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1
Review of Fourier Transforms and

Discrete-Time Systems

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. It covers complex Fourier series, Fourier transforms, Discrete-time Fourier
transforms, Discrete Fourier Transforms, Parseval’s Theorem, the bilaterial Z-transform, frequency
response, and rational transfer functions.

1.1 Obtaining the Latest Version of these Handouts

New slide

• This research tutorial is intended to cover a wide range of aspects which cover the fundamentals
of statistical signal processing. It is written at a level which assumes knowledge of
undergraduate mathematics and signal processing nomenclature, but otherwise should be
accessible to most technical graduates.

2



1.1. Obtaining the Latest Version of these Handouts 3

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛

☞ ✌ ✄ ✍ ✁
✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Figure 1.1: Source localisation and BSS. An example of topics using statistical signal processing.

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Figure 1.2: Humans turn their head in the direction of interest in order to reduce inteference from
other directions; joint detection, localisation, and enhancement. An application of probability and
estimation theory, and statistical signal processing.
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4 Linear Systems Review

KEYPOINT! (Latest Slides). Please note the following:

• This tutorial is being continually updated, and feedback is welcomed. The documents published
on the USB stick may differ to the slides presented on the day. In particular, there are likely to
be a few typos in the document, so if there is something that isn’t clear, please feel free to email
me so I can correct it (or make it clearer).

• The latest version of this document can be obtained from the author, Dr James R. Hopgood, by
emailing him at: at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to maintain copyright control on the
document.)

• Extended thanks are given to the many MSc students over the past 12 years who have helped
proof-read and improve these documents.

1.2 Introduction

This handout will review complex Fourier series and Fourier transforms, followed by a review of
discrete-time systems. The reader is expected to have previously covered most of the concepts in this
handout, although it is likely that the reader might need to revise the material if it’s been a while since
it’s been studied. Nevertheless, this revision material is included in the module as review material
purely for completeness and reference. It is not intended as a full introduction, although some parts
of the review cover the subject in detail.

As discussed in the first handout, if the reader wishes to revise these topics in more detail, the
following book comes highly recommended:

Proakis J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, Pearson New International Edition, Fourth edition, Pearson Education,
2013.

IDENTIFIERS – Paperback, ISBN10: 1292025735, ISBN13: 9781292025735

For undergraduate level text books covering signals and systems theory, which it is assumed you have
covered, the following book is recommmended:

Mulgew B., P. M. Grant, and J. S. Thompson, Digital Signal Processing: Concepts and
Applications, Palgrave, Macmillan, 2003.

IDENTIFIERS – Paperback, ISBN10: 0333963563, ISBN13: 9780333963562

See http://www.see.ed.ac.uk/˜{}pmg/SIGPRO

The latest edition was printed in 2002, but any edition will do. An alternative presentation of roughly
the same material is provided by the following book:

mailto:james.hopgood@ed.ac.uk
http://www.see.ed.ac.uk/~{}pmg/SIGPRO


1.3. Signal Classification 5

t0 Period T

x t( )

Figure 1.3: An example of a periodic signal with period T .

Balmer L., Signals and Systems: An Introduction, Second edition, Prentice-Hall, Inc.,
1997.

IDENTIFIERS – Paperback, ISBN10: 0134954729, ISBN13: 9780134956725

In particular, the appendix on complex numbers may prove useful.

1.3 Signal Classification

New slideBefore considering the analysis of signals and systems, it is necessary to be aware of the general
classifications to which signals can belong, and to be aware of the significance of some subtle
characteristics that determine how a signal can be analysed. Not all signals can be analysed using
a particular technique.

1.3.1 Types of signal

New slideIn general, there are four distinct types of signals that must be analysed:

Continuous-time periodic Such signals repeat themselves after a fixed length of time known as the
period, usually denoted by T . This repetition continues ad-infinitum (i.e. forever).
Formally, a signal, x(t), is periodic if

x(t) = x(t+mT ) , ∀m ∈ Z (1.1)

where the notation ∀m ∈ Z means that m takes on all integer values: in other-words,
m = −∞, . . . , −2, −1, 0, 1, 2, . . . , ∞. The smallest positive value of T which
satisfies this condition is the defined as the fundamental period.
These signals will be analysed using the Fourier Series, and are used to represent
real-world waveforms that are near to being periodic over a sufficiently long period
of time.
An example of a periodic signal is shown in Figure 1.3. This kind of signal vaguely
represents a line signal in analogue television, where the rectangular pulses represent
line synchronisation signals.

June 20, 2017 – 00 : 07



6 Linear Systems Review

t0

x t( )

Figure 1.4: An example of an aperiodic signal.

n0 Period N

x n[ ]

5 10

Figure 1.5: A discrete-time periodic signal.

Continuous-time aperiodic Continuous-time aperiodic signals are not periodic over all time,
although they might be locally periodic over a short time-scale.
These signals can be analysed using the Fourier transform for most cases, and more
often using the Laplace transform. Aperiodic signals are more representative of
many real-world signals. Again, real signals don’t last for all time, although can
last for a considerably long time. An example of an aperiodic signal is shown in
Figure 1.4.

Discrete-time periodic A discrete-time periodic signal is shown in Figure 1.5, which is essentially
a sampled version of the signal shown in Figure 1.3. Note in this case, the period is
often denoted by N , primarily to reflect the fact the time-index is now n.
A discrete-time signal, x[n], is periodic if:

x[n] = x[n+mN ] , ∀m ∈ Z (1.2)

This is, of course, similar to Equation 1.1.

Discrete-time aperiodic Analogous to the continuous-time aperiodic signal in Figure 1.4, a
discrete-time aperiodic signal is shown in Figure 1.6.
Aperiodic discrete-time signals will be analysed using the z-transform and also the
discrete-time Fourier transform (DTFT).



1.3. Signal Classification 7

n0

x n[ ]

Figure 1.6: An example of a discrete-time aperiodic signal.

n0

x n[ ]

N-1

Figure 1.7: An example of a finite-duration signal.

Finite-length discrete-time signals Discrete-time signals can also be classified as being finite in
length. In other words, they are not assumed to exist for all-time, and what happens
outside the window of data is assumed unknown. These signals can be modelled
using the so-called discrete Fourier transform (DFT).

1.3.2 Energy and Power Signals

New slideAs stated in Section 1.3.1, signals can be analysed using a variety of frequency-domain transform
methods, such as the Fourier series, Fourier transform, Laplace transform, and for discrete-time,
the z-transform. For example, the Fourier transform is used to analyse aperiodic continuous-time
signals.

However, not all aperiodic signals can be analysed using the Fourier transform, and the reason for this
can be directly related to a fundamental property of a signal: a measure of how much signal there is.

Therefore it is relevant to consider the energy or power as a means for characterising a signal. The
concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions, in
order to determine when it has energy and when it has power.

Intuitively, energy and power measure how big a signal is. A motivating example of measuring the
size of something is given in Sidebar 1.

1.3.2.1 Motivation for Energy and Power Expressions

New slideConsidering power from an electrical perspective, if a voltage x(t) is connected across a resistance
R, the dissipated power at time τ is given by:
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Sidebar 1 Size of a Human Being

Suppose we wish to devise a signal number V as a measure of the size of a human being. Then
clearly, the width (or girth) must also be taken into account as well as the height. One could make the
simplifying assumption that the shape of a person is a cylinder of variable radius r (which varies with
the height h). Then one possible measure of the size of a person of height H is the person’s volume,
given by:

V = π

∫ H

0

r2(h) dh (1.3)

This can be found by dividing the object into circular discs (which is an approximation), where each
disc has a volume δV ≈ πr2(h) δh. Then the total volume is given by V =

∫
dV .

t0

x t
2
( )

dt

t+dtt

Figure 1.8: Energy Density.

P (τ) =
x2(τ)

R
∝ x2(τ) (1.4)

where ∝ denotes proportional to. Since energy and power are related through the expression

Energy = Power × Time, (1.5)

the energy dissipated between times τ and τ + δτ , as indicated in Figure 1.8, is:

δE(τ) ∝ P (τ) δτ ∝ x2(τ)δτ (1.6)

The total energy over all time can thus be found by integrating over all time:

E ∝
∫ ∞
−∞

x2(τ) dτ (1.7)

This leads to the formal definitions of energy and power.

1.3.2.2 Formal Definitions for Energy and Power

New slide Based on the justification in Section 1.3.2.1, the formal abstract definitions for energy and power that
are independent of how the energy or power is dissipated are defined below.

Energy Signals A continuous-time signal x(t) is said to be an energy signal if the total energy, E,
dissipated by the signal over all time is both nonzero and finite. Thus:

0 < E <∞ where E =

∫ ∞
−∞
|x(t)|2 dt (1.11)
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Sidebar 2 Other signal measures

1. While the area under a signal x(t) is a possible measure of its size, because it takes account not
only of the amplitude but also of the duration, is defective since even for a very large signal, the
positive and negative areas could cancel each other out, indicating a signal of a small size.

2. Using the sum of square values can potentially give undue weighting to any outliers in the
signal, where an outlier is defined as an unusual signal variation that is not characteristic of the
rest of the signal; an example might be a high-energy shot burst of interference.

3. Therefore, taking the absolute value, |x(t) | ≡ absx(t) is a possible measure, and in some
circumstances can be used. Unfortunately, dealing with the absolute value of a function can be
difficult to manipulate mathematically. However, using the area under the square of the function
is not only more mathematically tractable but is also more meaningful when compared with the
electrical examples and the volume in Sidebar 1.

4. These notions lead onto the more general subject of signal norms. The Lp-norm is defined by:

Lp(x) ,

(∫ ∞
−∞
|x(t)|p dt

) 1
p

, p ≥ 1 (1.8)

In particular, the expression for energy is related to the L2-norm, while using the absolute value
of the signbal gives rise to the L1-norm:

L1(x) ,
∫ ∞
−∞
|x(t)| dt (1.9)

which is the integral of the absolute value as described above in part 3.

5. While Parseval’s theorem exists between the time-domain and frequency-domain for relating
the L2-norms, in general no relation exists for other values of p.

6. Note that the Lp-norm generalises for discrete-time signals as follows:

Lp(x) ,

(
∞∑
−∞

|x[t]|p
) 1

p

, p ≥ 1 (1.10)
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x t( )

2

0 t t
0

Figure 1.9: Rectangular pulse of length τ .

where |x(t) |means the magnitude of the signal x(t). If x(t) is a real-signal, this is just
its amplitude. If x(t) is a complex-signal, then |x(t) |2 = x(t) x∗(t) where ∗ denotes
complex-conjugate. In this course, however, only real signals will be encountered.
A necessary condition for the energy to be finite is that the signal amplitude |x(t) | →
0 as |t| → ∞, otherwise the integral in Equation 1.11 will not exist. When the
amplitude of x(t) does not tend to zero as |t| → ∞, the signal energy is likely to be
infinite. A more meaningful measure of the signal size in such a case would be the
time average of the energy if it exists. This measure is called the power of the signal.

Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:

0 < P <∞ where P = lim
W→∞

1

2W

∫ W

−W
|x(t)|2 dt (1.12)

where the variable W can be considered as half of the width of a window that covers
the signal and gets larger and larger.

Example 1.1. Name a type of signal which is not an example of an energy signal?

SOLUTION. A periodic signal has finite energy over one period, so consequently has infinite energy.
However, as a result it has a finite average power and is therefore a power signal, and not an energy
signal.

Example 1.2 (Rectangular Pulse). What is the energy of the rectangular pulse shown in Figure 1.9
as a function of τ , and for the particular case of τ = 4?

SOLUTION. The signal can be represented by

x(t) =

{
2 0 ≤ t < τ

0 otherwise
(1.13)

so that the square of the signal is also rectangular and given by

x2(t) =

{
4 0 ≤ t < τ

0 otherwise
(1.14)

Since an integral can be interpreted as the area under the curve (see Figure 1.10, the total energy is
thus:

E = 4τ (1.15)
�

When τ = 4, E = 16.
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x t
2
( )

4

0 t t
0

Figure 1.10: The total energy of the signal in Figure 1.9 can be found as the area under the curve
representing the square of the rectangular pulse, as shown here.

1.3.2.3 Units of Energy and Power

New slideIt is important to consider the physical units associated with energy and power, and therefore to
determine how the abstract definitions of E and P in Equation 1.11 and Equation 1.12 can be
converted into real energy and power.

Consider again power from an electrical perspective. When considering “direct current” (DC) signals,
power is given by

PDC =
V 2

R
=

Volts2

Ohms
= Watts (1.16)

where V is the signal voltage, andR is the resistance through which the power is dissipated. Consider
now the units of the abstract definition of power, P in Equation 1.12:

P =
1

time
× Volts2 × time = Volts2 = Watts× Ohms (1.17)

where the second unit of time comes from the integral term dt, and in which the integral may be
considered as a summation. Therefore, by comparing Equation 1.16 and Equation 1.12, the abstract
definition of power, P , can be converted to real power by Ohms for the case of electrical circuits.

Similarly, the units of energy in Equation 1.11 is given by

E = volts2 × time (1.18)

Therefore, to convert the abstract energy to Joules, it is again necessary to divide by Ohms by noting
that energy is power multiplied by time.

