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Abstract—In this paper, a new online vision-based road-
type classification method is proposed. The method uses video
captured by a single video camera and takes into account the
visual information of the whole scene by segmenting the video
frames into temporally consistent frame segments. To this end, we
use a video segmentation algorithm based on evolving Gaussian
mixture models (GMMs). Our method consists of two stages. In
the first stage, we build a priori statistical models of different
road types, one model per road type under consideration. For
this purpose, we use GMMs produced by the video segmentation
algorithm applied to the training video data offline. In the second
stage, new video frames are segmented and classified into one of
several possible road types on the basis of the Bhattacharyya
distance between the Gaussians produced from the new video
frame and the Gaussians from the a priori models representing
the different road types. Experimental results on real-world data
indicate that our method outperforms the state of the art method
in this area in both classification accuracy per road type and
overall classification accuracy.

I. INTRODUCTION

Vision-based road-type classification can be described as
the process of specifying road types based on the video content
of the scene. This task is an important step towards road scene
understanding, which is required in a variety of applications of
situational awareness and fully or semi-automated driving [1].
In such applications, exploiting domain knowledge information
is key. However, extracting domain knowledge information
from the perception of the road environment is a major issue in
autonomous systems [2]; this needs high-quality image/video
processing methods [3].

Over the last three decades, many research contributions
have been made to the area of visual navigation [4]; nonethe-
less, building robust methods is still an open problem [2]. In
recent years, there has been a considerable amount of research
in this area based on different types of sensors, but in terms of
the cost and richness of information, using a monocular camera
is preferable [5]. Examples of work in this area include road
environment classification [3] [1], road detection [6] [7], road
marking [8], road sign detection and recognition [9], on-road
sign analysis [10], off-road environment classification [11], and
highway lane detection [12].

The work presented in [1] [3] focuses on the problem of
road-type classification, as in our work. There are three main
steps in each of these approaches: region selection, feature
extraction and preparation, and classification. Both methods
select three subregions of interest from the frames of the road
video sequences—road, road edge, and road side—but use
different features and classifiers in the second and third steps.
The method in [1] extracts colour, texture, and edge-derived
features and applies k-nearest neighbor (k-NN) and artificial

neural network (ANN) classification approaches, whilst the
method in [3] extracts Gabor texture features and uses the
random forests classifier [13]. The method in [3] achieved
higher accuracy classification than the method in [1], which
we attribute to the selection of strong features.

In both methods [1] [3], three subregions were selected as
the interest regions for the driving environment: road, road
edge, and road side. The properties of these three regions are
captured and used as the key information during classification.
However, there is no guarantee that the subregions capture all
key information. In addition, there are specific cases in which
the above regions are not likely to contain the key information,
such as, for example, when the car turns left or right or is
driven on a rough road. To overcome such issues it is necessary
to take into account all regions in the frame. One way to
achieve this is to use an online video segmentation method and
then compare the detected segments to those usually found in
certain types of roads.

In this article, we propose a method to classify road
types on the basis of the data obtained using a monocular
camera. We consider a four-class problem, as in [1], where
the classes are motorway, off-road, trunk road, and urban
road. Our method consists of two stages. The first stage is
building a statistical model for each road type offline. The
second stage is the online classification of new video frames.
The first stage can be divided into two steps. In the first
step, the training frames are segmented using an evolving
Gaussian mixture model (GMM) [14]. In the second step,
we create a model for each road type from all the Gaussians
taken from video sequences illustrating this road type. The
classification stage can be divided into two steps. In the first
step, an evolving GMM is created for the new frame. We
then use the Bhattacharyya distance [15] to find the distance
between the Gaussians from the new frame and the models
obtained from first stage, which allows us to classify each of
the new Gaussians as belonging to one of the road types. In the
second step, the road type confidence score is calculated based
on the size of the segment corresponding to each classified
Gaussian. Experimental results on real-world data indicate that
our method outperforms the previous state of the art method
in this area in terms of classification accuracy.

