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ABSTRACT

Generalised wide are search and surveillance is a
common-place tasking for multi-sensory equipped au-
tonomous systems. Here we present on a key support-
ing topic to this task - the automatic interpretation,
fusion and detected target reporting from multi-modal
sensor information received from multiple autonomous
platforms deployed for wide-area environment search.
We detail the realization of a real-time methodology for
the automated detection of people and vehicles using
combined visible-band (EO), thermal-band (IR) and
radar sensing from a deployed network of multiple au-
tonomous platforms (ground and aerial). This facili-
ties real-time target detection, reported with varying
levels of confidence, using information from both mul-
tiple sensors and multiple sensor platforms to provide
environment-wide situational awareness. A range of au-
tomatic classification approaches are proposed, driven
by underlying machine learning techniques, that facili-
tate the automatic detection of either target type with
cross-modal target confirmation. Extended results are
presented that show both the detection of people and
vehicles under varying conditions in both isolated rural
and cluttered urban environments with minimal false
positive detection. Performance evaluation is presented
at an episodic level with individual classifiers optimized
for maximal each object of interest (vehicle/person) de-
tection over a given search path/pattern of the envi-
ronment, across all sensors and modalities, rather than
on a per sensor sample basis. Episodic target detec-
tion, evaluated over a number of wide-area environment
search and reporting tasks, generally exceeds 90%-+ for
the targets considered here.

1. INTRODUCTION

We present a real-time approach for the detection of
people and vehicle targets using combined visible-band
(EO), thermal-band (IR) and radar sensing from a de-
ployed network of multiple autonomous platforms with
results proven over extended wide-area evaluation tri-
als. Autonomous target detection is an important as-
pect of autonomous platform deployment for wide-area
search and surveillance.

Despite a range of prior work on both target de-
tection and automated sensor understanding [1], wide-
scale multi-sensor platform deployment raises a num-
ber of empirical and theoretical challenges largely un-
addressed in prior studies [2-4]. Here, we present the
autonomous detection of {people|vehicles} using an au-
tonomous sensing network of aerial (UAV) platforms
[5-7] and ground (UGV) platforms [8]. This is used
as an empirical test case to explore the optimization
of an observation model for the environment when dis-
tributed over multiple sensors, platforms and resulting
target detection signatures. With an ever increasing
use of remote deployed autonomous systems the prob-
lem of reviewing, processing and effectively reporting
the sensor information they gather is one of growing
significance with notable parallels in ground-based sen-
sor networks [9, 10]

Prior work in the field is generally limited to the case
of automated ground surveillance (the camera network
case [9, 11-14]), isolated to the UAV based detection
[5, 7, 15-18] with only very limited wide-scale consid-
eration of multi-platform dual aerial and ground plat-
forms within the same sensing scenario [19, 20]. No-
tably prior work does not address autonomy within this
context [19, 20] and work considering multi-modal de-
tection is in its infancy [7, 17, 18]. Of those aerial tech-
niques addressing autonomous target detection most
borrow heavily from the state of the art in generalised
object detection such as [7, 17, 21, 22] but with often
aerial detection specific enhancements (e.g. [7, 22]).
Many state of the art approaches offer far from real-
time performance as was recently noted in the pedes-
trian specific survey of [4] and also noted within the
wider overviews offered by [1, 2].

By contrast here we address the key challenge of
real-time detection within a deployed network of au-
tonomous sensing platforms that transit a given envi-
ronment (both ground and aerial). Furthermore we
challenge prior evaluation approaches based on per-
sample or per-signature performance (e.g. [2-4]) to
consider the concept of episodic evaluation (i.e. tar-
get detection over the entire task/mission). Essen-
tially we address the following key issue with relation
to such multi-platform deployment:- given an search
path and sampling strategy for the platform within the



environment (including multi-passes/samples per tar-
get), the characteristics of the sensors (constrained by
weight /power /bandwidth) and a priori precision/recall
characteristics of multiple classifiers how can episodic
performance be maximized (Section 2).

Our people and vehicle targets are automatically de-
tected using a multi-stage classification approach com-
bining information from on-board {visible, thermal}
(Unmanned Air Vehicle, UAV) and {visible, thermal,
radar} (Unmanned Ground Vehicle, UGV) sensing us-
ing an ensemble of variable signature classifiers (Section
2.1 and 2.2). These detections are combined temporally
and spatially to facilitate consistent wide-area target
detection and real-time situational awareness (Section
2.3). Each target detection is reported with a varying
detection confidence, derived directly from multi-modal
signature classification, further facilitating target pri-
oritization and platform re-tasking where further local-
ized sampling for target confirmation may be required
(Section 2.3). Extended results are presented from
three wide-area system trails carried out in the UK,
including the MoD Grand Challenge (2008) and sub-
sequent wide-area testing (Section 3). Our approaches
are shown to be robust to highly variable imagery and
variable conditions resulting in high accuracy target de-
tection and localization within the environment (Sec-
tion 4).

Overall, the under-taking of multi-platform search
and surveillance encompasses a wide-range of related
system technologies relating to the platforms in use,
wide area communications, autonomous platform task-
ing and effective visualization of detected targets for
effective environmental awareness. This paper solely
concentrates on the aspects of multi-modal target de-
tection as developed, and effectively demonstrated for
use in such a system. These other aspects of the sys-
tem are not detailed in this study other than the brief
overview provided in Section 2.1.