1.3.2.4 Power for Periodic Signals

The expression in Equation 1.12 can be simplified for periodic signals. Consider the periodic signal
in Figure 1.3. Note here that there might be confusion with using the same symbol T to mean both the
period of a periodic signal and the limit in Equation 1.12. To avoid ambiguity, rewrite Equation 1.12
with W instead of T where W denotes a window length over which the power is calculated, and
define:

PW =
1

2W

∫ W

−W
|x(t)|2 dt (1.19)

Thus, the average power over two periods is PT , and the average power over 2N periods is PNT . It
should becomes clear that

PT = PNT , ∀N ∈ Z (1.20)
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since the average in each period is the same. Consequently, power for a periodic signal with period
T may be defined as:

P =
1

T

∫ T

0

|x(t)|2 dt (1.21)

Note that the limits in Equation 1.21 may be over any period and thus can be replaced by (τ, τ + T )
for any value of τ .

1.4 Fourier Series and Fourier Transforms
New slide In this review of Fourier series and transforms, the topics covered are:

• Complex Fourier series

• Fourier transform

• The discrete-time Fourier transform

• Discrete Fourier transform

1.4.1 Complex Fourier series

New slide The complex Fourier series is a frequency analysis tool for continuous time periodic signals.
Examples of periodic signals encountered in practice include square waves, triangular waves,
sawtooth waves, pulse waves and, of course, sinusoids and complex exponentials, as well as half-wave
recitifed, full-wave rectified and p-phased rectified sinusoids. The basic mathematical representation
of periodic signals is the Fourier series, which is a linear weighted sum of harmonically related
sinusoids or complex exponentials.

A periodic continuous-time deterministic signal, xc(t), with fundamental period Tp can be expressed
as a linear combination of harmonically related complex exponentials:

xc(t) =
∞∑

k=−∞

X̌c(k) ejkω0t, t ∈ R, (M:2.2.1)

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency. Here, ω0 is in radians per second, and the
fundamental frequency, in Hertz, is given by F0 = 1

Tp
. Moreover,

X̌c(k) =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt, k ∈ Z (M:2.2.2)

are termed the Fourier coefficients, or spectrum of xc(t). Note that although the region of integration
in Equation M:2.2.2 is from 0 to Tp, it can actually be over any period of the waveform, since the
signal, xc(t), is periodic with period Tp.

The kth frequency component corresponds to frequency ωk = kω0 = k 2π
Tp

. The set of exponential
functions

F(t) = {ejω0kt, k ∈ Z} (1.22)

can be thought of as the basic building blocks from which periodic signals of various types can be
constructed with the proper choice of fundamental frequency and Fourier coefficients.
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Figure 1.11: Function f(t) of Example 1.3

Example 1.3 (Complex Fourier Series). Find the complex form of the Fourier series expansion of
the periodic function f(t) defined by:

f(t) = cos
1

2
t (−π < t < π)

f(t+ 2π) = f(t)
(1.23)

SOLUTION. A graph of the function f(t) over the interval−π ≤ t ≤ 3π is shown in Figure 1.11. The
period Tp = 2π, so therefore the complex coefficients, denoted by Fn, are given by Equation M:2.2.2
as:

Fn =
1

Tp

∫ Tp

0

f(t) e−jnω0t dt, n ∈ Z (1.24)

=
1

2π

∫ π

−π
cos

t

2
e−jnt dt =

1

4π

∫ π

−π

(
ej

t
2 + e−j

t
2

)
e−jnt dt (1.25)

=
1

4π

∫ π

−π

(
e−j(n−

1
2)t + e−j(n+ 1

2)t
)
dt (1.26)

which, after some trivial integration, gives:

Fn =
1

4π

[
−2e−j(2n−1) t

2

j(2n− 1)
− 2e−j(2n+1) t

2

j(2n+ 1)

]π
−π

(1.27)

=
j

2π

[(
e−jnπ ej

π
2

2n− 1
+
e−jnπ e−j

π
2

2n+ 1

)
−
(
ejnπ e−j

π
2

2n− 1
+
ejnπ ej

π
2

2n+ 1

)]
(1.28)

Noting that e±j
π
2 = ±j, and e±jnπ = cosnπ = (−1)n, then it follows that:

Fn =
j

2π

(
j

2n− 1
− j

2n+ 1
+

j

2n− 1
− j

2n+ 1

)
(−1)n (1.29)

=
(−1)n

π

(
1

2n+ 1
− 1

2n− 1

)
=

2(−1)n+1

(4n2 − 1)π
(1.30)

Note that in this case, the coefficients Fn are real. This is expected, since the function f(t) is an even
function of t. The complex Fourier series expansion for f(t) is therefore:

f(t) =
∞∑

n=−∞

2(−1)n+1

(4n2 − 1)π
ejnt (1.31)

�
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1.4.1.1 Common Fourier Series Expansions

In the following Fourier series expansions, ω0 = 2π
T

is the fundamental frequency.

Half-wave rectified cosine-wave:

xc(t) =
1

π
+

1

2
cosω0t+

2

π

∞∑
n=1

(−1)n+1 cos(2nω0t)

4n2 − 1

p-phase rectified cosine-wave (p ≥ 2):

xc(t) =
p

π
sin

π

p

[
1 + 2

∞∑
n=1

(−1)n+1 cos(pnω0t)

p2n2 − 1

]

Square wave:

xc(t) =
4

π

∞∑
n=1

sin(2n− 1)ω0t

2n− 1

Triangular wave:

xc(t) =
8

π2

∞∑
n=1

(−1)n+1 sin(2n− 1)ω0t

(2n− 1)2

Sawtooth wave:

xc(t) =
2

π

∞∑
n=1

(−1)n+1 sinnω0t

n

Pulse wave:

xc(t) =
τd
T

[
1 + 2

∞∑
n=1

sin(nπ τd
T

)

(nπ td
T

)
cos(nω0t)

]

1.4.1.2 Dirichlet Conditions

An important issue that arises in the representation of the continuous time periodic signal xc(t) by the
Fourier series representation,

x̄c(t) =
∞∑

k=−∞

X̌c(k) ejkω0t, (P:4.1.5)
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is whether or not the series converges for every value of t ∈ R; i.e., is it true that

x̄c(t)
?
= xc(t), ∀t ∈ R (1.32)

The so-called Dirichlet conditions guarantee that the Fourier series converges everywhere except
at points of discontinuity. At these points, the Fourier series representation x̄c(t) converges to the
midpoint, or average value, of the discontinuity.

The Dirichlet conditions require that the signal xc(t):

1. has a finite number of discontinuities in any period;

2. contains a finite number of maxima and minima during any period;

3. is absolutely integrable in any period; that is:∫
Tp

|xc(t)| dt <∞ (P:4.1.6)

where the integral is over one period. Many periodic signals of practical interest easily satisfy
these conditions, and it is reasonable to assume that all practical periodic signals do. However, it
is important to beware that pathological cases can make certain proofs or algorithms collapse.

1.4.1.3 Parseval’s Theorem (for Fourier series)

New slideIt is sometimes relevant to consider the energy or power as a means for characterising a signal.
These concepts of power and energy intuitively follow from their use in other aspects of the physical
sciences. However, the concept of signals which exist for all time requires careful definitions for
when it has energy and when it has power. Consider the following signal classifications:

Energy Signals A signal xc(t) is said to be an energy signal if the total energy, E, dissipated by the
signal over all time is both nonzero and finite. Thus:

0 < E <∞ where E =

∫ ∞
−∞
|xc(t)|2 dt (1.33)

Power signals If the average power delivered by the signal over all time is both nonzero and finite,
the signal is classified as a power signal:

0 < P <∞ where P = lim
T→∞

1

2T

∫ T

−T
|xc(t)|2 dt (1.34)

A periodic signal has infinite energy, but finite average power. The average power of xc(t) is given by
Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞

|X̌c(k)|2 (M:2.2.3)

The term |X̌c(k)|2 represents the power in the kth frequency component, at frequency ωk = k 2π
Tp

.
Hence,

P̌x(k) = |X̌c(k)|2, −∞ < k <∞, k ∈ Z (1.35)

is called the power spectrum of xc(t). Consequently, it follows Px may also be written as:

Px =
∞∑

k=−∞

P̌x(k) (1.36)
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Figure 1.12: Continuous-time periodic train of rectangular pulses.

PROOF. Starting with

Px =
1

Tp

∫ Tp

0

xc(t)x
∗
c(t) dt (1.37)

then substituting for the Fourier series expansion of xc(t) gives:

Px =
1

Tp

∫ Tp

0

xc(t)

{
∞∑

k=−∞

X̌c(k) ejkω0t

}∗
dt (1.38)

Noting that the conjugate of a summation (multiplication) is the summation (multiplication) of the
conjugates, then:

Px =
1

Tp

∫ Tp

0

xc(t)
∞∑

k=−∞

X̌∗c (k) e−jkω0t dt (1.39)

Rearranging the order of the integration and the summation gives:

Px =
∞∑

k=−∞

X̌∗c (k)

{
1

Tp

∫ Tp

0

xc(t) e
−jkω0t(t) dt

}
︸ ︷︷ ︸

Xc(k)

(1.40)
�

which is the desired result and completes the proof.

Later in this course, the notion of a power spectrum will be extended to stochastic signals.

Example 1.4 ( [Proakis:1996, Example 4.1.1, Page 237]). Determine the Fourier series and the
power density spectrum of a rectangular pulse train that is defined over one period as follows:

xc(t) =


0 if −Tp

2
≤ t < − τ

2

A if − τ
2
≤ t < τ

2

0 if τ
2
≤ t < Tp

2

(1.41)

where τ < Tp.

SOLUTION. The signal is periodic with fundamental period Tp and, clearly, satisfies the Dirichlet
conditions. Consequently, this signal can be represented by the Fourier series. Hence, it follows that

X̌c(k) =
1

Tp

∫ Tp
2

−Tp
2

xc(t) e
−jkω0t dt =

A

Tp

∫ τ
2

− τ
2

e−jkω0t dt (1.42)
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Two different integrals need to be performed depending on whether k = 0 or not. Considering the
case when k = 0, then the average value of the signal is obtained and given by:

X̌c(0) =
1

Tp

∫ τ
2

− τ
2

xc(t) dt =
1

Tp

∫ τ
2

− τ
2

Adt =
Aτ

Tp
(1.43)

For k 6= 0, then

X̌c(k) =
A

Tp

∫ τ
2

− τ
2

e−jkω0t dt =
A

Tp

[
e−jkω0t

−jkω0

] τ
2

− τ
2

(1.44)

=
A

jkω0Tp

(
ejkω0

τ
2 − e−jkω0

τ
2

)
=
Aτ

Tp

sin τω0k
2

kω0
τ
2

(1.45)

=
Aτ

Tp
sinc

τω0k

2
where sincx ,

sinx

x
(1.46)

Hence, the power density spectrum for the rectangular pulse is:

∣∣X̌c(k)
∣∣2 =

(
Aτ

Tp

)2

sinc2 τω0k

2
, k ∈ Z (P:4.1.19)

�

where it is noted that sinc (0) = 1.

1.4.2 Fourier transform
New slideAn aperiodic continuous-time deterministic signal, xc(t), can be expressed in the frequency domain

using the Fourier transform pairs:

xc(t) =
1

2π

∫ ∞
−∞

Xc(ω) ejωt dω (M:2.2.5)

and
Xc(ω) =

∫ ∞
−∞

xc(t) e
−jωt dt (M:2.2.4)

Xc(ω) is called the spectrum of xc(t). Again, note that [Manolakis:2000] uses the defintion F = ω
2π

.
Continuous-time aperiodic signals have continuous aperiodic spectra.

There are a few mathematical requirements that xc(t) must satisfy for Xc(ω) to exist; these can
be summarised by the phrase that the signal must be well-behaved. More specifically, the set of
conditions that guarantee the existence of the Fourier transform are the Dirichlet conditions which are
the same as for Fourier series.

Example 1.5 (Fourier Transforms). Find the Fourier transform of the one-sided exponential
function

f(t) = H(t) e−at where a > 0 (1.47)

and where H(t) is the Heaviside unit step function show in Figure 1.13 and given by:

H(t) =

{
1 if t ≥ 0

0 otherwise
(1.48)
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Figure 1.13: The Heaviside step function H(t).

Figure 1.14: Exponential decaying function, f(t) = H(t) e−at for a > 0.

SOLUTION. Since f(t) → 0 as t → ∞, then the signal energy is bounded, as indicated by plotting
the graph of f(t) as shown in Figure 1.14.

A Fourier transform therefore exists, and is given by:

Xc(ω) =

∫ ∞
−∞

H(t) e−at e−jωt dt (1.49)

=

∫ ∞
0

e−(a+jω)t dt =

[
−e
−(a+jω)t

a+ jω

]∞
0

(1.50)

giving

Xc(ω) =
1

a+ jω
, for −∞ < ω <∞ (1.51)

�

1.4.2.1 Parseval’s theorem (for Fourier transforms)

New slide The energy of xc(t) is, as for Fourier series, computed in either the time or frequency domain by
Parseval’s theorem:

Ex =

∫ ∞
−∞
|xc(t)|2 dt =

1

2π

∫ ∞
−∞
|Xc(ω)|2 dω (M:2.2.7)

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of xc(t) as a function of frequency, ω,
and is called the energy spectrum of xc(t).

