriate signal for maximising target detection. The

interaction between a radar and an intelligent target equipped

with a jammer is examined in [3]. As the goals of the two

players are opposite, this interaction is modelled also as a

zero-sum game. In [4], using the generalised Nash games, it

is possible to allocate the optimum transmission power in a

sensor radar network, such that the radars attain a specific

target signal-to-disturbance ratio (SDR), while taking into

account the interference induced in the network. The extension

of this work to a MIMO radar network within the game

theoretic framework is studied in [5] and [6]. Waveform design

for a radar network is examined in [7], where using potential
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games the radars are able to use the appropriate waveform that

will result in a maximum SDR.

In this work, we extend the work of [7] to a MIMO

radar network which is partitioned into K clusters C =
{C1, . . . , CK}. For all k = 1, . . . ,K, cluster k consists of M

radars, namely Ck = {Rk1, . . . , RkM}. The aim of the clusters

is to achieve good detection performance, measured in terms

of SDR of the radars in each cluster. Motivated by the work in

[7], using potential games [8], we model the interaction among

the clusters as a game, where the players are the clusters and

their strategies are different waveforms that the radars in the

clusters can use to detect a target. Given a set of possible

waveforms, the radars update their waveforms according to a

game theoretic algorithm, until the scheme converges to an

equilibrium. The equilibrium, is the state where the SDR of

the radars is optimised by the appropriate choice of waveform.

In other words, no player can profit by deviating from the

equilibrium strategy, given the strategies of the other players.

II. GAME THEORETIC FORMULATION

A. Potential Games

Let G =< N , {Si}i∈N , {ui}i∈N > be a strategic form

game, where N is a set of N players and Si and ui are the

strategy set and the utility function of player i, respectively.

Then, G is an exact potential or in short potential game, if

and only if there exists a function P : S → R such that for

all i ∈ N and for all s ∈ S = S1 × . . .× SN

ui(si, s−i)− ui(s
′
i, s−i) = P (si, s−i)− P (s′i, s−i), (1)

for all s′i ∈ Si, where s−i is the vector of strategies of

all players excluding player i. The function P is called the

potential of the game. The equilibrium point is the strategy

profile s
∗ ∈ S that maximises the potential function P ( [8],

Lemma 2.1). Additionally, notice that the function P depends

only on the strategies of all players. Hence, we can think of

the potential as a global function that reflects the change in

utility from a unilateral change of a player’s strategy. As a

result, at the equilibrium point, the players not only maximise

their individual payoffs, but they also maximise the overall

welfare of the network.

B. Game Theoretic Model

Fig. 1 shows an example of a MIMO radar network with

two clusters and two radar per cluster. In the network, we
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assume that communication among clusters is not feasible.

However, radars within the same cluster can share information.

We assume that the return signal to radar Rkn consists of N

pulses, and radar Rkn processes the received signal using a

bank of filters matched to the signature waveforms of all radars

within the kth cluster. Following the signal format of [7], the

return signal for the radar Rkn can be written as

xkn =

M
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αkrnskr +
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where skr is the signal transmitted by the radar Rkn. The coef-

ficients αkrn and γkrn,m account for the channel coefficients

of the back-scattered signal from the target and any clutter

from the environment, accordingly, associated with radar Rkn.

Finally, nkn denotes the noise induced within the radar Rkn

and Jm is a shift matrix whose elements are given by

Jm(i, j) = J−m(i, j) =

{

1 if j − i = m,

0 otherwise.

Following the notation of [7], let Gℓtkn be the antenna gain

for the radar Rkn in the direction of radar Rℓt of the cluster

ℓ 6= k. Then, the SDR for radar Rkn is given by (2) at the

top of the page. In the numerator we have the contribution

of the return signals from all M radars at the receiver of the

nth radar in the kth cluster. The waveform used by radar Rkt

is denoted by skt, and thus the first term on the denominator

corresponds to the clutter returns in the direction of the target,

due to illumination of all radars in the kth cluster. The second

term accounts for the interference induced by the radars from

all other clusters. Finally, the third term in the denominator of

(2) is the noise power for which we assumed σ2
n = 1.