2. WIDE AREA SEARCH AND
SURVEILLANCE

We present our work on this topic in three stages. First,
we present a brief overview of the autonomous sensor
platforms in use and specifically their multi-modal sens-
ing capabilities (Section 2.1). The focus of this paper,
namely the autonomous target detection within this
wider system, is presented in Section 2.2 followed by an
overview of how this capability fits into target reporting
and analysis over a wide-area search and surveillance
task (Section 2.3).

2.1 Sensor Platforms

The demonstrator system used for this work comprises
of one Unmanned Ground Vehicle (UGV) and up to
several Unmanned Air Vehicle (UAV) platforms com-
municating to a central ground control station via a
combination of a high-power 2.4GHz radio network con-
figured for ad-hoc data routing in an inter-platform over
a mesh topology [23] and non-line of sight Coded Or-
thogonal Frequency Division Multiplexing (COFDM)
dedicated network links [24].

Figure 1. Marshall System Design Group UGV (left); Blue
Bear Systems Research UAV (right)

The UGV, developed by Marshall System Design
Group (Petersfield, UK), comprises a 250Kg ruggedi-
zed platform capable of 3-6.5mph speed and operational
endurance (time on mission) > 90 min from on-board
electrical power (Figure 1 left). The platform is de-
signed to follow GPS way-points tasked via the com-
munications network and operate using a pathway de-
tection obstacle avoidance capability [8]. For such col-
lision avoidance the platform is equipped with both a
forward facing drive camera and time-of-flight planar
laser scanner (Figure 1 left). For multi-modal target de-
tection the platform is equipped with an un-cooled far
infrared camera (Thermotekniz Miricle 307k, spectral
range: 8-12um), a visible-band colour camera ( Vision-
hitech VC57WD-24, spectral range: ~400-700nm) and
a forward-facing TRW AC100 medium range radar (as
per [25]).

The Unmanned Air Vehicle (UAV) platform(s), de-
veloped by Blue Bear Systems Research (Bedford, UK),
is a variant on their Blackstart platform with a 1m+
wingspan, operating weight of <1.8kg and operational
duration > 40 minutes flight duration [6]. Control is
via an on-board auto-pilot control system from which
the platform can be tasked via GPS way-point control
including autonomous launch and recovery. For target
detection the current platform is equipped with dual
gimbled cameras and a bespoke sensor selection:- an
un-cooled far infrared (thermal-band) camera (Ther-
motekniz Miricle 307k, spectral range: 8-12um) and a



visible-band colour camera (PCB-685B 1/3" Sony In-
terline CCD, spectral range: ~400-700nm). FEarlier
versions of the platform were equipped with a fixed
visible-band colour camera (Sony 1/3" Sony Interline
CCD) positioned at 45° angle to the horizontal in the
direction of flight [5]. The UAV operates at approxi-
mately a 60m altitude.

Both platforms provide 1Hz image feeds from both
sensors at PAL resolution, compressed to a 32Kb per
image via JPEG 2000 [26], for transmission back to the
ground station for processing using either ground or
aerial specific autonomous target detection approaches.

2.2 Autonomous Target Detection

Autonomous target detection is performed on the im-
age feeds received from the remote platforms using a
combination of object detection approaches specifically
targeted to the detection of people and vehicles from
both a ground-based (UGV) and aerial (UAV) perspec-
tive view over the varying sensor modalities. The ap-
proaches in use are specifically selected due to their
real-time performance on commodity hardware.

2.2.1 Ground Detection - People and Vehicles

Our ground detection approaches, operating from the
UGV platform for people and vehicle detection, operate
using a common two stage approach of 1) fast candidate
localization using a cascaded Haar classifier and 2) sec-
ondary target confirmation using Support Vector Ma-
chine (SVM) classification. This approach is used for
images from both the visible-band and thermal-band
cameras on the UGV.

Fast Candidate Localization first identifies poten-
tial candidate targets within sub-regions of the im-
age using cascaded Haar classifiers [27, 28]. Cascaded
Haar classifiers were firstly proposed sometime ago by
[27] with later improvement by [29] with the primary
aim of face detection of faces [28]. Despite their ma-
turity against more recent contemporary techniques
[2, 3, 30, 31], they remain one of the few real-time detec-
tion approaches [27, 32| capable of operating without
prior foreground segmentation and hence from a mov-
ing platform [4, 33].

The concept is to use a conjunctive set of weak clas-
sifiers to form a strong classifier - in this instance, a
cascade of boosted classifiers applying Haar-like fea-
tures. These Haar features are essentially drawn from
the spatial response of Haar basis functions and deriva-
tives (hence Haar-like features [29]) to a given type of
feature at a given orientation. In practice these features