PROOF. The derivation of Parseval’s theorem for Fourier transforms follows a similar line to the
derivation of Parseval’s theorem for Fourier series; it proceeds as follows:

Ex =

∫ ∞
−∞

xc(t)x
?
c(t) dt =

∫ ∞
−∞

xc(t)
1

2π

∫ ∞
−∞

X?
c (ω) e−jωt dω dt

=
1

2π

∫ ∞
−∞

X?
c (ω)

∫ ∞
−∞

xc(t) e
−jωt dt dω =

1

2π

∫ ∞
−∞

X?
c (ω)Xc(ω) dω

(1.52)
�
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1.4.3 The discrete-time Fourier transform

New slideTurning to discrete-time deterministic signals, the natural starting point is to consider aperiodic signals
that exist for all discrete-time; i.e. {x[n]}∞−∞. It is interesting to note that there are fewer convergence
issues with transforms for discrete-time signals than there are in the continuous-time case.

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can be synthesised from its spectrum
using the inverse-discrete-time Fourier transform, given by:

x[n] =
1

2π

∫ π

−π
X
(
ejωT

)
ejωn dω, n ∈ Z (M:2.2.13)

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=
∑
all n

x[n] e−jωn, ω ∈ R (M:2.2.12)

X
(
ejωT

)
is the spectrum of x[n].

Since X
(
ejωT

)
= X

(
ej(ω+2πk)

)
, discrete-time aperiodic signals have continuous periodic spectra

with fundamental period 2π. However, this property is just a consequence of the fact that the
frequency range of any discrete-time signal is limited to [−π, π) or [0, 2π); any frequency outside
this interval is equivalent to some frequency within this interval.

There are two basic differences between the Fourier transform of a discrete-time finite-energy
aperiodic signal, as represented by the discrete-time Fourier transform, and the Fourier transform
of a finite-energy continuous-time aperiodic signal:

1. For continuous-time signals, the Fourier transform, and hence the spectrum of the signal, have
a frequency range of (−∞,∞). In contrast, the frequency range for a discrete-time signal is
unique over the frequency range [−π, π) or, equivalently, [0, 2π).

2. Since X
(
ejωT

)
in the DTFT is a periodic function of frequency, it has a Fourier series

expansion, provided that the conditions for the existence of the Fourier series are satisfied. In
fact, from the fact that X

(
ejωT

)
is given by the summation of exponentially weighted versions

of x[n] is is clear that the DTFT already has the form of a Fourier series. This is not true for the
Fourier transform.

In order for X
(
ejωT

)
to exist, x[n] must be absolutely summable:∑

all n

|x[n] | <∞ (M:2.2.11)

Finally, as for the Fourier series, and the Fourier transform, discrete-time aperiodic signals have
energy which satisfies Parseval’s theorem:

Ex =
∞∑

n=−∞

|x[n] |2 =
1

2π

∫ π

−π
|X
(
ejωT

)
|2 dω (P:4.2.41)

1.4.4 Discrete Fourier transform
New slideAny finite-length or periodic discrete-time deterministic signal, {x[n]}N−1

0 , can be written by the
Fourier series, or inverse-DFT (IDFT):

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
nk, n ∈ N (M:2.2.8)
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where N = {0, 1, . . . , N − 1} ⊂ Z+, and where the DFT:

Xk =
N−1∑
n=0

x[n] e−j
2π
N
nk, k ∈ N (M:2.2.9)

are the corresponding Fourier coefficients. The sequence Xk, k ∈ R is the spectrum of x[n]. Xk is
discrete and periodic with the same period as x[n].

Note that a finite-length discrete-time signal of length N has the same Fourier transform, through
the DFT, as an infinite-length discrete-time periodic signal of period N . Hence, these equivalent
perspectives will be considered synonymous.

PROOF (DERIVATION OF DISCRETE FOURIER TRANSFORM). If the discrete-time signal x[n] is
periodic over N samples, then it can be written over one period in continuous time as:

xc(t) = Tp
∑
n∈N

x[n] δ(t− nTs) , 0 ≤ t < Tp (1.53)

where N = {0, . . . , N − 1}, Ts is the sampling period, and Tp = N Ts is the period of the process.
Substituting into the expression for the Fourier series, using the sifting property and noting that
ω0 = 2π

Tp
= 2π

NTs
, gives:

Xk =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt (1.54)

=
1

Tp

∫ Tp

0

{
Tp
∑
n∈N

x[n] δ(t− nTs)

}
e−jkω0t dt (1.55)

=
∑
n∈N

x[n]

∫ Tp

0

δ(t− nTs) e−jkω0t dt (1.56)

=
∑
n∈N

x[n] e−j
2π
N
nk (1.57)

�

The IDFT can be obtained using the appropriate identities to ensure a unique inverse.

1.4.4.1 Parseval’s Theorem for Finite Length Discrete-Time Signals

The average power of a finite length or periodic discrete-time signal with period N is given by

Px =
N−1∑
n=0

|x[n] |2 (P:4.2.10)

Through the same manipulations as for Parseval’s theorems in the cases presented above, which are
left as an exercise for the reader, it is straightforward to show that:

Px =
N−1∑
n=0

|x[n] |2 =
1

N

N−1∑
k=0

|Xk|2 (P:4.2.11)
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1.4.4.2 The DFT as a Linear Transformation

New slide The formulas for the DFT and IDFT may be expressed as:

Xk =
N−1∑
n=0

x[n] W nk
N , k ∈ N (P:5.1.20)

x[n] =
1

N

N−1∑
k=0

XkW
−nk
N , n ∈ N (P:5.1.21)

where, by definition:
WN = e−j

2π
N (P:5.1.22)

which is the N th root of unity. Note here that, if WN has been pre-calculated, then the computation
of each point of the DFT can be accomplished by N complex multiplications and N − 1 complex
additions. Hence, the N -point DFT can be computed in a total of N2 complex multiplications and
N(N − 1) complex additions.

It is instructive to view the DFT and IDFT as linear transformations on the sequences {x[n]}N−1
0 and

{Xk}N−1
0 . Defining the following vectors and matrices:

xN =

 x[0]
...

x[N − 1]

 , XN =

 X0
...

XN−1

 (1.58)

WN =


1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... · ...
1 WN−1

N W
2(N−1)
N · · · W

(N−1)(N−1)
N

 (1.59)

Observe that Xk can be obtained by the inner-product of the (k − 1) th-order row with the column
xN :

Xk =
[
1 W k

N W 2k
N · · · W

(N−1)k
N

] x[0]
...

x[N − 1]

 (1.60)

Then the N -point DFT may be expressed in vector-matrix form as:

XN = WNxN (P:5.1.24)

where WN is the matrix of the linear transformation. Observe that WN is a symmetric matrix.
Assuming that the inverse of WN exists, then Equation P:5.1.24 can be inverted by pre-multiplying
both sides by W−1

N , to obtain:
xN = W−1

N XN (P:5.1.25)

This is the expression for the IDFT, which can also be expressed in matrix form as:

xN =
1

N
W∗

NXN (P:5.1.26)

where W∗
N denotes the complex conjugate of the matrix WN . Hence, it follows that:

W−1
N =

1

N
W∗

N or WNW
∗
N = NIN (P:5.1.27)

where IN is the N ×N identity matrix. Hence, WN is an orthogonal or unity matrix.
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1.4.4.3 Properties of the discrete Fourier transforms

New slideThere are some important basic properties of the DFT that should be noted. The notation used to
denote the N -point DFT pair x[n] and Xk is

x[n]
DFT

 Xk (1.61)

Periodicity If x[n]
DFT

 Xk, then:

x[n+N ] = x[n] for all n (P:5.2.4)
Xk+N = Xk for all k (P:5.2.5)

These periodicities in x[n] and Xk follow immediately from the definitions of the
DFT and IDFT.

Linearity If x[n]
DFT

 Xk and y[n]

DFT

 Yk, then

α1x[n] + α2y[n]
DFT

 α1Xk + α2Yk (P:5.2.6)

for any real or complex-valued constants α1 and α2.

Symmetry of real-valued sequences If the sequence x[n]
DFT

 Xk is real, then

XN−k = X∗k = X−k (P:5.2.24)

Complex-conjugate properties If x[n]
DFT

 Xk then

x∗[n]
DFT

 X∗N−k (P:5.2.45)

PROOF. The DFT of the sequence x[n] is given by:

Xk =
N−1∑
n=0

x[n] e−j
2π
N
nk, k ∈ N (M:2.2.9)

and the DFT of y[n] = x∗[n] is given by:

Yk =
N−1∑
n=0

x∗[n] e−j
2π
N
nk (1.62)

Taking complex conjugates, and noting that ej
2π
N
mk = e−j

2π
N
m(N−k), then:

Y ∗k =
N−1∑
n=0

x[n] e−j
2π
N
m(N−k) = XN−k (1.63)

�

Hence, giving x∗[n]
DFT

 X∗N−k as required.

Time reversal of a sequence If x[n]
DFT

 Xk then

x[N − n]
DFT

 XN−k (P:5.2.42)

Hence, reversing the N -point sequence in time is equivalent to reversing the DFT
values in frequency.
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PROOF. From the definition of the DFT, if y[n] = x[N − n], then:

Yk =
N−1∑
n=0

x[N − n] e−j
2π
N
nk =

N∑
m=1

x[m] e−j
2π
N

(N−m)k (1.64)

where the second summation comes from changing the index from n to m = N − n.
Noting then, that x[N ] = x[0],then this may be written as

Yk =
N−1∑
m=0

x[m] e−j
2π
N

(N−m)k =
N−1∑
m=0

x[m] ej
2π
N
mk (1.65)

=
N−1∑
m=0

x[m] e−j
2π
N
m(N−k) = XN−k (1.66)

�

as required.

Circular Convolution As with many linear transforms, convolution in the time-domain becomes
multiplication in the frequency domain, and vice-versa. Since the signals are periodic,
it is necessary to introduce the idea of circular convolution. Details of this are
discussed in depth in [Proakis:1996, Section 5.2.2, Page 415] and are currently
ommitted here. However, assuming that convolution is interpreted in the circular
sense (i.e. taking advantage of the periodicity of the time-domain signals), then if

x[n]
DFT

 Xk and y[n]

DFT

 Yk, then:

x[n] ∗ y[n]
DFT

 Xk Yk (P:5.2.41)

1.5 Review of discrete-time systems

New slideThe following aspects of discrete-time systems are reviewed:

• Basic discrete-time signals

• The z-transform

• Review of linear time-invariant systems

• Rational transfer functions

1.5.1 Basic discrete-time signals

New slideIn general, the notation x[n] is used to denote a sequence of numbers that represent a discrete-time
signal. The nth sample refers to the value of this sequence for a specific value of n. In a strict
sense, this terminology is only correct if the discrete-time signal has been obtained by sampling a
continuous-time signal xc(t). In the case of periodic sampling with sampling period T , then x[n] =
xc(nT ) , n ∈ Z; that is, x[n] is the nth sample of xc(t).

There are some basic discrete-time signals that will be used repeatedly throughout the course, and
these are shown in Figure 1.15:
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n0

d[ ]n

(a) The unit sample
or unit impulse sequence
δ[n].

n0

u[ ]n

(b) The unit step sequence
u[n].

n0

x[ ]n

(c) The exponential decay sequence.

Figure 1.15: Basic discrete-time signals.

1. The unit sample or unit impulse sequence δ[n] is defined as:

δ[n] =

{
1 n = 0

0 n 6= 0
(M:2.1.1)

2. The unit step sequence, u[n] is defined as:

u[n] =

{
1 n ≥ 0

0 n < 0
(M:2.1.2)

3. The exponential sequence is of the form

x[n] = an, −∞ < n <∞, n ∈ Z (M:2.1.3)

If a is a complex number, such that a = r ejω0 for r > 0, ω0 6= 0, π, then x[n] is complex
valued and given by:

x[n] = rn ejω0n = xR[n] + jxI [n] (M:2.1.4)
= rn cosω0n+ jrn sinω0n (1.67)

where xR[n] and xI [n] are real sequences given by:

xR[n] = rn cosω0n and xI [n] = rn sinω0n (M:2.1.5)

4. The critical decay sequence is of the form

x[n] = a n rn u[n] , n ∈ Z (1.68)

which is discussed further in Sidebar 3.

1.5.2 The z-transform
New slide The z-transform of a sequence is a very powerful tool for the analysis of discrete linear and

time-invariant systems; it plays the same role in the analysis of discrete-time signals and linear
time-invariant (LTI) systems as the Laplace transform does in the analysis of continuous-time signals
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Sidebar 3 The signal n rn

The discrete-time signal
x[n] = a n rn (1.69)

is equivalent to the continuous-time signal x[t] = t e−αt, and both are important, as they represent the
response of a critically damped system, as will be seen later. Note in both cases that:

lim
n→∞

n rn → 0 (1.70)

The shape of x[n] is shown below for r = 0.9, and note the relationship derived in Sidebar 4 that:

n rn
z+



r

(1− r)2 if |r| < 1 (1.71)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

n

x[
n]

The simple signal nrn
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and LTI systems. For example, as will be seen, in the z-domain, also known as the complex z-plane,
the convolution of two time-domain signals is equivalent to multiplication of their corresponding
z-transforms. This property greatly simplifies the analysis of the response of an LTI system to various
inputs.

Although the Fourier transform also satisfies the property that convolution in the time domain
becomes multiplication in the frequency domain, it is not always possible to calculate the Fourier
transform of a signal, x[n], even for some elementary signals that are important for the analysis of
systems. For example, if x[n] is a power signal (having finite power), rather than an energy signal,
the discrete-time Fourier transform (DTFT) does not exist.