The game for our model is defined by Π = 〈C,
{Sk}k∈{1,...,K}, {uk}k∈{1,...,K}〉, with C being the set of

clusters in the network and Sk is the strategy set of player

k. The strategy set is a collection of a finite number of

tuples, where each tuple consists of M pairwise orthogonal

waveforms. The utility function of player k is denoted by

uk. Furthermore, assuming that for all k = 1, . . . ,K and

n = 1, . . . ,M , the signals have norm ‖skn‖22 = 1, the

maximisation of the SDR is equivalent to the minimisation

of the denominator. Extending the potential function of [7] to

the case of a MIMO radar network and assuming for a moment

that the radar cross section coefficients αkrn and γkrn,m are

not part of the signal model, we define a function P to be

the sum of the denominators from the SDR expression of all

radars in the network:
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The utility function for cluster k is the sum of the denomi-

nators of the SDR from the radars Rk1, . . . , RkM in cluster

k, together with the terms that correspond to the interference

that these radars cause to all other radars in the network:
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A closer look at the utility function will show that the utility is

included in (3). In particular, the utility of player k is formed

of those parts in (3) that are associated with player k, namely

the interference that all radars within cluster k experience from

and cause to all radars in the other clusters in the network, and

the clutter returns coming from the signal transmitted by the

radars in the kth cluster. Thus, it is straightforward to show

that (1) is satisfied, and so P is a potential function and Π
a potential game. According to [8], the equilibrium of G can

be found by maximising the potential function with respect to

the strategies (waveforms) of the players (clusters) i.e.

max
(s1,...,sK)∈S

P (s1, . . . , sK).

The clusters engage in an iterative process. In a sequential

manner, they update their waveforms according to the above

maximisation problem, until the game theoretic algorithm
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Fig. 1. Example of a MIMO radar network with two clusters and two radars
in each cluster.

converges to an equilibrium. At each time step, only one

cluster updates the waveform. Due to the particular connection

between the potential function and the utility of player k, when

it is his turn to update the waveform, instead of maximising

the potential function, he can maximise the utility function,

since for all k = 1, . . . ,K, uk is incorporated in P . The

converge of this iterative process is guaranteed due to the finite

nature of the game and a result in [8] proving the existence

of equilibrium for finite potential games.

Assuming that the waveform library from which each cluster

can choose his strategy set, the antenna gains and the initial

set of waveforms in the game are publicly known, then each

cluster can independently recreate the game and arrive to the

same equilibrium, which will be the actual transmitted signal.

However, the radar cross section coefficients are part of the

transmission-reception process of each radar in the network,

and thus can not be determined beforehand and be available

to all clusters. For this reason, they are not considered as part

of our game. However, in order to demonstrate the value of

the game theoretic approach, we show through simulations that

this assumption does not undermine the detection performance

of the radars.

III. SIMULATION RESULTS

For the simulation, we considered two network topologies.

In the first case, the MIMO radar network consists of two

clusters with two radars each (K = 2, M = 2), while in

the second case, we have three clusters with two radars each

(K = 3, M = 2). The initial waveforms for all clusters are

chosen randomly from a set of possible waveforms. As the

radars in each cluster form a MIMO configuration, this set

was created by finding pairs of orthogonal waveforms in the

waveform library described in [7]. The waveforms that are

used by radars from different clusters might be correlated.

The antenna gains in dB for the two network topologies were

set as in Table I.

We assume that any clutter echoes result from clutter that is

situated in the direction of the target. Hence, the antenna gains

G1112, G1211, G2122, G2221, G3132 and G3231 are ignored. Fig.

2 and Fig. 3 show the convergence of the game theoretic

algorithm to an equilibrium (solid line) for the two network

configurations. In Fig. 2, the network consists of two clusters

with two radars in each cluster, while in Fig. 3 we have three

clusters with two radars per cluster. The sequential update of

TABLE I
ANTENNA GAINS IN DB FOR TWO DIFFERENT NETWORK

CONFIGURATIONS.