are computed as the sum of differences between vary-
ing rectangular sub-regions at a localised scale which
although limited in scope as individual features can be
computed extremely efficiently (relying only on inte-
ger mathematics). Individually, they are weak discrim-
inative classifiers but when combined as a conjunctive
cascade a powerful discriminative classifier can be con-
structed capable of recognising common structure over
varying illumination, base colour and scale [28, 33]. The
cascaded classifier is trained via boosting, specifically
AdaBoost [34], to select a maximally discriminant sub-
set of these Haar-like features from the exhaustive and
over-complete set. This subsequently acts as a multi-
stage cascade [27]. In this way, the final cascaded Haar
classifier consists of several key simpler (weak) clas-
sifiers that all form a stage in the resultant complex
(strong) classifier. These simpler classifiers are essen-
tially degenerative decision-tree classifiers that take the
Haar-like feature responses as input to the weak clas-
sifiers and return a boolean pass/reject response. A
given region within the image must then achieve a pass
response from all of the weak classifiers in the cascade
to be successfully classified as an instance of the ob-
ject the overall strong classifier has been trained upon.
The classifier is then evaluated over a query image at
multiple scales and multiple positions using a sliding
search window approach over the image [27]. Despite
this apparent exhaustive search element of the classi-
fier, the nature of the cascade (sorted in order of most
discriminative feature) allows the early rejection of the
majority of such search windows with only a minimal
sub-set of the features present in the cascade being eval-
uated. As a result we achieve the “fast rejection” of
the majority of image search windows using only mini-
mal computational effort. In this way the Haar cascade
classifier thus combines successively more classifiers in
a cascade structure which eliminates negative regions
as early as possible during detection but focuses atten-
tion on promising regions of the image. This detec-
tion strategy dramatically increases the speed of gener-
alised object detection whilst providing an underlying
robustness to changes in scale and maintaining achiev-
able real-time performance [27, 28].

Secondary Target Confirmation takes every
search window identified as target candidate in the first
stage and uses a secondary SVM classifier to perform
target confirmation. Each search window is first re-
sized to common patch size, r X ¢, dependent on the
target type, {people, vehicle}. From this re-sized patch,
a feature vector, v;, constructed of the Laplacian filter
response at each pixel location, p;, for a given patch



Figure 2. Example people target detection in thermal-band imagery under varying ambient thermal conditions.

Sizev rXe, such that ’U_; = {flaplace(pi)y (123} flaplace(prc)}
where fiapiace() is the 2D Laplacian response at a given

pixel location using a 3 x 3 filter kernel [35]. This fea-
ture vector forms the input to a two-class SVM classi-
fier, {target, target}, for a given target type (following
the approach of [36]). This SVM classifier is trained,
using a RBF kernel, with grid-based kernel parameter
optimization, within a cross-validation based training
regime [34].

Classifier Generation is performed, following the
aforementioned methodology, for both people and ve-
hicle by performing training over a set of manually la-
beled positive and negative examples. For people de-
tection, we use a data-set of approximately 2000 posi-
tive examples (people) and approximately 11,000 neg-
ative (non-people) examples randomly selected from
the same source imagery. The negative set is again
randomly sub-sampled to generate 2000 negative (non-
people) examples for each stage of the cascaded Haar
classifier training whilst it is used in full for training the
secondary SVM classifier with the addition of another
2400 negative examples. This training procedure is per-
formed for both visible-band and thermal-band imagery
to generate a trained classifiers for detection that oper-
ates independently in each modality. For thermal im-
agery an additional two-stage classifier pair is generated
using only the upper-torso portion of the human body
to facilitate detection in some partial occlusion cases.
A subset of the training examples used for people de-
tection in the thermal-band imagery case is shown in
Figure 3 (left) where we see a variety of body pose, en-
vironment clutter and ambient thermal conditions over
the imagery.

Vehicle detection is handled slightly differently
whereby we use a part-model based approach, similar
in principle to that of [3] but realized using a set of dis-
joint two-stage classifier pathways, based on the same
Fast Candidate Localization [28] — Secondary Target
Confirmation [36] format outlined previously, for each
of a number separate vehicle parts. Vehicle detection
is based on the discrete detection of one or more of the

set of vehicle sub-parts {wheel, front, rear, side}. As
discussed later in Section 2.3, detection of one or more
of these parts is used translated as varying confidence
of vehicle present.

For vehicle detection, we use a data-set of approx-
imately 600 positive examples (per sub-part) and
approximately 12,000 negative (non-vehicle) examples
randomly selected from the same source imagery. The
negative set is again randomly sub-sampled to generate
2000 negative (non-vehicle) examples for each stage of
the cascaded Haar classifier training whilst it is used in
full for training the secondary SVM classifier with the
addition of another 2400 negative examples. Here, this
training procedure is performed for only visible-band
imagery to generate a trained classifiers for this
modality only. A subset of the training examples used
for the sub-part detection is shown in Figure 3 (right)
where we see examples of wheels, front/rear bumpers
and vehicle sides.

Figure 2 illustrates the use of this approach for
thermal-band people detection under varying ambient
thermal conditions, with minimal false-positive detec-
tion, whilst part-wise vehicle detection in visible-band
imagery is shown in Figure 4.

2.2.2 Ground Detection - People in Buildings

In addition to generalized people detection (Section
2.2.1), we employ an additional specific detection tech-
nique targeting the detection of people within open
building orifices (apertures) occurring in a generalized
urban environment. We use a two stage approach to
first detect potential building apertures within the en-
vironment using visible-band sensing and then check
for the presence of either a human torso or a complete
human body outline using thermal-band sensing.