One such signal, of practical importance, is the unit step function, u[t], as can be illustrated by
attempting to evaluate the DTFT:

U
(
ejωT

)
=

∞∑
n=−∞

u[n] e−jωn =
∞∑
n=0

e−jωn (1.72)

This is a geometric series, of the form
∞∑
n=0

rn where r = e−jω; however, this series diverges since

|r| = 1. Therefore, the DTFT does not exist; this could also have been deduced from the fact that
u[n] is not absolutely summable, which a necessary condition for a Fourier transform to exist:

∑
all n

|u[n]| =
∞∑
n=0

1 6<∞ (1.73)

The solution is to multiply the signal by a convergence factor, which leads to the z-transform. Details
of the derivation can be found in some text books.

1.5.2.1 Bilateral z-transform

New slide The bilateral z-transform is defined by the following pairs of equations:

X (z) , Z[x[n]] =
∞∑

n=−∞

x[n] z−n (M:2.2.29)

x[n] =
1

2πj

∮
C

X (z) zn−1 dz (M:2.2.30)

where z is a complex variable. This is usually denoted as:

x[n]
z

 X (z) or X (z) = Z[x[n]] (1.74)

The set of values of z for which the power series in the (direct) z-transform converges is called the
region of convergence (ROC) of X (z). A sufficient condition for convergence is:

∞∑
n=−∞

|x[n] ||z−n| <∞ (M:2.2.31)

The unilateral or one-sided z-transform, which is more commonly encountered in undergraduate
Engineering courses, is discussed below in Section 1.5.2.3. For the moment, it suffices to mention that
the difference between them usually comes down to the initial conditions, and therefore a discussion
of the bilateral transform is not too restrictive at this point.
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Sidebar 4 The Ubiquitous Geometric Progression

The geometric progresson occurs frequently in discrete-time analysis due to the existance of the
summation operator and the commonality of exponential decay functions. It is essentially the
discrete-time equivalent of integrating an exponential function. The geometric progression is given
by

N∑
n=0

a rn = a
1− rN+1

1− r
(1.75)

∞∑
n=0

a rn = a
1

1− r
if |r| < 1 (1.76)

More interesting are variants of the geometric progression that can be obtained by simple
manipulations, such as differentiating both sides of Equation 1.76 with respect to (w. r. t.) r:

d

dr

[
∞∑
n=0

a rn

]
=

d

dr

[
a

1

1− r

]
(1.77)

∞∑
n=0

a n rn−1 = a
1

(1− r)2 (1.78)

or, multiplying both sides by r, gives:

∞∑
n=0

a n rn = a
r

(1− r)2 if |r| < 1 (1.79)

which is also a useful identity. The signal x[n] = n rn is an important one and discussed further in
Sidebar 3. Differentiating repeated times gives a general expresion for

∑
np rn which can often be

useful.

By evaluating the z-transform on the unit circle of the z-plane, such that z = ejω, then:

X (z)|z=ejω = X
(
ejωT

)
=

∞∑
n=−∞

x[n] e−jωn (M:2.2.32)

x[n] =
1

2π

∫ π

−π
X
(
ejωT

)
ejωn dω (M:2.2.33)

which are the DTFT and inverse-DTFT relating the signals x[n] and X
(
ejωT

)
. This relation holds

only if the unit circle is inside the ROC.

Example 1.6 ( [Proakis:1996, Example 3.1.3, Page 154]). Determine the z-transform of the signal:

x[n] = αn u[n] ≡

{
αn n ≥ 0

0 n < 0
(1.80)

SOLUTION. From the definition of the z-transform, it follows that:

X (z) =
∞∑
k=0

αnz−n =
∞∑
n=0

(
α z−1

)n (1.81)
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Figure 1.16: The region of convergence (ROC) for the transfer function in Equation P:3.1.7.

n0

x a[ ]n =
| |n

Figure 1.17: The sequence x[n] = a|n|.

The summation on the right is a geometric progression, and converges to 1
1−α z−1 if, and only if, (iff)

|αz−1| < 1 or, equivalently, |z| > |α|. Further details on the geometric progression are given in
Sidebar 4. Thus, this gives the z-transform pair:

x[n] = αn u[n]
z

 X (z) =

1

1− αz−1
ROC: |z| > |α| (P:3.1.7)

Note that, in general, α need not be real. The ROC is the exterior of a circle having radius |α|. The
ROC is shown in Figure 1.16. The z-transform in Equation P:3.1.7 may be written as:

X (z) =
z

z − α
ROC: |z| > |α| (1.82)

�

and therefore it has a pole at z = α and a zero at z = 0. The position of the pole is outside the ROC,
which is as expected since the z-transform does not converge at a pole; it tends to infinity instead.
However, simply because there is a zero at the origin does not mean the z-transform converges at that
point – it doesn’t, since it is outside of the ROC. However, the concept of the zero is still important
and is thus still drawn on the pole-zero diagram.

Example 1.7 (Two-sided exponential (Laplacian exponential)). What is the bilateral z-transform
of the sequence x[n] = a|n| for all n and some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence x[n] = a|n|, shown in Figure 1.17, is given by:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

a|n| z−n (1.83)

=
−1∑

n=−∞

a−n z−n +
∞∑
n=0

an z−n (1.84)
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Im( )z

Re( )z

1

a

ROC

unit
circle

pole at z�=�a

and z�=�1/a

outside of ROC

zero
at origin

1/a

Figure 1.18: The region of convergence (ROC) for the transfer function in Equation 1.88.

Setting m = −n in the first summation, noting that when n = −∞ then m = ∞, and when n = 0
then m = 0, gives:

X (z) =
∞∑
n=1

(az)n +
∞∑
n=0

(a
z

)n
(1.85)

=
∞∑
n=0

(az)n − 1 +
∞∑
n=0

(a
z

)n
(1.86)

=
1

1− az
− 1 +

1

1− a
z

(1.87)

where the expression for an infinite geometric progression has been used. Note, however, that each
summation has different convergence constraints. Thus, note that the first summation only exists for
|az| < 1, while the second summation only exists for

∣∣a
z

∣∣ < 1. This means that the ROC for this
transform is the ring |a| < z < 1

|a| . The ROC is thus shown in Figure 1.18.

Combining the various terms and a slight rearrangement gives the expression

X (z) =
1− a2

(1− az) (1− az−1)
(1.88)
�

which has a zero at z = 0 and poles at z = a and z = 1
a
.

1.5.2.2 Properties of the z-transform

The power of the z-transform is a consequence of some very important properties that the transform
possesses. Some of these properties are listed below, as a re-cap. Note that the proof of many of these
properties follows immediately from the definition of the property itself and the z-transform, and is
left as an exercise for the reader. Alternatively, cheat and look in, for example, [Proakis:1996].

Linearity If x1[n]
z

 X1 (z) and x2[n]

z

 X2 (z), then by linearity

x[n] = α1x1[n] + α2x2[n]
z

 X (z) = α1X1 (z) + α2X2 (z) (P:3.2.1)

for any constants α1 and α2. Obviously, this property can be generalised for an
arbitrary number of signals, and therefore if xm[n]

z

 Xm (z) for m = {1, . . . ,M}

x[n] =
M∑
m=1

αmxm[n]
z

 X (z) =

M∑
m=1

αmXm (z) (1.89)

for any constants {αm}M1 .
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Time shifting If x[n]
z

 X (z) then:

x[n− k]
z

 z−kX (z) (1.90)

The ROC of z−kX (z) is the same as that of X (z) except for z = 0 if k > 0 and
z =∞ if k < 0.

Scaling in the z-domain If x[n]
z

 X (z) with ROC r1 < |z| < r2, then

an x[n]
z

 X(a−1 z) ROC: |a|r1 < |z| < |a|r2 (P:3.2.9)

for any constant a.

Time reversal If x[n]
z

 X (z) with ROC r1 < |z| < r2, then

x[−n]
z

 X(z−1) ROC:

1

r1

< |z| < 1

r2

(P:3.2.12)

Differentiation in the z-domain If x[n]
z

 X (z) then

nx[n]
z

 −zdX (z)

dz
(P:3.2.14)

PROOF. Since

X (z) =
∞∑

n=−∞

x[n] z−n (1.91)

then differentiating both sides gives:

dX (z)

dz
= −z−1

∞∑
n=−∞

[nx[n]] z−n = −z−1Z[nx[n]] (1.92)
�

Both transforms have the same ROC.

Convolution If x1[n]
z

 X1(z) and x2[n]

z

 X2(z), then

x[n] = x1[n] ∗ x2[n]
z

 X (z) = X1(z)X2(z) (3.2.17)

The ROC of X (z) is, at least, the intersection of that for X1(z) and X2(z).

PROOF. The convolution of x1[n] and x2[n] is defined as:

x[n] =
∞∑

k=−∞

x1[k]x2[n− k] (1.93)

The z-transform of x[n] is:

X (z) =
∞∑

n=−∞

x[n] z−n =
∞∑

n=−∞

[
∞∑

k=−∞

x1[k]x2[n− k]

]
z−n (1.94)

Upon changing the order of the summations, then:

X (z) =
∞∑

k=−∞

x1[k]

[
∞∑

n=−∞

x2[n− k] z−n

]
︸ ︷︷ ︸

X2(z) z−k

= X2(z)
∞∑

k=−∞

x1[k] z−k︸ ︷︷ ︸
X1(z)

(1.95)
�

giving the desired result.
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The Initial Value Theorem If x[n] = 0, n < 0 is a causal sequence, then

x[0] = lim
z→∞

X (z) (P:3.2.23)

PROOF. Since x[n] is causal, then:

X (z) = x[0] + x[1] z−1 + x[2] z−2 + · · · (1.96)
�

Hence, as z →∞, z−n → 0 since n > 0, and thus the desired result is obtained.

1.5.2.3 The Unilateral z-transform

The two-sided z-transform requires that the corresponding signals be specified for the entire time
range n ∈ Z. This requirement prevents its used for systems that are described by difference equations
with nonzero initial conditions. Since the input is applied at a finite time, say n0, both input and
output signals are specified for n ≥ n0, but are not necessarily zero for n < 0. Thus the two sided
z-transform cannot be used

The one-sided unilateral z-transform of a signal x[n] is defined by:

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)

This is usually denoted as:

x[n]
z+


 X+(z) or X+(z) = Z+[x[n]] (1.97)

The unilateral z-transform differs from the bilateral transform in the lower limit of the summation,
which is always zero, whether or not the signal x[n] is zero for n < 0 (i.e., causal). Therefore, the
unilateral z-transform contains no information about the signal x[n] for negative values of time, and is
therefore unique only for causal signals. The unilateral and bilateral z-transforms are, consequentially,
identical for the signal x[n]u[n] where u[n] is the step function. Since x[n]u[n] is causal, the ROC of
its transform, and hence the ROC of X+(z), is always the exterior of a circle. Thus, when discussing
the unilateral z-transform, it is not necessary to refer to their ROC - which perhaps explains why this
is the more commonly discussed transform in undergraduate courses.

Almost all the properties for the bilateral z-transform carry over to the unilateral transform with the
exception of the shifting property.

Shifting property: Time Delay If x[n]
z+


 X+(z) then:

x[n− k]
z+


 z−kX (z) +
−1∑

n=−k

x[n] z−(n+k)

︸ ︷︷ ︸
initial conditions

, k > 0 (1.98)

PROOF. Since

X+(z) ≡
∞∑
n=0

x[n] z−n (P:3.5.1)
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then it follows that

Z+[x[n− k]] =
∞∑
n=0

x[n− k] z−n =
∞∑

m=−k

x[m] z−(m+k) (1.99)

by the change of index m = n− k,

= z−k
−1∑

m=−k

x[m] z−m + z−k
∞∑
m=0

x[m] z−m︸ ︷︷ ︸
X+(z)

(1.100)
�

This is the desired result.

Shifting property: Time Advance If x[n]
z+


 X+(z) then:

x[n+ k]
z+


 zkX (z)−
k−1∑
n=0

x[n] zk−n, k > 0 (1.101)

PROOF. From the definition of the unilateral transform, it follows

Z+[x[n+ k]] =
∞∑
n=0

x[n+ k] z−n =
∞∑
m=k

x[m] z−(m−k) (1.102)

by the change of index m = n+ k. Thus,

= zk
∞∑
0

x[m] z−m︸ ︷︷ ︸
X+(z)

−zk
k−1∑
m=1

x[m] z−m (1.103)
�

This is the desired result.

Final Value Theorem If x[n]
z+


 X+(z) then:

lim
n→∞

x[n] = lim
z→1

(z − 1)X+(z) (P:3.5.6)

The limit on the right hand side (RHS) exists if the ROC of (z − 1)X+(z) includes
the unit circle.

Further information can be found in books on discrete-time systems, for example [Proakis:1996,
Section 3.5, Page 197].

1.5.3 Review of linear time-invariant systems

New slide • Systems which are LTI can be elegantly analysed in both the time and frequency domain:
convolution in time, multiplication in frequency.