The remainder of the paper is organised as follows: In
Section II, we present an overview of an evolving GMM. In
Section III, we discuss the models of different road types. In
Section IV, we give a detailed description of the classifica-
tion approach. Section V provides experimental results, and
Section VI concludes the article.
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II. ONLINE VIDEO SEGMENTATION

We build the road-type models using the evolving GMM
algorithm from [14]. In this section we give a high-level
overview of this algorithm and justify its use. As we men-
tioned in the Introduction, we would like our model to store
information from all regions within a video frame. At the same
time, as we want our method to work in real time, it should
handle this information efficiently.

Several videos are used in order to build the model for each
road type. Each of these videos is processed as follows: For
every frame in the video, we extract visual features from each
of its pixels. We then build a GMM using the features of the
frame, and after building the GMM, all features extracted from
the pixels are discarded. Thus, each frame is represented by a
GMM rather than its pixel features, which saves a significant
amount of computer storage space and memory (in our case
study, we estimate that the GMM representation of a video
frame takes up only 0.03% of the memory that its pixel features
would require).

The representation of a video sequence could simply be the
concatenation of the components of the GMMs, which were
built on all frames of the sequence. However, this would lead
to a complex model that would include a large number of
overlapping components. The evolving GMM algorithm from
[14] overcomes this problem as follows: After concatenating
the GMM components built on all video frames, it merges
the components using a modified version of the expectation-
maximisation algorithm. This process results in a compact
merged model with no overlapping components. The size
of this merged model is similar to that of a simple GMM
generated on a single frame. see [14] for more details regarding
the merging process.

The final model for a road type results from the concatena-
tion of all merged models that were built on video sequences
illustrating this road type. To segment a video frame, each
pixel in the frame is attributed to a segment according to its
probability as estimated with the pdf of the final model. The
chosen method is suitable for online applications; moreover,
it provides consistent segmentation by preserving long-term
information throughout the frames.

III. BUILDING THE ROAD-TYPE MODEL

In this section we describe the process we follow in order
to build a model for each road type. This process is illustrated
in Figure 1. For each road type, i, we select a set Si of m
image sequences illustrating the road type i. The set Si is
given by the equation

Si = {I(1)i , I
(2)
i , ..., I

(m)
i } (1)

where I
(n)
i , n ∈ {1, 2, ...,m} is an image sequence of road

type i. We then extract visual features from every frame of
each image sequence in set Si. Following [16] [14], we achieve
this by representing each pixel in each frame with a five-
dimensional vector that includes the pixel’s colour descriptor
in the Lab colour space and the pixel’s spatial coordinates.
We denote with F

(n)
i the feature representation of an image

sequence I(n)i and thus obtain the set of feature representations
Si
′ as

Si
′ = {F (1)

i , F
(2)
i , ..., F

(m)
i } (2)

We then apply the evolving GMM algorithm from [14] to
all the feature representations of Si

′; thus, each element of Si
′

becomes a GMM. Finally, we concatenate all resulting GMMs
into a unified model. The model Mi for road type i is given
by the formula

Mi = {Lik}k∈{1,2,..,Ni} (3)

where Lik is the kth Gaussian in Mi and Ni is the total number
of Gaussians in Mi. In this work, we consider four road types,
off road, motorway, urban road, and trunk road, following the
suggestion of [1].

In the next section we explain how an input frame is
assigned to a road type using our model.

IV. CLASSIFICATION

We assign an input frame f to a road type Mi by estimating
its proximity to each road-type model. We first build the model
for each frame, Mf , which is a GMM estimated on frame f
given by the equation:

Mf = {Gfj}j∈{1,2,..,Nf} (4)

where Gfj is the jth Gaussian and Nf the total number of
Gaussians in model Mf .

Our next step is to estimate the distance between each
Gaussian from the segmented frame f and the models, using
the Bhattacharyya distance [15], which is defined as

B (Gfj , Lik) =
1

8
(µfj − µik)

T
Σ−1 (µfj − µik)

+
1

2
log

(
det Σ√

det Σfj det Σik

)
(5)

where B (Gfj , Lik) is the Bhattacharyya distance between the
jth Gaussian of the GMM of f and the kth Gaussian of model
Mi. We denote with (µfj ,Σfj) and (µik,Σik) the means and
covariances of the jth Gaussian in f and the kth Gaussian in
model Mi, respectively. For Σ it is the average between Σfj

and Σik.