Building Aperture Detection is performed on
the visible-band image via a combination of edge de-
tection [37], image morphology, geometric reasoning
and colour-difference based candidate rejection. Firstly
edge detection performed via [37] and post-processed
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Figure 3. Example labeled training data examples for thermal-band people detection (left) and visible-band vehicle sub-

part detection (right)

with traditional image morphology [35]. A set of
straight lines are then extracted from this set using the
Principle Components Analysis (PCA) driven approach
of [38]. Following this approach, the post-processed
edge detection results are split into connected segments
and for each segment a covariance matrix is calculated
from its pixel positions. PCA on this covariance matrix
is used to determine whether the segment is a straight
line, independent of its orientation, based on its second
eigenvalue being less than a given threshold, Tstraight-
The resulting set of straight lines are divided into two
sets based on their angle to the image horizontal, 6,
as either a horizontal line relative to likely orientation
of a building to the camera (150 < 6 < 165) or ver-
tical (80 < 6 < 100). These two sets of lines, hori-
zontal and vertical, are then searched to find a maxi-
mally consistent set of parallel vertical line pairs that
additionally have a maximum of two co-joining hori-
zontal lines to form a complete or semi-complete rect-
angular /parallelogram. This set is finally filtered based
on size (relative to the image dimensions) and on the
ratio of height to width, reperture = height : width,
such that roperture < 1.50 for window apertures and
Taperture < 1.50 and 7eperture > 2.3 for doorways. The
result is a list of scene rectangles representing all of
the potential building aperture candidates in the scene

Figure 5. Example scene rectangles (left) and identified
building apertures (right)

as shown in Figure 5. In this example (Figure 5) we
see a number of scene rectangles corresponding both to
building features as well as open and closed building
apertures identified by varied coloured line overlays.

Subsequently, this set of scene rectangles (e.g. Figure
5) is further filtered based on an calculating the mean,
Maperture, a1d standard deviation, oeperture, of bright-
ness (greyscale intensity) for the pixels on the two diag-
onal lines joining opposite corners. If the corresponding
scene region appears two bright, maperture > Tmean, OF
the distribution of values is to wide, oaperture > To,
then this rectangle is rejected as a potential open aper-
ture in the building. A resulting subset of open building
apertures is identified in the scene as illustrated by the
white (4 sides detected) and blue (three sides detected)
rectangular overlays in Figure 5 (right).



Figure 6. Identified building apertures and corresponding
human traces (thermal) used for training

Human Trace Detection makes use of the co-
registered thermal-band image to detect the presence
of a person within the identified building aperture (de-
tails Section 2.3.1). The sub-region in the thermal-
band image corresponding to each building aperture
is extracted, thresholded using the mean pixel value
of the region and re-scaled to width x height =
50 x 50 pixels. From this re-sized patch, a fea-
ture vector is constructed to capture both the shape
distribution of any thermal trace within the build-
ing aperture and the aspect ratio of that aperture
(prior to re-scaling, reperture). This feature vector,
v;, is constructed by concatenating both the verti-
cal (column-wise) and horizontal (row-wise) histogram
projections of this re-scaled thesholded image region
with the aspect ratio for each detected aperture 4,
172 = {hiStogramverticalahiStogramhorizontalaraperture}-
histogra_;?%ertiml and histogrm_ﬁhozionml are both 50
element histogram projections resulting in a feature
vector representation of 101 for each aperture. This
feature vector forms the input to a four-class neural net-
work classifier, { full —body, hal f —body, empty, non—
human} detecting full or partially occluded people
whilst ignoring apertures which are empty (no ther-
mal trace) or contain a non-human (shaped) thermal
trace. This neural network classifier is trained, using a
standard sigmoid activation function via backpropog-
ation, within a k-fold cross-validation based training
regime (k = 5). [34]. The cross-validation based train-
ing approach is used to select a maximally perform-
ing three-layer network topology with a single hidden
layer comprising of 28 hidden nodes. Training was per-
formed using approximately 3,500 examples split evenly
over the four possible classes. A subset of the examples
used for training are shown in Figure 6 (inset) together
with a range of varying building apertures from which
the training set where taken (Figure 6). Example de-

Figure 7. Identified building apertures (visible-band, white
boxes) and those apertures thermal-band human traces
(left) shown within the original aperture (visible-band,
red).

tections of humans within building apertures are illus-
trated in Figure 7 where we see a range of such detec-
tions in both windows and doorway apertures.

2.2.3 Aerial Detection - People and Vehicles

Our corresponding aerial detection approaches, for both
people and vehicle targets, have been previously re-
ported in depth in [5, 7]. This work [5, 7] uses a similar
two stage approach of 1) fast candidate localization us-
ing a cascaded Haar classifier and 2) secondary target
confirmation using either multivariate Gaussian shape
matching (people) or thermal trace detection (vehicles).
This approach is used for images from both the visible-
band (vehicles) and thermal-band cameras (people) on
the UAV.

The automatic detection of vehicles is based on using
multiple trained cascaded Haar classifiers, each follow-
ing the approach outlined in Section 2.2.1, each trained
on varying vehicle orientations with secondary confir-
mation in thermal imagery based on segmented “ther-
mal race” analysis. Furthermore, the related approach
for people detection is similarly based on multiple cas-
caded Haar feature classifiers (Section 2.2.1) with sec-
ondary multivariate Gaussian shape matching on the
thermal contour of the person. Further detail is re-
ported fully in [5, 7].



The results presented show the successful detection
of vehicle and people under varying conditions in both
isolated rural and cluttered urban environments with
minimal false positive detection (Figures 11 - 15).

2.3 Target Analysis

Based on our target detection approaches over varying
modalities we now address the key issues of a) multi-
modal integration within the sensor suite of a given
sensor platform (Section 2.3.1) and b) target position
estimation relative to a given sensor platform deployed
within the environment (Section 2.3.2).

2.3.1 Multi-modal Integration

Multi-modal integration occurs at two levels across the
two sensor platform types, UGV and UAV. The visible-
band and thermal-band imagery are co-registered using
a 2D homography mapping (for UGV and UAV) whilst
the radar field-of-view is calibrated against that of the
imaging sensors (UGV only). This approach is similar
to that used in the related dual visible/thermal band
work of [7, 39] and contemporary work of [17].