• For signals and sequences, it is common to write {y[n]}∞n=−∞, or even {y[n]}n∈Z rather than
simply y[n]: the latter is sufficient for these notes.
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• Output, y[n], of a LTI system is the convolution of the input, x[n], and the impulse response
of the system, h[n]:

y[n] = x[n] ∗ h[n] ,
∑
k∈Z

x[k] h[n− k] (M:2.3.2)

• By making the substitution k̂ = n− k, it follows:

y[n] =
∑
k∈Z

h[k] x[n− k] = h[n] ∗ x[n] (M:2.3.3)

1.5.3.1 Matrix-vector formulation for convolution

New slideIf x[n] and h[n] are sequences of finite duration, the convolution operation can be written in
matrix-vector form. Let x[n] , 0 ≤ n ≤ N − 1 and h[n] , 0 ≤ n ≤ M − 1 be finite-duration
sequences, then y[n] , 0 ≤ n ≤ L− 1, where L = N +M − 1, can be written as:

y[0]
y[1]

...
y[M − 1]

...
y[N − 1]

...
y[L− 2]
y[L− 1]


=



x[0] 0 · · · 0

x[1] x[0]
. . . ...

... . . . 0
x[M − 1] · · · · · · x[0]

... . . . . . . ...
x[N − 1] · · · · · · x[N −M ]

0
. . . ...

... . . . x[N − 1] x[N − 2]
0 · · · 0 x[N − 1]




h[0]
h[1]

...
h[M − 1]

 (M:2.3.4)

or
y = Xh (M:2.3.5)

• Here, y ∈ RL, X ∈ RL×M , and h ∈ RM .

• The matrix X is termed an input data matrix, and has the property that it is toeplitz. 1

• The observation or output vector y can also be written in a similar way as:

y = Hx (M:2.3.6)

in which H is also toeplitz.

• A system is causal if the present output sample depends only on past and/or present input
samples.

• Assume system is asymptotically stable.

1.5.3.2 Transform-domain analysis of LTI systems

New slideTime-domain convolution:
y[n] =

∑
k∈Z

x[k] h[n− k] (M:2.3.2)

1 A Toeplitz matrix is one in which the elements along each diagonal, parallel to the main diagonal each descending
from left to right, are constant. Note that the anti-diagonals are not necessarily equal.
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or
y[n] =

∑
k∈Z

h[k] x[n− k] (M:2.3.3)

Taking z-transforms gives:
Y (z) = H (z) X (z) (M:2.3.8)

where X (z), Y (z) and H (z) are the z-transforms of the input, output, and impulse response
sequences respectively. H (z) = Z[h[n]] is the system function or transfer function.

1.5.3.3 Frequency response of LTI systems

New slide The frequency response of the system is found by evaluating the z-transform on the unit circle, so
z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X
(
ejωT

)
(M:2.3.9)

• |H(ejω)| is the magnitude response of the system, and argH(ejω) is the phase response.

• The group delay of the system is a measure of the average delay of the system as a function of
frequency:

τ(ejω) = − d

dω
argH(ejω) (M:2.3.11)

1.5.3.4 Frequency response to Periodic Inputs

New slide Although the convolution summation formula can be used to compute the response of a stable system
to any input, the frequency-domain input-output relationship for a LTI cannot be used with periodic
inputs, since periodic signals do not strictly possess a z-transform. However, it is possible to develop
an expression for the frequency response of LTI from first principles. Let x[n] be a periodic signal
with fundamental period N . This signal can be expanded using an IDFT as:

x[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
kn, n ∈ {0, . . . , N − 1} (M:2.3.19)

where Xk are the Fourier components.

Hence, it follows that on substitution into the convolution equation:

y[n] =
∞∑

m=−∞

h[m] x[n−m] =
1

N

∞∑
m=−∞

h[m]
N−1∑
k=0

Xk e
j 2π
N
k(n−m) (M:2.3.20)

which, by interchanging the order of summation (noting that the limits are over a rectangular region
of summation), gives;

y[n] =
1

N

N−1∑
k=0

Xk e
j 2π
N
kn

∞∑
m=−∞

h[m] e−j
2π
N
km

︸ ︷︷ ︸
H(ej

2π
N
k)

(1.104)

where H(ej
2π
N
k) are samples of H(ejω). Hence,

y[n] =
1

N

N−1∑
k=0

{
H(ej

2π
N
k)Xk

}
ej

2π
N
kn (1.105)
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However, this is just the inverse-DFT expansion of y[n], and therefore:

Yk = H(ej
2π
N
k)Xk k ∈ {0, . . . , N − 1} (M:2.3.21)

Thus, the response of a LTI system to a periodic input is also periodic with the same period.
The magnitude of the input components is modified by |H(ej

2π
N
k)|, and the phase is modified by

argH(ej
2π
N
k).

1.5.4 Rational transfer functions
New slideMany systems can be expressed in the z-domain by a rational transfer function. They are described

in the time domain by:

y[n] = −
P∑
k=1

ak y[n− k] +

Q∑
k=0

dk x[n− k] (M:2.3.12)

Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k
,
D (z)

A (z)
(M:2.3.13)

This can be described in the complex z-plane as:

H (z) =
D (z)

A (z)
= G

∏Q
k=1(1− zk z−1)∏P
k=1(1− pk z−1)

(M:2.3.14)

where pk are the poles of the system, and zk are the zeros.
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2
Discrete-Time Stochastic Processes

Introduces the notion of time-series or random processes. Gives an interpretation using ensembles,
and covers second-order statistics including correlation sequences. Discusses types of stationary
processes, ergodicity, joint-signal statistics, and correlation matrices.

2.1 A Note on Notation

Note that, unfortunately, for this module, a slightly different (and abusive use of) notation for random
quantities is used than what was presented in the first four handouts of the Probability, Random
Variables, and Estimation Theory (PET) module. In the literature, most time series are described
using lower-case letters, primarily since once the notation for the representation of a random process
in the frequency domain is discussed, upper-case letters are exclusively reserved to denote spectral
representations. Moreover, lower-case letters for time-series are generally more recognisable and
readable, and helps with the clarity of the presentation. Hence, random variables and vectors in this
handout will not always be denoted using upper-case letters.

2.2 Definition of a Stochastic Process
New slide After studying random variables and vectors, these concepts can now (easily) be extended to

discrete-time signals or sequences.

• Natural discrete-time signals can be characterised as random signals, since their values cannot
be determined precisely; that is, they are unpredictable. A natural mathematical framework
for the description of these discrete-time random signals is provided by discrete-time stochastic
processes.

• To obtain a formal definition, consider an experiment with a finite or infinite number of
unpredictable outcomes from a sample space S = {ζk, k ∈ Z+}, each occurring with
probability Pr (ζk). Assign by some rule to each ζk ∈ S a deterministic sequence x[n, ζk] , n ∈
Z.

36
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Figure 2.1: A graphical representation of a random process.

• The sample space S, probabilities Pr (ζk), and the sequences x[n, ζk] , n ∈ Z constitute a
discrete-time stochastic process, or random sequence.

• Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic process if, for a fixed value
n0 ∈ Z+ of n, x[n0, ζ] , n ∈ Z is a random variable.

• A random or stochastic process is also known as a time series in the statistics literature.

• It is an infinite sequence of random variables, so could be thought of as an infinite-dimensional
random vector. Indeed, finite-length random signals and sequences can specifically be
represented by the concept of a random vector.

2.2.1 Interpretation of Sequences

New slideThe set of all possible sequences {x[n, ζ]} is called an ensemble, and each individual sequence
x[n, ζk], corresponding to a specific value of ζ = ζk, is called a realisation or a sample sequence of
the ensemble. Hence, when a random process is observed through the outcome of a single experiment,
one member of the ensemble is selected randomly and presented. A graphical representation of a
random process is shown in Figure 2.1.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable
n Fixed Number Random variable
n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic process, and a single realisation.
The word stochastic is derived from the Greek word stochasticos, which means skillful in aiming or
guessing. Use the terms random process and stochastic process interchangeably throughout this
course.
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2.2.2 Predictable Processes

New slide A deterministic signal is by definition exactly predictable; it assumes there exists a certain functional
relationship that completely describes the signal, even if that functional relationship is not available
or is extremely difficult to describe. The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation of a stochastic process is based on the outcome of a random
experiment; in other-words, it depends on ζ .

2. No functional description is available for all realisations of the ensemble. In other-words, even
if a functional relationship is available for a subset of the ensemble, it might not be available
for all members of the ensemble.

In some special cases, however, a functional relationship is available. This means that after the
occurrence of all samples of a particular realisation up to a particular point, n, all future values can
be predicted exactly from the past ones.

If this is the case for a random process, then it is called predictable, otherwise it is said to be
unpredictable or a regular process.

KEYPOINT! (Predictable Process). As an example of a predictable process, consider the signal:

x[n, ζ] = A sin (ω n+ φ) (2.1)
�

where A is a known amplitude, ω is a known normalised angular frequency, and φ is a random phase,
where φ ∼ fΦ (φ) is its probability density function (pdf).

As an outline of this idea, suppose that all the samples of a stochastic process x[n, ζ] upto sample
n − 1 are known; thus, {x[k, ζ]}n−1

k=−∞ are known. Then the predicted value of x[n] might, for
example, be expressed as:

x̂[n] = −
∞∑
k=1

a∗k x[n− k] (T:7.189)

The error in this prediction is given by

ε[n] = x[n]− x̂[n] =
∞∑
k=0

a∗k x[n− k] (T:7.190)

where a0 = 1. The process is said to be predictable if the {ak}’s can be chosen such that:

σ2
ε = E

[
|ε[n] |2

]
= 0 (T:7.191)

Otherwise the process is not predictable. The phrase not predictable is somewhat misleading, since
the linear prediction in Equation T:7.189 can be applied to any process, whether predictable or not,
with satisfactory results. If a process is not predictable, it just means that the prediction error variance
is not zero.

An example of predictable process is the process x[n, ζ] = c, where c is a random variable, since
every realisation of the discrete-time signal has a constant amplitude, and once x[n0, ζk] is known for
a particular realisation, all other samples of that process have also been determined.

The notion of predictable and regular processes is formally presented through the Wold
decomposition, and further details of this very important theorem can be found in [Therrien:1992,
Section 7.6, Page 390] and [Papoulis:1991, Page 420].
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2.2.3 Description using pdfs

New slideFor fixed n = n0, it is clear from Figure 2.1 that x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables {x[nj] , j ∈ {1, . . . k}} is characterised by the
joint-cumulative distribution function (cdf) and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk) (2.2)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk
(2.3)

In exactly the same way as with random variables and random vectors, it is:

• difficult to estimate these probability functions without considerable additional information or
assumptions;

• possible to frequently characterise stochastic processes usefully with much less information.

Thus, the density and distribution functions are characterised using moments and, in particular,
second-order moments.

2.3 Second-order Statistical Description

New slideRandom variables can be characterised, upto second-order statistics, using the mean and variance;
random vectors are characterised by the mean vector, auto-correlation and auto-covariance matrices.
Random processes, however, are characterised by sequences, where a particular sample, n0, of this
sequence characterises the random variable x[n0, ζ]. These sequences are the mean and variance
sequence, the autocorrelation and autocovariance sequences, as outlined below.

Mean and Variance Sequence At time n, the ensemble mean and variance are given by:

µx[n] = E [x[n]] (M:3.3.3)

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2 (M:3.3.4)

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2] provides a measure of the
dependence between values of the process at two different times; it can provide
information about the time variation of the process:

rxx[n1, n2] = E [x[n1] x∗[n2]] (M:3.3.5)

Autocovariance sequence The autocovariance sequence provides a measure of how similar the
deviation from the mean of a process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])∗]

= rxx[n1, n2]− µx[n1] µ∗x[n2]
(M:3.3.6)

To show how these deterministic sequences of a stochastic process can be calculated, several examples
are considered in detail below.
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2.3.1 Example of calculating autocorrelations

New slideThese examples assume that the notion of stationarity has been met; this, in fact, is not discussed
until Section 2.5. Either the reader can skip these examples and return to read them after reading
Section 2.5, or for the moment the reader can proceed by using the simple definition that a “stationary”
process is one for which the autocorrelation function rxx[n,m] = rxx[n−m] = rxx[`] is simply a
function of the time (or sample index) differences, also called the lag: ` = n−m.

Example 2.1 (Straightforward example). A random variable y[n] is defined to be:

y[n] = x[n] + x[n+m] (2.4)

where m is some integer, and x[n] is a stationary stochastic process whose autocorrelation function is
given by:

rxx[`] = e−`
2

(2.5)

Derive an expression for the autocorrelation of the stochastic process y[n].

SOLUTION. In this example, it is simplest to form the product:

y(n) y∗(n− l) = [x(n) + x(n+m)] [x∗(n− l) + x∗(n+m− l)] (2.6)
= x(n)x∗(n− l) + x(n+m)x∗(n− l)

+ x(n)x∗(n+m− l) + x(n+m)x∗(n+m− l) (2.7)

then, taking expectations, noting x(n) is a stationary signal, it follows:

ryy(l) = rxx(l) + rxx(m+ l) + rxx(l −m) + rxx(l) (2.8)

giving, in this particular case,

ryy(l) = 2 e−l
2

+ e−(l+m)2 + e−(l−m)2 (2.9)
�

Example 2.2 ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process x[n] is defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ φk), ωk 6= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are pairwise independent random variables
uniformly distributed in the interval [0, 2π].