Network with K = 2, M = 2

(G1111, G2111, G2211) = (0,−30,−16)

(G1212, G2112, G2212) = (0,−27,−25)

(G2121, G1121, G1221) = (0,−13,−14)

(G2222, G1122, G1222) = (0,−17,−28)

Network with K = 3, M = 2

(G1111, G2111, G2211, G3111, G3211) = (0,−30,−16,−11,−21)

(G1212, G2112, G2212, G3112, G3212) = (0,−27,−25,−27,−16)

(G2121, G1121, G1221, G3121, G3221) = (0,−13,−14,−28,−28)

(G2222, G1122, G1222, G3222, G3222) = (0,−17,−28,−26,−11)

(G3131, G1131, G1231, G2131, G2231) = (0,−19,−27,−13,−29)

(G3232, G1132, G1232, G2132, G2232) = (0,−16,−11,−23,−18)
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Fig. 2. SDR values for all radars using the game theoretic model and the
random model. The network consists of two clusters with two radars per
cluster.

the waveform for each player is clearly depicted. In order to

demonstrate the advantages of our game theoretic model, both

Fig. 2 and Fig. 3 show also the SDR for the players when

they choose the waveforms randomly (random choice model).

For each player in the random choice model, the SDR is the

average over 100 realisations. The game theoretic waveform

selection provides substantially better SDR as compared to

selection of waveforms randomly. Fig.4 shows how the SDR

of player one progresses with the increase of the network

size. This evidences that the good performance of the game

theoretic model is preserved, independently of the size of the

network.

In all the above simulations the SDR was calculated without

considering the effect of the coefficients |αkrn|2 and |γkrn,m|2,

which were set to 1 in (2). To address the matter of the

radar cross section coefficients, Table II presents the SDR

values calculated using (2) for both the game theoretic and

the random choice models, for the two network topologies.

We chose the coefficients |αkrn|
2 and |γkrn,m|2 such that they

follow the Rayleigh and Weibull distributions, respectively.

The parameter for the Rayleigh distribution is a = 2.7, while
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Fig. 3. SDR values for all radars using the game theoretic model and the
random model. The network consists of three clusters with two radars per
cluster.
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Fig. 4. Average of the two SDR values of the radars R11 and R12 in the game
theoretic model and the random choice model for a network with increasing
number of clusters. All clusters in the network consist of two radars.

for the Weibull we set a = 1.1 and b = 2.6. Calculating the

SDR for 100 different values of |αkrn|
2 and |γkrn,m|2, Table

II presents the average SDR for the two models. Notice, that

the waveforms used in the calculation of SDR for the potential

game was the waveform at equilibrium. The results show that

the game theoretic approach is preferable over the random

selection of waveform.

Finally, Fig. 5 presents similar results to Fig. 4, with the

difference that the SDR is calculated and then averaged over

1000 instances with different radar cross section coefficients

that follow the aforementioned distributions. The cluster’s

performance when using the game theoretic model is evidently

better in comparison to the random choice model, even in the

presence of great interference caused by nine other clusters in

the network.

IV. CONCLUSION

We have proposed a game theoretic scheme for waveform

allocation in a MIMO radar network. In particular, we used

potential games to model the interaction between the MIMO

radars of the network and to choose appropriate waveforms

from a waveform library, that results in a good SDR for the

MIMO clusters. Simulation results demonstrated convergence

to the equilibrium of the game and superior performance as

compared to the random selection of waveforms.

TABLE II
AVERAGE SDR FOR THE TWO NETWORK TOPOLOGIES, EVALUATED AT

WAVEFORMS OBTAINED USING THE GAME THEORETIC ALGORITHM AND

WAVEFORMS CHOSEN AT RANDOM. THE SDR HAS BEEN CALCULATED

TAKING INTO ACCOUNT THE RADAR CROSS SECTION COEFFICIENTS.

Average SDR: K = 2, R = 2

Radar Potential Game Random Choice

Player 1 (R11,R12) (2.0529, 1.8821) (0.9448, 0.7156)

Player 2 (R21,R22) (2.0700, 1.5869) (0.9283, 0.4574)

Average SDR: K = 3, R = 2

Radar Potential Game Random Choice

Player 1 (R11,R12) (1.9087, 2.1030) (0.7968, 0.9533)

Player 2 (R21,R22) (2.2041, 1.6529) (1.0950, 0.4851)

Player 3 (R31,R32) (2.1522, 2.5003) (1.0138, 1.3580)
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Fig. 5. SDR values for the cluster C1, averaged first, over 1000 instances
with different radar cross section coefficients, and then over the two radars
R11 and R12. in the game theoretic model and the random choice model
for a network with increasing number of clusters. All clusters in the network
consist of two radars.
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