Following the approach outlined in [39], we recover
the transformation between the two image planes, for
visible-band camera and thermal-band camera, permit-
ting the use of common reference frames for the two
camera sensors in terms of “in image” target position-
ing. This transformation is denoted as the planar ho-
mography that projects one image plane (thermal) to
the other (visible) and is readily expressed in terms of
the matrix transformation:

(1)

where aj, is a point in the thermal (infrared) im-
age and ay, is the corresponding point in the visible
image (i.e. same point in the scene). Parameter s is
an arbitrary scale factor, H is a 3 x 3 transformation
matrix and both points are homogeneous coordinates,
av, = {zv,,yv;,0}T a;s, = {1,,y1,,0}T. In order to
compute homography matrix H, four planar points in
both views are selected (i.e. four correspondent points
in the thermal image, {ay, : ¢ € 1..4} and in the visible
image, {avy, : ¢ € 1..4}) from which H is recovered by
solving the resulting least-squares optimization posed
by Eqn. 1 over the two correspondent point sets [40].

ay = sHay

In Figure 8 we can both visible-band and thermal-
band images from the UGV platform (left/middle) and
the resulting overlay of one image onto the other (ther-
mal onto visible) using an image to image plane ho-
mography mapping (right). This effectively facilitates

the creation of a resulting four channel multi-modal, or
extending spectral range, image comprising of the origi-
nal three RG'B colourspace channels of the visible-band
image (spectral range: ~400-700nm) and an additional
fourth thermal channel (spectral range: 8-12um) (see
Figure 8 (right)). This allows targets detected within
the image plane geometry of either sensor (Section 2.2)
or specific image regions (Section 2.2.2) to be readily
considered across these two sensing modalities in sub-
sequent analysis (Section 2.3.1). Looking at the detail
of the resulting homography image registration of Fig-
ure 8 (left), we can see that the visible and thermal
images do not completely align for objects at all scene
depths due to parallax between the images [39, 40] (e.g.
Figure 8, left - edges of scene buildings). This limitation
is similarly noted in earlier work [7, 17, 39| but empir-
ically this approach is sufficient for level of spatial ac-
curacy required for such cross-spectral sensor mapping
in this application.

On the UGV platform, in addition to visible and
thermal-band sensor co-registration, the radar sensor
is similarly calibrated to the reference frame of the
visible-band camera using the sensor fusion technique
described in [25] (TRW, Solihull, UK). This sensor is
used to both confirm target presence at given scene lo-
cation (based on radar return) and for distance to target
estimation.

2.3.2 Target Position Estimation

Based on automated detection (Section 2.2), integrated
over multiple sensing modalities (Section 2.3.1), target
position is initially known with “sensor space” (i.e. po-
sition within the image or radar field of view). Whilst
target position can be recovered from the radar sensor
on the UGV platform this offers only a ground plane
distance capability (not for targets above ground level,
e.g. Section 2.2.2) and is not available for target posi-
tioning from the UAV platform. Consequently, target
position is estimated based on the principles of pho-
togrammetry together with knowledge of the perspec-
tive transform under which targets are imaged and an
assumption on the physical (real-world) dimension of a
target in one plane.

All targets are imaged under a the standard perspec-
tive projection [35] as follows:

(2)

where real-world object position, (X,Y,Z), in 3D
scene co-ordinate space is imaged at image pixel posi-
tion, (z,y), in pixel co-ordinate space for a given cam-
era focal length, f. We assume both positions are the

X Y
fU:f?,y:fE



Figure 8. Visible-band image (left), thermal-band image (middle) and resulting image registration (visible-thermal overlay)

(right).

centroid of the object with (x,y) being the centre of
the bounding box, of the image sub-region, for a target
(object) detected in the scene (Section 2.2, e.g. Figure
2).

With knowledge of the camera focal length, f, the
original object (target) position, (X,Y,Z), can be re-
covered based on (assumed) knowledge of either ob-
ject width, AX, or object height, AY (i.e. the differ-
ence in minimum and maximum positions in each of
these dimensions for the object). From the bounds of
the detected targets (Section 2.2) we can readily re-
cover the corresponding object width, Az, and object
height, Ay, in the image. Based on this knowledge, re-
arranging and substituting into Eqn. 2 we can recover
the depth (distance to target, Z) of the object position

as follows:
AY

Z:f/Ty (3)

Knowing Z via Eqn. 3, we can now substitute back
into Eqn. 2 and with knowledge of the object cen-
troid in the image, (z,y), we can recover both X and
Y resulting in full recovery of real-world target position,
(X,Y, Z), relative to the sensing platform. In Eqn. 3,
f’ represents focal length, f, translated from standard
units, mm, to focal length measured in pixels:-

- widthimage - f )
widthsensor
where widthimqge represents the width of the image
(pixels), widthsensor represents the camera CCD sen-
sor width (mm).

Crucially, if we now assume a fixed width, AX, or
height, AY, for our object we can recover complete
3D scene position relative to the sensor platform. For
people detection we can assume average adult human
height based on available medical statistics [41] whilst
for vehicle detection, the dimensions of road vehicles
have evolved to a relatively steady state in terms of
both wheel-base and width [42, 43] facilitating gener-
alised assumption for one or both of these dimensions.
Despite the crudeness of this assumption, empirically

it appears to work well for target positioning in the
absence of radar based position estimation (Section 3).
Furthermore it offers a passive, as opposed to active
radar-based, position estimation for detected targets.
Figure 9 illustrates the application of this approach to
the position estimation, showing distance to target only,
with an example human target that is detected using
the approach outlined in Section 2.2.