1. Determine the mean of x[n].

2. Show the autocorrelation sequence is given by

rxx[`] =
1

2

M∑
k=1

|Ak|2 cosωk`, −∞ < ` <∞ (2.10)
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SOLUTION. 1. The expected value of the process is straightforwardly given by:

E [x[n]] = E

[
M∑
k=1

Ak cos(ωkn+ φk)

]
=

M∑
k=1

Ak E [cos(ωkn+ φk)] (2.11)

Recall from results derived earlier in the course that if x[n, ζ] = g(n, φ(ζ)) is a random variable
obtained by transforming φ(ζ) through a known function, g, the expectation of x[n] = x[n, ζ]
is:

E [x(n)] =

∫ ∞
−∞

g(n, φ) pΦ(φ) dφ (2.12)

It is important to consider n as a constant.

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0 (2.13)

Hence, it follows:
E [x(n)] = 0, ∀n (2.14)

2. The autocorrelation rxx(n1, n2) = E [x(n1)x∗(n2)] follows similarly:

rxx(n1, n2) = E

[
M∑
k=1

Ak cos(ωkn1 + φk)
M∑
j=1

A∗j cos(ωjn2 + φj)

]
(2.15)

=
M∑
k=1

M∑
j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.16)

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2

cosωk(n1 − n2) k = j

0 otherwise
(2.17)

The proof of this statement is obtained by considering the term

r(φk, φj) = E [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.18)

for the cases when k 6= j, and when k = j. Considering the former case first, k 6= j, then

r(φk, φj) =
1

4π2

∫ 2π

0

∫ 2π

0

cos(ωkn1 + φk) cos(ωjn2 + φj) dφj dφk (2.19)

=
1

4π2

∫ 2π

0

cos(ωkn1 + φk) dφk

∫ 2π

0

cos(ωjn2 + φj) dφj (2.20)

= 0 (2.21)

An alternative derivation which might be considered more straightforward is to observe that
Equation 2.18 might also be written as:

r(φk, φj) = E [g(φk)h(φj)] = E [g(φk)]E [h(φj)] (2.22)

where g(φk) = cos(ωkn1 + φk) and h(φk) = cos(ωjn2 + φj), and the fact that φk and φj are
independent implies the expectation function may be factorised.
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For the case when k = j such that φ = φk = φj and ω = ωk = ωj , then:

r(φ, φ) =
1

2π

∫ 2π

0

cos(ωn1 + φ) cos(ωn2 + φ) dφ (2.23)

Using the trigonometric identity cosA cosB = 1
2

(cos(A+B) + cos(A−B)), then:

r(φk, φj) =
1

4π

∫ 2π

0

{cosω(n1 − n2) + cos(ω(n1 + n2) + 2φ)} dφ (2.24)

=
1

2
cosω(n1 − n2) (2.25)

giving the result above; namely:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =
1

2
cosωk(n1 − n2) δ(k − j) (2.26)

Substituting this expression into

rxx(n1, n2) =
1

2

M∑
k=1

M∑
j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)] (2.27)

thus leads to the desired result. It can be seen that the process x(n) must be a stationary process,
as it is only a function of the lag l:

rxx(l) =
1

2

M∑
k=1

|Ak|2 cosωkl, −∞ < l <∞ (2.28)
�

2.4 Types of Stochastic Processes

New slide Some useful types of stochastic properties, based on their statistical properties, are now introduced:

Independence A stochastic process is independent if, and only if, (iff)

fX (x1, . . . , xN | n1, . . . , nN) =
N∏
k=1

fXk (xk | nk) (M:3.3.10)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of independent random
variables.

An independent and identically distributed (i. i. d.) process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x(n) will be called an i. i. d. random
process.

Example 2.3 (Independence: i. i. d. processes). I am selling my house, and have
decided to accept the first offer exceeding K pounds. Assuming that the offers
are i. i. d. random variables, with common cumulative distribution function FX (x),
where x is the offer price, find the expected number of offers received before I sell
the house.
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SOLUTION. Suppose that I sell the house after N offers. Then there are N − 1 offers
that are less than K, which occur with probability FX (K). Thus, the probability of
selling the house after N offers is:

Pr (N = n) = FX (K)n−1 [1− FX (K)] n ≥ 1 (2.29)

This is a geometric distribution, and its mean can either be looked up in tables, or
calculated:

µN =
∞∑
n=1

n Pr (N = n) =
∞∑
n=1

nFX (K)n−1 [1− FX (K)] (2.30)

=

[
1− r
r

] ∞∑
n=0

n rn (2.31)

where r = FX (K). There is a general result which can be found in mathematical
tables that [Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+
br(1− rN−1)

(1− r)2
, r 6= 0, N > 1 (2.32)

Therefore, in the case when a = 0, r = 1, and N →∞, and 0 < r < 1 then:

∞∑
n=0

n rn =
r

(1− r)2
, 0 < r < 1 (2.33)

Hence, this gives the mean of the geometric distribution as:

µN =

[
1− r
r

]
r

(1− r)2
=

1

1− r
= [1− FX (K)]−1 (2.34)

�

An uncorrelated processes is a sequence of uncorrelated random variables:

γxx[n1, n2] = σ2
x[n1] δ[n1 − n2] (M:3.3.11)

Alternatively, the autocorrelation function can be written as:

rxx[n1, n2] =

{
σ2
x[n1] + |µx[n1] |2 n1 = n2

µx[n1]µ∗x[n2] n1 6= n2

(M:3.3.12)

An orthogonal process is a sequence of orthogonal random variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2] (M:3.3.13)

If a process is zero-mean, then it is both orthogonal and uncorrelated since
γxx[n1, n2] = rxx[n1, n2]. More often than not, in this course, we shall consider
zero-mean processes.

A stationary process is a random process where its statistical properties do not vary with time. Put
another way, it would be impossible to distinguish the statistical characteristics of
a process at time t from those at some other time, t′. Processes whose statistical
properties do change with time are referred to as nonstationary.
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2.5 Stationary Processes

New slideA random process x(n) has been called stationary if its statistics determined for x[n] are equal to
those for x[n+ k], for every k. There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

• Order-N and strict-sense stationarity

• Wide-sense stationarity

• Wide-sense periodicity and cyclo-stationarity

• Local- or quasi-stationary processes

After this, some examples of various stationary processes will be given.

2.5.1 Order-N and strict-sense stationarity

New slide Definition 2.1 (Stationary of order-N ). A stochastic process x[n] is called stationary of order-N
if:

fX (x1, . . . , xN | n1, . . . , nN) = fX (x1, . . . , xN | n1 + k, . . . , nN + k) (M:3.3.21)
♦

for any value of k. If x[n] is stationary for all orders N ∈ Z+, it is said to be strict-sense stationary
(SSS).

Clearly, any stochastic process that is stationary of order-N is also stationary of order-M , where
M ≤ N .

An independent and identically distributed process is SSS since, in this case, fXk (xk | nk) = fX (xk)
is independent of n, and therefore also of n + k. However, SSS is more restrictive than necessary in
practical applications, and is a rarely required property.

2.5.2 Wide-sense stationarity

New slide A more relaxed form of stationarity, which is sufficient for practical problems, occurs when a random
process is stationary order-2; such a process is wide-sense stationary (WSS).

Definition 2.2 (Wide-sense stationarity). A random signal x[n] is called wide-sense stationary if:

• the mean and variance is constant and independent of n:

E [x[n]] = µx (M:3.3.22)
var [x[n]] = σ2

x (M:3.3.23)

• the autocorrelation depends only on the time difference ` = n1 − n2, called the lag:

rxx[n1, n2] = r∗xx[n2, n1] = E [x[n1] x∗[n2]]

= rxx[`] = rxx[n1 − n2] = E [x[n1] x∗[n1 − `]]
= E [x[n2 + `] x∗[n2]]

(M:3.3.24)
♦
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Additionally:

• The autocovariance sequence is given by:

γxx[`] = rxx[`]− |µx|2 (2.35)

• Since 2nd-order moments are defined in terms of 2nd-order pdf, then strict-sense stationary are
always WSS, but not necessarily vice-versa, except if the signal is Gaussian.

• In practice, however, it is very rare to encounter a signal that is stationary in the wide-sense, but
not stationary in the strict sense.

Example 2.4 ( [Manolakis:2000, Example 3.3.1, Page 102]). Let w(n) be a zero-mean,
uncorrelated Gaussian random sequence with variance σ2

w(n) = 1.

1. Characterise the random sequence w(n).

2. Define x(n) = w(n) + w(n − 1), n ∈ Z. Determine the mean and autocorrelation of x(n).
Also, characterise x(n).

SOLUTION. Note that the variance of w(n) is a constant.

1. Since uncorrelatedness implies independence for Gaussian random variables, then w(n) is an
independent random sequence. Since its mean and variance are constants, it is at least stationary
of first-order. Furthermore, from Equation M:3.3.12 or from Equation M:3.3.13, then:

rww(n1, n2) = σ2
wδ(n1 − n2) = δ(n1 − n2) (2.36)

Since the autocorrelation sequence depends only on the lag n1−n2, then by definition it is WSS
process.

2. The mean of x(n) is zero for all n since w(n) is a zero-mean process. Next, consider:

rxx(n1, n2) = E [x(n1)x∗(n2)] (2.37)
= E [[w(n1) + w(n1 − 1)][w∗(n2) + w∗(n2 − 1)]] (2.38)
= rww(n1, n2) + rww(n1, n2 − 1) + rww(n1 − 1, n2) + rww(n1 − 1, n2 − 1)

(2.39)

= 2δ(n1 − n2) + δ(n1 − n2 + 1) + δ(n1 − n2 − 1) (2.40)
= 2δ(l) + δ(l + 1) + δ(l − 1), l = n1 − n2 (2.41)

�

Hence, since rxx(n1, n2) ≡ rxx(l) is a function of the difference between n1 and n2 only, then
x(n) is a WSS sequence. However, it is not an independent process since both x(n) and x(n+1)
both depend on w(n).

Example 2.5 ( [Manolakis:2000, Example 3.3.2, Page 103]: Wiener Process). A coin is tossed at
each n ∈ Z. Let:

w[n] =

{
+S if heads is the outcome, with probability Pr (H) = p

−S if tails is the outcome, with probability Pr (T ) = 1− p
(2.42)
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where S is some arbitrary increment or step size in the process w[n]. Since w[n], for a given n, is a
discrete-random variable taking on two possible values (either S or −S), then w[n] is an independent
random process with mean:

E [w[n]] = S Pr (H) + (−S) Pr (T ) (2.43)
µw = Sp+ (−S)(1− p) = S (2p− 1) (2.44)

and second moment:

E
[
w2[n]

]
= σ2

w + µ2
w (2.45)

= S2 Pr (H) + (−S)2 Pr (T ) (2.46)
= S2p+ S2 (1− p) = S2 (2.47)

This in turn means that the autocorrelation function for w[n] is given by:

rww[n, m] =

{
S2 if n = m

µ2
w = S2 (2p− 1)2 if n 6= n

(2.48)

Not only is the process w[n] an i. i. d. process, it is also SSS, and therefore, it is also WSS.

Now, define a new random process x[n] , n ≥ 1, as:

x[1] = w[1] (2.49)
x[2] = x[1] + w[2] = w[1] + w[2] (2.50)

... (2.51)
x[n] = x[n− 1] + w[n] (2.52)

=
n∑
k=1

w[n] (2.53)

Note that x[n] is a running or cummulative sum of independent increments; this is known as an
independent increment process. Such a sequence is called a discrete Wiener process or random
walk. It can easily be seen that the mean is given by:

µx[n] = E [x[n]] = E

[
n∑
k=1

w[n]

]
(2.54)

= nS (2p− 1) (2.55)

The variance of x[n] is given by:

σ2
x[n] = E

[
x2[n]

]
− µ2

x[n] = E

[
n∑
k=1

w[k]
n∑
`=1

w[`]

]
− µ2

x[n] (2.56)

= E

[
n∑
k=1

n∑
`=1

w[k]w[`]

]
− µ2

x[n] =
n∑
k=1

n∑
`=1

rww[k − `]− µ2
x[n] (2.57)

=
n∑
k=1

[
S2 + (n− 1)S2(2p− 1)2

]
− (nS (2p− 1))2 (2.58)

= nS2 +
(
n(n− 1)− n2

)
S2(2p− 1)2 =

[
1− (2p− 1)2

]
nS2 (2.59)

= 4p (1− p) nS2 (2.60)
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Therefore, the random walk is a nonstationary (or evolutionary) process with a mean and variance
that grows linearly with n, the number of steps taken.

It is worth noting that finding the autocorrelation the process x[n] is somewhat more involved, as it
involves a calculation involving different limits in each summation:

E [x[n] x[m]] =
n∑
k=1

m∑
`=1

E [w[k] w[`]] (2.61)
on

Substituting the expression for rww[k, `], and rearranging will give the desired answer. This is left as
an exercise to the reader, but note that you will need to consider the cases when m < n and n ≥ m.

2.5.3 Wide-sense periodicity and cyclo-stationarity

New slideA signal whose statistical properties vary cyclically with time is called a cyclostationary process. A
cyclostationary process can be viewed as several interleaved stationary processes. For example, the
maximum daily temperature in Edinburgh can be modeled as a cyclostationary process: the maximum
temperature on July 21 is statistically different from the temperature on December 18; however, the
temperature on December 18 of different years has (arguably) identical statistics.

Two classes of cyclostationary signals that are actually nonstationary process which, in part, have
properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process is classified as signals whose mean is periodic, and whose
autocorrelation sequence (ACS) is periodic in both dimensions:

µx(n) = µx(n+N) (M:3.3.14)

rxx(n1, n2) = rxx(n1 +N, n2) = rxx(n1, n2 +N)

= rxx(n1 +N, n2 +N)
(M:3.3.15)

for all n, n1 and n2. These are quite tight constraints for real signals.

