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What is SVM?

A classifier based on Convex Optimisation Techniques.

Unlike many mathematical problems in which some form of explicit formula based 

on a number of inputs resulting in an output, in classification of data there will be 

no model or formula of this kind. In such cases the system should be trained to 

be able to recognise the inputs. 



Why SVM?

Many classification algorithms do not perform efficiently when

a) The number of features is high,

b) There is a limited time for performing classification,

c) There is a non-uniform weighting among the features,

d) There is a nonlinear map between the inputs and the outputs,

e) The distribution of the data is not known,

f) The convergence is not convex (monotonic), so it may fall into a local minima.

Among the supervised classifiers support vector machines (SVM) is the one, which 

performs well in the above situations. SVM was initiated in 1979 by Vapnik.

It was used for isolated handwritten digit recognition (Cortes and Vapnik, 1995; 

Scholkopf, Burges, and Vapnik in 1995, 1996, and 997), object recognition 

(Blantz et al., 1996), speaker identification (Schmit, 1996), channel quark 

detection, face detection (Osuna, Freund, and Girosi), text categorization 

(Joachims, 1997)



Linear Discriminant Functions
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Figure 1 A two dimensional separable dataset 

 

A discriminating function could be defined as: 
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Infinite number of possible planes !  
 

 

 
 

Figure 2 A separating hyperplane 



The set of input vectors is said to be optimally separated by the hyperplane 

if they are separated without error and the distance between the closest 

vector and the hyperplane is maximal.  

 

So only one hyperplane ! 

 

 

 
Figure 3 An optimal separating hyperplane 



Using Convex Hulls 
 

 
Figure 4 Convex hulls 

 

By examining the hulls one can then determine the closest two points lying on the hulls of each class 

By constructing a plane that is perpendicular and equivalent to these two points should result in an 

optimal hyperplane and a robust classifier.  
 

 
Figure 5 Graphical determination of the convex hulls 

 

The three data points identified with circles are the Support Vectors (SVs). 
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SVM ; A mathematical solution

Separable Data 

 

We start with the simplest case: linear machines trained on separable data 

(as we shall see, the analysis for the general case; nonlinear machines 

trained on non-separable data results in a very similar quadratic 

programming problem).  
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Figure 6: Linear separating hyperplane for the separable case. The support vectors 

are circled 



SVM ; A mathematical solution

Suppose we have a hyperplane which separates the positive from the 

negative examples.  

The points x which lie on the hyperplane satisfy w.x + b = 0, where w is 

normal to the hyperplane, 

w/b  is the perpendicular distance from the hyperplane to the origin,  

w  is the Euclidean norm of w.  

“Margin” as in the figure 

The support vector algorithm simply looks for the separating hyperplane 

with largest margin.  



The Approach

Reduce the problem into convex optimisation by minimising a quadratic function under linear inequality 

constraints. 

Inherent degree of freedom for the features’ scales to allow the margins to be set to be equal to 1 for simplicity 

and subsequently minimise the norm of the weight vector.  

 

To find the plane farthest from both classes of data, we simply maximise the margin between the supporting 

canonical hyperplanes for each class.  

 

The support planes are pushed apart until they meet the closest data points, which are then deemed to be the 

support vectors (circled in Figure 6).  

 

So 
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combined into   iby ii  01.wx ,  

The margin between these supporting planes (H1 and H2) can be shown to be w/2 .  

To maximise this margin we therefore need to  

 

minimise w.w  
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Solve using Lagrange Multipliers

This leads to minimisation of an unconstrained empirical risk function 

(Lagrangian) which consequently results in a set of conditions called 

Karush-Kuhn-Tucker (KKT) conditions as follows. 

 
Figure 6: The constraints for the SVM 

 

To perform Lagrangian optimisation we must construct the so-called 

primal form; 
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where i are the Lagrange multipliers.  



Minimise with respect to w, b and maximise with respect to i  0; 
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By replacing into the primal form we get the dual form as 
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which is reduced to the following optimization: 
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Solvable using QP 

Next few slides provide an overview of convex optimization techniques, but we are interested 

only on the linearly constrained quadratic programming and KKT conditions.



Example of an unconstrained optimization problem
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Examples of constrained optimization problems
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Examples of constrained optimization problems
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Examples of constrained optimization problems
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Convex Optimization Problem
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The objective function must be convex. 

Inequality constraint functions must be convex. 

The equality constraint function must be affine. 

 

The feasible set of a convex optimization problem is convex. 
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i.e.  A convex objective function is minimised over a convex set. 

• Linear Programming (LP)

• Linear Fractional Programming 

• Quadratic Programming (QP)

• Quadratically Constrained Quadratic Programming (QCQP)

• Second Order Cone Programming (SCP)

• Geometric Programming (GP)

• Semidefinite Programming (SDP)



Linear Programming (LP)

bxA

hxG

xcT




  subject to

   minimise

 

 



Linear Fractional Programming (LP)
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Quadratic Programming
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Quadratically Constrained Quadratic Programming
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Second Order Cone Programming (SP)
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Geometric Programming
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Semidefinite Programming
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KKT conditions 
 

Consider the following convex optimization problem [13], 
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We can define Lagrangian associated with the above optimization problem as 
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The Lagrange dual function is defined as 
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Assume )(xfi and )(xhi  are differentiable.  Let *x  and ( *
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points with zero duality gap. For a problem in which strong duality obtains, the following KKT 
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The last condition is known as complementary slackness. 