As sensor platform position is known from GPS (Sec-
tion 2.1) the target position relative to the sensor re-
covered using this approach, (X,Y, Z), is readily trans-
formed into global position coordinates for target re-
porting within the search environment. For aerial de-
tection (UAV platform) position is estimated, based on
the same key principles but largely assuming a point
target, using techniques previously reported in [7].

2.4 Target Reporting

Detected targets are reported based on position within
the environment (Section 2.3.2), the sensing platform
that obtained the detection and a derived confidence
value associated to that target detection, §;. Recog-
nising that even current state of the art techniques in
generalised object detection are not perfect an generally
incur both a false detection (false positive) and missed
detection (false negative) rate that is non-zero [1-3, 28],
this confidence value plays a crucial role within effec-
tive target reporting. It is based upon detection across
multiple spatially integrated (co-registered) modalities
(Section 2.3.1) each with their own associated classifier
specific to a given modality on a given platform.

Multi-modal Target Co-occurrence: Target de-
tections in any two modalities, m; and m;, are as-
sumed to relate to the same physical scene target occur-
rence when the spatial overlap of the target detections
is greater than a given overlap criteria, a(y,; m,), cal-
culated as the spatial union of both target detection
sub-regions, region(m,t), in modality m of target ¢ as
a fraction of largest such sub-region:



region(m;,t) N region(m;,t)

(5)

Flmamg) = maz(region(m;,t), region(m;,t))
where (m,m;) = 1 for perfect spatial overlap of
one sub-region with another and o, m;) = 0 for
non-overlapping threats. This assumes spatial co-
registration of all sensor modalities on a given plat-
form using the approach outlined in Section 2.3.1. Sets
of target detections found to be spatial coincident in
the scene all contribute to the confidence value, &,
of the same target occurrence within the scene (where
Ay my) 2 0.6) . Otherwise they are assumed to rep-
resent multiple, physically separate scene targets (e.g.
multiple people or vehicles in the scene).

Target detection confidence: The confidence
value, d;, is associated to target ¢ based on a weighted
combination of classifier response, over all modalities of
detection, m, associated with the target from a given
sensor platform, p, as follows:

(6)

where weight we, ., is the relative weight of a given
classifier, c(, 1), trained for the detection of target,
t, using modality, m. The classification response func-
tion, fe, .., (t), representing the returned value from
classifier ¢, ;) is bounded to range {0 — 1} follow-
ing a probabilistic interpretation of target likelihood.
The set {c(p,m—1)|m € sensors(p)} thus represents the
set of all such classifiers, across all modalities m, for
a given sensor platform, p, that detect target type, t.
For example, people detection from the UGV platform
would comprise of two Haar cascade classifiers (one
thermal-band, one visible-band), two SVM classifiers
(one thermal-band, one visible-band) and one radar re-
sponse.

The target signature of ¢, comprising the sensor infor-
mation from the platform, is assumed to encompass all

Figure 9. Photogrammetry facilitates the approximate recovery of a sensor to target distance for an example target
(person) without any need for additional (active) range sensing.

available sensing modalities from a given platform syn-
chronized to the same point in time (within a marginal
time offset <100ms). Where a given sensor modality
is not available on a given platform due to technical
failure or deactivation its weight in the Eqn. 6 remains
unchanged, and thus the influence of each modality in
overall target detection remains unchanged. However,
in this case the maximally achievable confidence of de-
tection is now lower as could reasonably and practically
be expected in cases where a target is detected but only
by a subset of the potentially available sensing modal-
ities.

Processing and Spatial Visualization:  All sen-
sor information (images/signals) are transmitted from
the sensor platforms to the Ground Control Station
(GCS) (Selex Galileo, Luton, UK) where they are pro-
cessed in parallel prior to visualization as a real-time
situational awareness map of the environment. The
GCS is implemented using a 4-core/8-thread multi-core
CPU (Intel Core i7) using explicit OpenMP task par-
allelization.

Target presence are recorded based on spatial po-
sition within the environment using the concept of a
spatial occupancy grid [44, 45]|. Spatially co-occurring
targets, re-detected by the same platform over multi-
ple sensor samples or from multiple sensor platforms
traversing the same region of the environment, are
merged to form a single target record. This follows
a spatial Gaussian cell-weighting of each target occur-
rence to individual cell occupancy in the grid. The
confidence associated to multiple spatially co-occurring
target detections are similarly integrated to form high
confidence target occurrences on the environment tar-
get map. This occurs unless multiple targets are explic-
itly detected at the same time by given platform (e.g.
group of people). Target occupancy of the grid decays
temporally, configurable by the user. Detected targets
are displayed in real-time on the GCS as a series of
icons with associated confidence and raw sensor infor-



Figure 10. Example target visualization showing both ex-
ample threat icons (pink) and example target information
(right).

mation, in addition to current sensor platform position,
for operator review as illustrated in Figure 10.