2. A wide-sense cyclo-stationary process has similar but less restrictive properties than a WSP
process, in that the mean is periodic, but the autocorrelation function is now just
invariant to a shift by N in both of its arguments:

µx(n) = µx(n+N) (M:3.3.16)
rxx(n1, n2) = rxx(n1 +N, n2 +N) (M:3.3.17)

for all n, n1 and n2. This type of nonstationary process has more practical
applications, as the following example will show.

Example 2.6 (Pulse-Amplitude Modulation). An important example of a cyclo-stationary process
is the random signal

x[n] =
∞∑

m=−∞

cm h[n−mT ] (2.62)

for some period T , and where cm is a stationary sequence of random variables (RVs) with
autocorrelation function rcc[n1, n2] = E

[
cn1 c

∗
n2

]
= rcc[n1 − n2], and h[n] is a given deterministic

sequence. An example of a particular pulse shape for h[n] and a typical sequence x[n] is shown in
Figure 2.2.
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(a) An example of a pulse
shape.

(b) Typical transmitted signal.

Figure 2.2: An example pulse shape and typical transmit signal in a communications system.

The stochastic process x[n] represents the signal for several different types of linear modulation
techniques used in digital communication systems. The sequence {cm} represents the digital
information (of symbols) that is transmitted over the communication channel, and 1

T
represents the

rate of transmission of the information symbols.

Note that this example demonstrates why notation can become an issue: how is it possible to
determine that cn is a RV, while h[n] is not?

To see that this is a wide-sense cyclo-stationary process, first begin by writing:

µx[n] = E [x[n]] =
∞∑

m=−∞

E [cm] h[n−mT ] = µc

∞∑
m=−∞

h[n−mT ] (2.63)

where µc[n] = µc since it is a stationary process. Thus, observe that

µx[n+ kT ] = µc

∞∑
m=−∞

h[n+ kT − Tm] = µc

∞∑
r=−∞

h[n− Tr] = µx[n] (2.64)

by a change of variables r = m− k.

Next consider the autocorrelation function given by:

rxx[n1, n2] = E [x(n1)x∗(n2)] =
∞∑

m=−∞

∞∑
`=−∞

h[n1 − Tm] h[n2 − T`] rcc[m− `] (2.65)

where it has been noted that rcc[m, `] = rcc[m− `] since it is a stationary process. Similar to the
approach with the mean above, observe that

rxx[n1 + pT, n2 + qT ] =
∞∑

m=−∞

∞∑
`=−∞

h[n1 − T (m− p)] h[n2 − T (l − q)] rcc[m− `] (2.66)

Again, by the change of variables r = m− p and s = `− q, it can be seen that

rxx[n1 + pT, n2 + qT ] =
∞∑

r=−∞

∞∑
s=−∞

h[n1 − Tr] h[n2 − Ts] rcc[r − s+ p− q] (2.67)

In the case that p = q, then comparing Equation 2.65 and Equation 2.67, it finally follows that:

rxx[n1 + pT, n2 + pT ] = rxx[n1, n2] (2.68)
on

By definition, x[n] is therefore a cyclo-stationary process.
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2.5.4 Local- or quasi-stationary processes

New slide At the introduction of this lecture course, it was noted that in the analysis of speech signals, the speech
waveform is broken up into short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary or quasi-stationary process. Such
processes possess statistical properties that change slowly over short periods of time. They are
globally nonstationary, but are approximately locally stationary, and are modelled as if the statistics
actually are stationary over a short segment of time.

Quasi-stationary models are, in fact, just a special case of nonstationary processes, but are
distinguished since their characterisation closely resemble stationary processes.

2.6 Autocorrelation properties for WSS processes

New slideThe average power of a WSS process x(n) satisfies:

rxx(0) = σ2
x + |µx|2 (M:3.3.27)

rxx(0) ≥ rxx(l), for all l (M:3.3.28)

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx(0)

In otherwords,

Total average power = Average DC power + Average AC power (M:3.3.27)

To prove rxx[0] ≥ rxx[`], observe that E [|x[n+ `]± x[n] |2] ≥ 0. On expansion, this yields the
desired result; this is left as an exercise to the reader, see [Manolakis:2000, Exercise 3.21, Page 145].

Moreover, it follows that γxx(0) ≥ γxx(l).

It is also the intuitively obvious, since the autocorrelation of a function should be maximum when it
is “self-aligned” with itself. This property also it useful for template-matching time-series; i.e. to
find which of a particular set of realisations is most like a given separate realisation.

It is left as an exercise to show that the autocorrelation sequence rxx(l) is:

• a conjugate symmetric function of the lag l:

r∗xx(−l) = rxx(l) (M:3.3.29)

• a nonnegative-definite or positive semi-definite function, such that for any sequence α(n):
M∑
n=1

M∑
m=1

α∗(n) rxx(n−m)α(m) ≥ 0 (M:3.3.30)

Note that, more generally, even a correlation function for a nonstationary random process is positive
semi-definite:

M∑
n=1

M∑
m=1

α∗(n) rxx(n,m)α(m) ≥ 0 for any sequence α(n) (2.69)

When dealing with stationary processes, this course will exclusively consider wide-sense stationary
(WSS) rather than strict-sense stationary (SSS) processes. Therefore, the term stationary will be used
to mean WSS form here onwards.
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2.7 Estimating statistical properties

New slide • A stochastic process consists of the ensemble, x(n, ζ), and a probability law, fX ({x} | {n}).
If this information is available ∀n, the statistical properties are easily determined.

• In practice, only a limited number of realisations of a process is available, and often only one:
i.e. {x(n, ζk), k ∈ {1, . . . , K}} is known for some K, but fX (x | n) is unknown.

• Is is possible to infer the statistical characteristics of a process from a single realisation? Yes,
for the following class of signals:

– ergodic processes;

– nonstationary processes where additional structure about the autocorrelation function is
known (beyond the scope of this course).

2.7.1 Ensemble and Time-Averages

New slide Ensemble averaging, as considered so far in the course, is not frequently used in practice since it is
impractical to obtain the number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single realisation of a process is a time-average,
defined by:

〈g(x(n))〉 , lim
N→∞

1

2N + 1

N∑
n=−N

g(x(n)) (M:3.3.32)

For every ensemble average, a corresponding time-average can be defined; the time-average above
corresponds to: E [g(x(n))].

Time-averages are random variables since they implicitly depend on the particular realisation, given
by ζ . Averages of deterministic signals are fixed numbers or sequences, even though they are given
by the same expression.

2.7.2 Ergodicity

New slide A stochastic process, x(n), is ergodic if its ensemble averages can be estimated from a
single realisation of a process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical expected values and sample-means:

〈x(n)〉 = E [x(n)] (M:3.3.34)

Covariance-Ergodic Processes (or ergodic in correlation) have the property that:

〈x(n)x∗(n− l)〉 = E [x(n)x∗(n− l)] (M:3.3.35)

Another form of ergodicity is a distribution-ergodic process, but this will not be discussed here.

• It should be intuitiveness obvious that ergodic processes must be stationary and, moreover, that
a process which is ergodic both in the mean and correlation is WSS.
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• WSS processes are not necessarily ergodic.

• Ergodic is often used to mean both ergodic in the mean and correlation.

• In practice, only finite records of data are available, and therefore an estimate of the
time-average will be given by

〈g(x(n))〉 =
1

N

∑
n∈N

g(x(n)) (M:3.3.37)

where N is the number of data-points available. The performance of this estimator will be
discussed elsewhere in this course.

2.7.3 More Details on Mean-Ergodicity

Returning to the definition of mean-ergodicity, a little more detail of conditions on the random process
is given. Consider the time-average over 2N + 1 samples, {x(n)}N−N is given by:

µx|N = 〈x(n)〉 =
1

2N + 1

N∑
n=−N

x(n) (2.70)

Clearly, µX |N is a RV with mean:

E [µx|N ] =
1

2N + 1

N∑
n=−N

E [x(n)] = µx (2.71)

since x(n) is a stationary stochastic process. As will be seen in later lectures, this is known as an
unbiased estimate since the sample mean is equal to the ensemble mean. Since µx|N is a RV, then
it must have a variance as well:

var [µx|N ] = var

[
1

2N + 1

N∑
n=−N

x(n)

]
(2.72)

Noting the mean of the expression in the square brackets on the right hand side (RHS) is equal to µx,
then:

var [µx|N ] =
1

(2N + 1)2
E

[
N∑

n=−N

N∑
m=−N

x(n)x∗(m)

]
− µ2

x (2.73)

=
1

(2N + 1)2

{
N∑

n=−N

N∑
m=−N

rxx(n−m)

}
− µ2

x (2.74)

since x(n) is a stationary process, and therefore its autocorrelation function only depends on the
time difference. With a little manipulation, then noting that the autocovariance is given by γxx(l) =
rxx(l)− µ2

x, it follows that:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

N∑
m=−N

γxx(n−m) (2.75)

A change of variable can now be performed by setting l = n−m. Hence:

var [µx|N ] =
1

(2N + 1)2

N∑
n=−N

n+N∑
l=n−N

γxx(l) (2.76)
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Figure 2.3: Region of summation for deriving the variance of the time-average.

The region of summation is shown in Figure 2.3.

Thus, the next step is to change the order of summation (as this is the usual trick), and so considering
the region of summation, then summing l first:

var [µx|N ] =
1

(2N + 1)2

2N∑
l=−2N

min{N,l+N}∑
n=max{−N,l−N}

γxx(l) (2.77)

=
1

(2N + 1)2

2N∑
l=−2N

(2N + 1− |l|)γxx(l) (2.78)

=
1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) (2.79)

If the variance limN→∞ var [µx|N ] = 0, then µx|N → µx in the mean-square sense. In this case,
it is said that the time average µx|N computed from a single realisation of x(n) is close to µx
with probability close to 1. If this is true, then the technical definition is that the process x(n) is
mean-ergodic. The result presented above leads to the following conclusion:

Theorem 2.1 (Mean-ergodic processes). A discrete-random process x(n) with autocovariance
γxx(l) is mean-ergodic iff:

lim
N→∞

1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) = 0 (2.80)

PROOF. See discussion above.

Example 2.7 ( [Papoulis:1991, Example 13.3, Page 429]). A stationary stochastic process x(n) has
an autocovariance function given by γxx(l) = q e−c |l| for some constants q and l. Is the process x(n)
ergodic in the mean?

SOLUTION. Writing:

var [µx|N ] =
1

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
γxx(l) =

q

2N + 1

2N∑
l=−2N

(
1− |l|

2N + 1

)
e−c|l| (2.81)
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which can be written as:

var [µx|N ] =
q

2N + 1

{
2

2N∑
l=0

(
1− l

2N + 1

)
e−c l − 1

}
(2.82)

Now, again noting the general result which can be found in mathematical tables [Gradshteyn:1994]:

N−1∑
n=0

(a+ nb)rn =
a− [a+ (N − 1)b]rN

1− r
+
br(1− rN−1)

(1− r)2
, r 6= 0, N > 1 (2.83)

then by setting a = 1, b = − 1
2N+1

and r = e−c, with n = l and N → 2N + 1:

var [µx|N ] = 2q

[ 1
M
− 1

M2 e
−Mc

1− e−c
+

1
M2 e

−c − 1
M2 e

−Mc

(1− e−c)2
− 1

2M

]
(2.84)

where M = 2N + 1. Now, by setting N → ∞, which is equivalent to M → ∞, and noting the
relationship that:

lim
n→∞

ns xn → 0 if |x| < 1 for any real value of s (2.85)

it can easily be seen that
lim
N→∞

var [µx|N ] = 0 (2.86)
�

and therefore x(n) is mean-ergodic.

2.8 Joint Signal Statistics

New slideNext, it is important to consider the dependence between two different random processes, and these
follow similar definitions to those introduced for random vectors. In this section, consider the
interaction between two random processes x(n) and y(n).

Cross-correlation and cross-covariance A measure of the dependence between values of two
different stochastic processes is given by the cross-correlation and cross-covariance
functions:

rxy(n1, n2) = E [x(n1) y∗(n2)] (M:3.3.7)
γxy(n1, n2) = rxy(n1, n2)− µx(n1)µ∗y(n2) (M:3.3.8)

Normalised cross-correlation (or cross-covariance) The cross-covariance provides a measure of
similarity of the deviation from the respective means of two processes. It makes sense
to consider this deviation relative to their standard deviations; thus, normalised
cross-correlations:

ρxy(n1, n2) =
γxy(n1, n2)

σx(n1)σy(n2)
(M:3.3.9)
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2.8.1 Types of Joint Stochastic Processes

New slideThe definitions introduced earlier for a single stochastic process can be extended to the case of two
joint stochastic processes:

Statistically independence of two stochastic processes occurs when, for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny) (M:3.3.18)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy(nx, ny) = 0

rxy(nx, ny) = µx(nx)µy(ny)
(M:3.3.19)

Joint stochastic processes that are statistically independent are uncorrelated, but not necessarily
vice-versa, except for Gaussian processes. Nevertheless, a measure of uncorrelatedness is often used
as a measure of independence. More on this later.