We then find the minimum distance between the jth

Gaussian in f and the Gaussians in model Mi. This distance,
denoted with βfij , is estimated as

βfij = min {B (Gfj , Lik)} (6)

We classify the Gaussians on the basis of the distances.
We consider four road types; thus, the classification has four
possible decision outcomes. The decision is given by the
equation
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Fig. 1. The process of building the road-type models.

Fig. 2. The pipeline of the classification process.

Dfj = arg min
i
‖βfij‖ (7)

where Dfj is the classification outcome for the jth Gaussian of
f . Equation 7 returns the road type assigned to each Gaussian.

Having classified the Gaussians of f , we estimate the road-

type confidence score Cfi for road type i, which we define as
the percentage of pixels in f that vote for this road type:

Cfi =

Nf∑
j=1

size(Rfj)× (Dfj = i) (8)

where Rfj is the segmented region in f that corresponds to
the jth Gaussian of Gfj . The final decision Ff is made by
selecting the road type that maximises the confidence score:

Ff = arg max
i
‖Cfi‖. (9)

V. EXPERIMENTAL RESULTS

We built the model for each road type using eight videos
of 25 frames each. Thus, each model is built using 200
frames. The videos used for the urban road model were taken
from [17], while the videos for the rest of the road types
were taken from YouTube. The initial resolution of the videos
varied, and the frame rate was between 25 fps to 30 fps. We re-
sized the resolution of all video frames to 640 * 480. All videos
were captured from right-hand drive vehicles and correspond
to the drivers perspective, with legal and safety speed limits
for each road type. For testing, we used 800 video frames
illustrating each road type that were collected in a similar way
as the videos mentioned above. These frames were not used
when building the road-type models.

We also implemented the state of the art method from [3]
to benchmark the performance of our method. We used the
same training and testing datasets as above. The method uses
random forests [13] for classification; however, we gradually
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Fig. 3. Road-type classification results using different methods.

TABLE I. CLASSIFICATION RESULTS IN TERMS OF PERCENT
CLASSIFICATION ACCURACY

Road types and methods Our method State of the art [3]

Off Road 93.6% 60.4 ±3.47%
Motorway 100% 96.8 ±1.00%

Urban Road 100% 96.6 ±0.49%
Trunk road 90.3% 69.7±5.05%

Overall 96% 80.9 ±2.5%

increased the number of trees in the forest and finally used
100 trees, which gave the highest classification accuracy. For
more than 100 trees, the gain in classification accuracy was
insignificant. We ran the random forests classifier 10 times and
recorded the mean and standard deviation of the classification
accuracy.

The classification results in terms of percent classification
accuracy for both methods are presented in Table I and
Figure 3. Our method achieves higher classification accuracy
than the method from [3] for each road type individually
and, consequently, higher overall classification accuracy. The
difference between the two methods is more evident in the clas-
sification of the off-road environment. Our method achieves
93.6% classification accuracy for this road type, while the
accuracy for [3] is 60.4%. This is due to the fact that [3]
extracts its features from three predefined subregions in the
video frame. However, there is no guarantee that the key
information of the scene is always contained within these
regions. Since our method collects features from the entire
scene, it is expected that in environments where the scenery
is more variable, such as in the off-road case, our method will
achieve higher classification accuracy.

VI. CONCLUSION

In this work we proposed a method for classifying road
types based on video segmentation and the evolving GMMs.
All information from the visual content of the scene was used
without giving any priority to spatial or perceptual areas of the
scene. We considered a four-class problem with four different
road types. For testing and comparison with the previous state
of the art method in [3], we selected several video sequences of
different road types each comprising several hundred frames.

We implemented both our method and the method in [3]
and split the above dataset into training and testing parts,
respectively.

The experimental results demonstrated that our method
outperformed the method in [3] in both classification accuracy
per road type and overall classification accuracy. We attribute
the results to using the information from all areas of the
frames. However, the state of the art method in [3] is faster
than our method. Our method is online, and there is room for
optimisation. Future work will investigate the optimisation of
our method as well as testing on more datasets.
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