Multi-platform Search and Tasking: The speci-
fied environment is searched either to provide an initial
target location or longer-term target surveillance. Each
platform performs a specified search pattern tasked over
the communications networks as a series of GPS way-
points. Based on a search area specified interactively
via the GCS, this way-point tasking is automatically
derived as a search pattern incorporating additional
constraints such as road/ground layout (UGV) and
launch /recovery points (UAV). These search taskings
are designed to maximize effective environment sam-
pling given platform speed and sensor sample rate in
relation to environment coverage using techniques such
as [46]. Furthermore platforms can be re-tasked to re-
sample given areas of the environment or to obtain ad-
ditional confirmation of target presence with additional
sensing capabilities.

3. EVALUATION

Large-scale system-level evaluation is carried out over a
series of wide-area evaluation trials facilitated at vary-
ing locations in the UK (UK MoD / Stellar Research
Services Ltd, Southampton, UK). The work on auto-
matic target detection is integrated into the wide-area
sensing and surveillance system for these trials and this
evaluation concentrates solely upon the evaluation of
this system component within the system. Details of
these trials are shown in Table 1 where we see the range
of conditions and environments under which the au-
tonomous target detection approaches proposed were
evaluated. Each evaluation trial consisted of multiple
large area search experiments with ground truth targets
(people / vehicles) emplaced throughout the search en-
vironment at known (GPS recorded positions).

To this end, we consider evaluation on an episodic
basis by aiming to optimize target detection perfor-
mance for optimal detection of targets at least once

in the environment, given an adequate sampling strat-
egy of that environment by the platforms (Section 2.3).
Essentially, we are considering a success criteria such
that targets present are detected and mapped with
reasonable confidence (Section 2.3), at least once per
search mission (i.e. sensor platform deployment). The
episodic approach follows [5, 7] rather than the tradi-
tional per-sample performance consideration of detect-
ing every object in each sensor sample [2]. Individ-
ual classifier performance is optimized to maximize true
positive detection with the consideration that false pos-
itives are tolerable provided they can be characterized
as infrequent and randomly distributed in the environ-
ment. This facilitates the filtering out of such spurious
false positive detections based on their associated confi-
dence value when compared to that associated to a true
positive target detected over multiple sensor samples,
from multiple platforms, and spatially integrated upon
the environment occupancy grid (Section 2.3).

A sub-set of the sample detection results for these
wide-area evaluation trials are shown in Figures 11 -
15 as a set of four quadrants in each case (which we
will reference as Q1—Q4 clockwise from top left, i.e.
G118

Figure 11 (Q1,Q2,Q4) shown target detection results
for both people (Q1), vehicles (Q2) and specifically peo-
ple within building apertures (Q4) in visible/thermal
image pairs from the UGV platform. We see the detec-
tion of people in various poses around the environment,
at different scales and levels including under varying
weather conditions (Figure 11 Q1/Q4). In these exam-
ples, which form a sub-set of the target detections ob-
tained in the MoD Grand Challenge (finale and proving
events, August 2008), target detections are highlighted
(in red) in both the visible (left) and thermal (right)
imagery (Figure 11). Interestingly, we can see the ther-
mal image driven person detector is robust to very poor
quality optical imagery (Figure 11, Q1 - top right). A
range of 4 x4 type vehicles are detected in the examples
of Figure 11, Q2) where we see detection independent of
scale, orientation and make/model/configuration vari-
ants. Figure 11 (Q4) shows people detection within
building apertures and in one such instance (middle)
a detection at 40m+ distance in poor weather condi-
tions. Figure 11 (Q3) shows the corresponding set of
aerial vehicle detections, from an earlier single-sensor
variant of the UAV platform, for this evaluation trial
(Section 2.2.3) as reported earlier in [5].

Following the same quadrant layout as Figure 11,
Figures 12 and 13 now present further supporting re-
sults from the second wide-area evaluation trial under



| Evaluation Trial | Location | Search Area | Ambient Conditions | Environment

Site #1 (CDV/GC) | Wiltshire, UK ~ 0.5km? 11 —19°C, rain / clear urban / suburban
Site #2 (NZF) Wiltshire, UK 1 — 2km? 10 — 25°C, clear rural / agricultural
Site #3 (CDV/CAT) | Wiltshire, UK 2km?>+ 2 —10°C, overcast dense urban / suburban

Table 1. Evaluation trials - environmental conditions

Figure 11. A range of both ground and aerial targets detected over Evaluation Trial 1, presented in {visible, thermal}

imagery pairs as appropriate (UGV ground detection examples, top left/right and bottom left) and visible imagery only
(UAV aerial detection examples, bottom right).



differing environmental conditions (Table 1). Target
detections are highlighted (in red) in both the visible
(left) and thermal (right) imagery (Figure 11). In Fig-
ures 12/13 (Q1,Q2,Q4) we can see target detection re-
sults for both people and vehicles from the UGV plat-
form as visible/thermal imagery pairs. Figure 14 and 13
(Q3) shows the corresponding set of aerial people and
vehicle detections, from the dual-sensor UAV platform
(Section 2.1), for this evaluation trial (Section 2.2.3) as
reported earlier in [7]. Furthermore, we can see both
examples of multiple co-occurring target detection from
the same platform (Figure 12 Q1 + Q 2 top, UGV) and
between platforms (Figure 12 Q4, UGV + Figure 12 Q3
bottom, UAV and Figure 14 Q4 top/middle, UGV +
Figure 14 Q3 top/middle, UAV).