Non Separable Case

Can we use a complicated nonlinear hyperplane to perfectly separate the 

datasets? 

 

overfitting problem ! 

 
Figure 7. Encompassed regions for non-separable case 

 

The datasets are no longer linearly separable.  

The ideal solution where no points are misclassified and no points lie 

within the margin is no longer feasible.  

So relax the constraints to allow for the minimum amount of 

misclassification.  

Use a soft margin classifier. 



 
 

Figure 8. Support vectors in a non-separable case with a linear hyperplane. 
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Figure 9. Soft margin and the concept of the slack parameter 

 

For an error to occur, the corresponding i must exceed unity. 
i

i  is an 

upper bound on the number of training errors.  



The objective function changes to   
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The primal form will then be: 
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So the dual form will be 
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Again, by considering that 
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This is similar to the maximal marginal classifier.  

 

The only difference is the new constraints of Crα ii  , where ri  0, hence 

Cαi 0 .  

 

This implies that the value C, sets an upper limit on the Lagrangian 

optimisation variables iα .  

 

The value of C offers a trade-off between accuracy of data fit and 

regularization. A small value of C (i.e. <1) significantly limits the 

influence of error points (or outliers), whereas if C is chosen to be very 

large (or infinite) then the soft margin approach becomes identical to the 

maximal margin classifier.  

 

The choice of the value of C will depend heavily on the data. Appropriate 

selection of C is of great importance and is an area of research.  

One way to set C is gradually increasing C from max ( iα ) for i, and find 

the value for which the error (outliers, cross validation, or number of 

misclassified points) is minimum. Finally, C can be found empirically. 



Multi-Dimensional Feature Space

There will be no change in formulation of the SVM ! 

 

 
Figure 10. A three-dimensional hyperplane 



Nonlinear Discriminant Functions

As can be seen in Figure 11, the datasets are separable if a nonlinear hypeplane is 

used.  

Kernel mapping offers an alternative solution by non-linearly projecting the data 

into a (usually) higher dimensional feature space to allow the separation of such 

cases. 

 

 
Figure 11. Nonlinear discriminant hyperplane 

 

The key success of Kernel mapping is that special types of mapping that obey 

Mercer’s theorem, sometimes called Reproducing Kernel Hilbert Spaces (RKHS), 

offers an implicit mapping into feature space. 
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This means that the explicit mapping need not be known or calculated, rather the 

inner-product itself is sufficient to provide the mapping.  



This simplifies the computational burden dramatically and in combination 

with SVM’s inherent generality largely mitigates the so-called curse of 

dimensionality. Further this means that the input feature inner-product can 

simply be substituted with the appropriate Kernel function to obtain the 

mapping whilst having no effect on the Lagrangian optimisation theory.  

 

Hence, 
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The relevant classifier function then becomes 
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All the benefits of the original linear SVM method are maintained.  



We can train a highly non-linear classification function such as a 

polynomial or a radial basis function or even a sigmoidal neural network 

using robust and efficient algorithm that do not suffer from local minima.  

 

The use of Kernel functions transforms a simple linear classifier into a 

powerful and general non-linear classifier.  

 

 

Some examples of popular reproducing Kernel Hilbert Space functions 

used in SVM: 
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Exponential Radial Basis Function 
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Multi-Layer Perceptron    cvuvuK  .(tanh),(   



Over fitting problem

Potentially it is possible to fit a hyperplane using an appropriate Kernel to 

the data in order to avoid overlapping the sets (or non-separable cases) and 

therefore produce a classifier with no error on the training set. In a two-

dimensional case it may look like Figure 12.  

 

This however, is unlikely to generalize well.  

 

Not robust any more since a testing or new input can be misclassified 

easily.  

 

 
 

Figure 12. Overfitting problem 



Conclussion

In summary, SV classifiers (SVCs) in the form of maximal margin classifier and in particular, the 

soft margin classifier with Kernel functions, bring many advantageous properties to the problem of 

pattern classification. 

 

 SVM is a classifier based on conventional risk minimisation (min(y-f(x,)) using convex 

optimisation. 

 SVCs find the optimal separating hyperplane by maximising the margin between classes and 

thereby minimise complexity and risk of overfitting. 

 They are simple to implement, are computationally efficient (trained fast) and in particular new 

algorithms based on sequential minimal optimisation (SMO) [6] scale to extremely large 

datasets. 

 Kernel functions allow efficient mapping into high dimensional feature space implicitly, 

without burdensome explicit calculation and circumvent the so-called “Curse of 

Dimensionaity”. 

 Nonlinear Kernels facilitate the optimal classification of all types of datasets with little or no 

prior information on the underlying characteristics of the dataset. 

 Multi-class SVCs [5] have been developed for m-ary classification applications. 

 SVCs have proven to be highly effective in a wide variety of real-world applications often 

offering considerable improvement over competing methods. 
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KKT conditions 
 

Consider the following convex optimization problem [13], 
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We can define Lagrangian associated with the above optimization problem as 





p

i

ii

m

i

ii xhvxfxfxL
11

0 )()()(),,(   

 

The Lagrange dual function is defined as 
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The last condition is known as complementary slackness. 