The same quadrant layout is used again in Figures
14 and 15 which present further results from the third
wide-area evaluation trial under differing environmen-
tal conditions (Table 1). Here target detections are
highlighted (in red, green or yellow) in either the visi-
ble (left) and thermal (right) imagery depending on the
primary sensing source of the target detection (Figure
14/15). In Figures 14/15 (Q1,Q2,Q4) we see target de-
tection results for both people and vehicles from the
UGV platform as visible/thermal imagery pairs. Fig-
ure 14 and 15 (Q3) shows the corresponding set of
aerial people and vehicle detections, from the dual-
sensor UAV platform (Section 2.1), as reported ear-
lier in [7]. Despite the illustrated success of detection
within this environment we can note the issue of “ther-
mal white-out” occurring under certain environmental
conditions (Figure 15 Q1,Q2) which give rise to reliance
on visible-band target detection (prone to camouflage
fabrication) or to strong thermal outlines for successful
detection with the thermal sensor (Figure 15 Q1,Q2).
Notably, this issue appears isolated to the UGV per-
spective view of the environment as UAV target de-
tection under the same conditions appear unaffected
(Figure 15 Q3 / 14 Q3).

Overall, we achieve an episodic target detection rate
of ~ 90 — 100% based on the use of individual classi-
fiers optimized as outlined previously. False positive de-
tections are generally spurious and readily filtered out
based on spatial cohesiveness and limited co-occurrence
with the overall target reporting structure for environ-
ment search (Section 2.3). Whilst this detection rate
may appear high, if we consider each individual target
detection classifier (Section 2.2) having a true positive
rate which is at worst only>70% it can be readily for-
mulated that, over multiple sensor samples of the any
given target in the environment, the resulting prob-
ability of non-detection asymptotically tends to zero.

Each target is sampled multiple times, by multiple plat-
forms, and on each sample occurrence the probability
of true positive detection is >70% and similarly false
positive detection < 10%. Similarly, each sample is at
least slightly “different” in terms of view onto the tar-
get, platform, angle, distance to target etc. If we thus
assume loose sample independence under these condi-
tions, the greater the number of sensor samples of a
given single target that are “presented” for classification,
the lower the resulting probability of not detecting the
target becomes (as every independent classification has
a chance of success 270%). This is argument is more
strongly supported in cases where the target is highly
representative of the class of targets (e.g. people) upon
which the specific classifier was trained. Conversely,
false positive detections over a random sequence of sen-
sor samples will occur with low probability (< 10% )
and are therefore most likely to be spurious and spa-
tially inconsistent with regard to environment target
mapping (Section 2.3).

Given a sufficient sampling of the environment (Sec-
tion 2.3), the known precision/recall characteristics of
our chosen classification approaches [5, 7, 28] and our
two-stage candidate detection / secondary confirmation
approach (Section 2.2) we can thus achieve target de-
tection to a relatively high level of episodic accuracy.
These target detection results are subsequently visu-
alized as set out in Section 2.3 where target position
accuracy is generally found to be in the range +5m
against ground truth using the techniques outlined in
Section 2.3.2 (considering GPS error).

4. CONCLUSIONS

We demonstrate the integration of autonomous target
detection for wide-area search and surveillance using
multi-modal sensing across both aerial and ground sen-
sor platforms. Based on a range of established auto-
matic classification approaches, we detail both multi-
modal integration (post-classification) to produce a
per target confidence value and its spatial integra-
tion/mapping to a current visualization of the envi-
ronment. A range of results are detailed from wide-
area evaluation trials, under varying environmental
conditions, that produce highly accurate target report-
ing within the proposed episodic evaluation framework
(~ 90 — 100% detection, spatial location +5m). The
use of multi-modal sensing, from multiple autonomous
sensor platforms, is demonstrated and proven “in the
large” extending prior work in the field for this type of
wide-area search and target mapping activity.

Future work will investigate both the use of saliency
for initial candidate target identification [47, 48], target



Figure 12. A range of both ground and aerial targets detected over Evaluation Trial 2, presented in {visible, thermal}
imagery pairs as appropriate (UGV ground detection examples, top right/left and bottom left) and visible/thermal
imagery only (UAV aerial detection examples, bottom right).



Figure 13. A range of both ground and aerial targets detected over Evaluation Trial 2, presented in {visible, thermal}
imagery pairs as appropriate (UGV ground detection examples, top right/left and bottom left) and visible/thermal
imagery only (UAV aerial detection examples, bottom right).



Figure 14. A range of both ground and aerial targets detected over Evaluation Trial 3, presented in {visible, thermal}
imagery pairs as appropriate (UGV ground detection examples, top right/left and bottom left / UAV aerial detection
examples, bottom right).



imagery pairs as appropriate (UGV ground detection examples, top right/left and bottom left / UAV aerial detection
examples, bottom right).



pose classification [49] and the use of 3D environment
mapping via cross-spectral stereo vision [50] combined
with cross-spectral Self Localization and Mapping
(SLAM) [39]. Future development of the autonomous
ground vehicle navigation capabilities may include
both integration of terrain understanding [51|, stereo
vision based vehicle guidance [52, 53] and drive camera
stabilization [54].

The work presented in this paper was carried out by the
authors at the School of Engineering, Cranfield University
as part of the SATURN (Sensing & Autonomous Tactical
Urban Reconnaissance Network) project carried out by Stel-
lar Team (2007-2009). The authors gratefully acknowledge
the support of Stellar Research Services, Blue Bear Sys-
tems Research, Marshall SDG, TRW Conekt, Selex Galileo,
DCMT Shivenham - Guidance and Control Group and the
UK MoD in this research activity.
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