Further definitions include:

Orthogonal joint processes have, for every n1 and n2 6= n1:

rxy(n1, n2) = 0 (M:3.3.20)

Joint WSS is a similar to WSS for a single stochastic process, and is useful since it facilitates a
spectral description, as discussed later in this course:

rxy(l) = rxy(n1 − n2) = r∗yx(−l) = E [x(n) y∗(n− l)] (2.87)

γxy(l) = γxy(n1 − n2) = γ∗yx(−l) = rxy(l)− µx µ∗y (2.88)

Joint-Ergodicity applies to two ergodic processes, x(n) and y(n), whose ensemble cross-correlation
can be estimated from a time-average:

〈x(n) y∗(n− l)〉 = E [x(n) y∗(n− l)] (M:3.3.36)

2.9 Correlation Matrices for Random Processes
New slide A stochastic process can also be represented as a random vector, and its second-order statistics given

by the mean vector and the correlation matrix. Obviously these quantities are functions of the index
n.

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived from the random process x(n) as
follows:

X(n) ,
[
x(n) x(n− 1) · · · x(n−M + 1)

]T (M:3.4.56)

Then its mean is given by an M -vector

µX(n) ,
[
µx(n) µx(n− 1) · · · µx(n−M + 1)

]T (M:3.4.57)

and the M ×M correlation matrix is given by:

RX(n) = E
[
X(n)XH(n)

]
(T:4.23)
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which can explicitly be written as:

RX(n) ,

 rxx(n, n) · · · rxx(n, n−M + 1)
... . . . ...

rxx(n−M + 1, n) · · · rxx(n−M + 1, n−M + 1)

 (M:3.4.58)

Clearly RX(n) is Hermitian, since rxx(n− i, n−j) = E [x(n− i)x∗(n− j)] = r∗xx(n−j, n− i), 0 ≤
i, j ≤M − 1. This vector representation can be useful in discussion of optimum filters.

For stationary processes, the correlation matrix has an interesting additional structure. Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).

Hence, the matrix Rxx is given by:

RX ,


rxx(0) rxx(1) rxx(2) · · · rxx(M − 1)
r∗xx(1) rxx(0) rxx(1) · · · rxx(M − 2)
r∗xx(2) r∗xx(1) rxx(0) · · · rxx(M − 3)

...
...

... . . . ...
r∗xx(M − 1) r∗xx(M − 2) r∗xx(M − 3) · · · rxx(0)

 (M:3.4.60)

It can easily be seen that RX is Hermitian and Toeplitz; a Toeplitz matrix is one in which the elements
along each diagonal, parallel to the main diagonal, are equal. Note that the anti-diagonals are not
necessarily equal. Thus, the autocorrelation matrix of a stationary process is Hermitian, nonnegative
definite, and Toeplitz.

Example 2.8 (Correlation matrices). The correlation function for a certain random process x[n] has
the exponential form:

rxx(l) = 4(−0.5)|l| (2.89)

Hence, the correlation matrix for N = 3 is given by:

RX =

rxx(0) rxx(1) rxx(2)
r∗xx(1) rxx(0) rxx(1)
r∗xx(2) r∗xx(1) r∗xx(0)

 (2.90)

=

4(−0.5)0 4(−0.5)1 4(−0.5)2

4(−0.5)1 4(−0.5)0 4(−0.5)1

4(−0.5)2 4(−0.5)1 4(−0.5)0

 =

 4 −2 1
−2 4 −2
1 −2 4

 (2.91)
on

which is clearly Toeplitz.

Note that the definition of a covariance matrix for a random process follows an almost identical form,
except with the elements of the autocorrelation functions replaced by the autocovariance functions.
Finally, note that is is possible to define a correlation or covariance matrix for a random vector that
consists of non-consecutive samples from a random process. Hence, if

X({n}) ,
[
x(n1) x(n2) · · · x(nM)

]T (2.92)

where {nk}M1 are unique arbitrary indices to samples from the random process, then the correlation
matrix is still defined as:

RX({n}) = E
[
X({n})XH({n})

]
(T:4.23)
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2.10 Markov Processes
New slideFinally, in this handout, a powerful model for a stochastic process known as a Markov model is

introduced; such a process that satisfies this model is known as a Markov process. Quite simply,
a Markov process is one in which the probability of any particular value in a sequence is dependent
upon the preceding sample values. The simplest kind of dependence arises when the probability of
any sample depends only upon the value of the immediately preceding sample, and this is known as
a first-order Markov process. This simple process is a surprisingly good model for a number of
practical signal processing, communications and control problems.

As an example of a Markov process, consider the process generated by the difference equation

x(n) = −a x(n− 1) + w(n) (T:3.17)

where a is a known constant, and w(n) is a sequence of zero-mean i. i. d. Gaussian random variables
with variance σ2

W density:

fW (w(n)) =
1√

2πσ2
W

exp

{
−w(n)2

2σ2
W

}
(T:3.18)

The conditional density of x(n) given x(n − 1) is also Gaussian, and using the probability
transformation rule for which the Jacobian evaluates to one, it can be shown that

fX (x(n) | x(n− 1)) =
1√

2πσ2
W

exp

{
−(x(n) + ax(n− 1))2

2σ2
W

}
(T:3.19)

In fact, if w(n) is independent with any density fW (w(n)), the conditional density of x(n) given
x(n − 1) is fW (x(n) + a x(n− 1)). Note that x(n − 1) completely determines the distribution for
x(n), and x(n) completely determines the distribution for x(n + 1) and so forth. Thus, the value
of the sequence at any time n0 completely determines the distribution of x(n) for any n > n0. The
following serves as a formal definition of a Markov process.

Definition 2.3 (Markov Process). A random process is a P th-order Markov process if the
distribution of x(n), given the infinite past, depends only on the previous P samples {x(n −
1), . . . , x(n− P )}; that is, if:

fX (x(n) | x(n− 1), x(n− 2), . . . ) = fX (x(n) | x(n− 1), . . . , x(n− P )) (T:3.20)
♦

Finally, it is noted that if x(n) takes on a countable (discrete) set of values, a Markov random process
is called a Markov chain. This will always be the case in digital signal processing since the values
of the random sequence are represented with a finite number of bits. There is a tremendous volume
of results on Markov chains, but they will not presently be covered in this course.



3
Frequency-Domain Description of Stationary

Processes

Introduces the notion of a frequency-domain description of stationary random processes, defining
the power spectral density (PSD) as the Fourier transform of the autocorrelation function. Considers
the properties of the PSD including the PSD of harmonic processes. Defines the cross-PSD and the
complex spectral density.

3.1 Introduction to the power spectral density

New slideFrequency- and transform-domain methods including the Fourier-transform and z-transform are very
powerful tools for the analysis of deterministic sequences. It seems natural to extend these techniques
to analysis stationary random processes.

So far in this course, stationary stochastic processes have been considered in the time-domain
through the use of the autocorrelation sequence (ACS). Since the ACS for a stationary process is a
function of a single-discrete time process, then the question arises as to what the discrete-time Fourier
transform (DTFT) corresponds to. It turns out to be known as the power spectral density (PSD) of a
stationary random process, and the PSD is an extremely powerful and conceptually appealing tool in
statistical signal processing. This handout will study the PSD in some detail.

In signal theory for deterministic signals, spectra are used to represent a function as a superposition
of exponential functions. For random signals, the notion of a spectrum has two interpretations:

Transform of averages The first involves transform of averages (or moments). As will be seen, this
will be the Fourier transform of the autocorrelation function.

Stochastic decomposition The second interpretation represents a stochastic process as a
superposition of exponentials, where the coefficients are themselves random
variables. Hence, a stochastic process x[n] can be represented as:

x[n] =
1

2π

∫ π

−π
X(ejω) ejωn dω, n ∈ R (3.1)
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Figure 3.1: A graphical respresentation of random spectra.

where X(ejω) is a random variable for a given value of ω. Alternatively, X(ejω) can
be considered as a continuous random-process, as a function of ω. This interpretation
is extremely powerful, and can in fact be extended to the superposition of any set
of basis functions; the Karhunen-Loeve (KL) transform is an example of such a
decomposition. Unfortunately, there is not time in this course to consider this spectral
representation, extremely interesting as it is.

3.2 Motivating the power spectral density

It is important to appreciate that most realisations of random signals, x[n, ζ], do not have finite
energy, as they usually don’t decay away as n → ±∞. Therefore, technically, they do not possess
a corresponding DTFT, and hence it is not possible simply to take the DTFT of a random signal.
Noting that a random signal is actually an ensemble of realisations, each realisation occuring with a
different probability, it is, in any case, somewhat meaningless to take the DTFT of a random process.
It should also be remembered that the DTFT of a particular observed realisation, even if it existed, is
itself a random process, albeit as a function of frequency rather than time. Therefore, it is necessary
to take an alternative perspective, as discussed in this section.

Motivated by the stochastic decomposition in Equation 3.1, and restricting the analsysis to wide-sense
stationary (WSS) processes, consider the random variable (RV), X(ejω), resulting from the DTFT of
a random signal, x[n]:

X
(
ejω
)

=
∞∑

n=−∞

x[n] e−jωn (3.2)

It is of interest to consider the total power in the rv, X (ejω), which is given by the second moment:

PXX
(
ejω
)

= E
[∣∣X (ejω)∣∣2] (3.3)
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Figure 3.2: Region of summation for deriving the variance of the time-average.

Since random signals are not finite energy, then this expression will diverge, so consider instead the
definition:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1
E
[∣∣XN

(
ejω
)∣∣2] (3.4)

where XN (ejω) is the truncated Fourier transform of x[n], or basically a windowed version of the
sequence between −N and N , as given by:

XN

(
ejω
)
,

N∑
n=−N

x[n] e−jωn =
∞∑

n=−∞

w[n]x[n] e−jωn (3.5)

where w[n] is the window function:

w[n] =

{
1 −N ≤ n ≤ N

0 otherwise
(3.6)

Then, substituting Equation 3.5 into Equation 3.4 and rearranging gives:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1
E

[
N∑

n=−N

x[n] e−jωn
N∑

m=−N

x∗[m] ejωm

]
(3.7)

= lim
N→∞

1

2N + 1

N∑
n=−N

N∑
m=−N

E [x[n]x∗[m]] e−jω(n−m) (3.8)

Substitute the variable ` = n − m, such that when m = ±N , then ` = n ∓ N . Since the
summation is over integers, which means that

∑b
a(·) =

∑a
b (·), and noting that for WSS processes,

E [x[n]x∗[n− `]] = rxx[`] this means Equation 3.8 becomes:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

N∑
n=−N

n+N∑
`=n−N

rxx[`] e
−jω` (3.9)

The region of summation is shown in Figure 3.2. Changing the order of summation (as this is the
usual trick), to sum over ` first, then it can be seen that ` varies from −2N to 2N , while n will vary
from max{−N, `−N} to min{N, `+N}. Hence, Equation 3.9 becomes:
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PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

min{N, `+N}∑
n=max{−N, `−N}

rxx[`] e
−jω` (3.10)

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

rxx[`] e
−jω`

 min{N, `+N}∑
n=max{−N, `−N}

1

 (3.11)

The second summation in the square brackets can be shown by, simple counting, to simplify to 2N +
1− |`|, and therefore:

PXX
(
ejω
)

= lim
N→∞

1

2N + 1

2N∑
`=−2N

(2N + 1− |`|) rxx[`] e−jω` (3.12)

=
∞∑

`=−∞

rxx[`] e
−jω` − lim

N→∞

2N∑
`=−2N

|`|
2N + 1

rxx[`] e
−jω` (3.13)

Assuming the mild assumption that the autocorrelation sequence rxx[`] decays sufficiently rapidly
such that:

lim
N→∞

2N∑
`=−2N

|`| |rxx[`] = 0 (3.14)

then Equation 3.13 simplifies to:

PXX
(
ejω
)

=
∞∑

`=−∞

rxx[`] e
−jω` (3.15)

Hence, PXX (ejω) can be viewed as the average power, or energy, of the Fourier transform of a random
process at frequency ω. Clearly, this gives an indication of whether, on average, there are dominant
frequencies present in the realisations of x[n].

3.3 The power spectral density

New slide The discrete-time Fourier transform of the autocorrelation sequence of a stationary stochastic process
x[n, ζ] is known as the power spectral density (PSD), is denoted by Pxx(ejω), and is given by:

Pxx(e
jω) =

∑
`∈Z

rxx[`] e
−jω` (M:3.3.39)

where ω is frequency in radians per sample.

The autocorrelation sequence, rxx[`], can be recovered from the PSD by using the inverse-DTFT:

rxx[`] =
1

2π

∫ π

−π
Pxx(e

jω) ejω` dω, ` ∈ Z (M:3.3.41)

Sometimes the PSD is called the auto-PSD to distinguish it from the cross-PSD introduced in
Section 3.4. In the case that rxx[`] is periodic, corresponding to a wide-sense periodic stochastic
process, then the power spectral density is defined as the discrete Fourier transform of the
autocorrelation sequence. This natural extension is easily obtained once the aperiodic-case is
considered in depth.
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3.3.1 Properties of the power spectral density

New slide There are a number of properties of the power spectral density that follow from the corresponding
properties of the autocorrelation sequence, and the discrete-time Fourier transform.

• Pxx(ejω) : ω → R+; in otherwords, the PSD is real valued, and nonnegative definite. i.e.

Pxx(e
jω) ≥ 0 (M:3.3.44)

This property follows from the positive semi-definiteness of the autocorrelation sequence.

• Pxx(ejω) = Pxx(e
j(ω+2nπ)); in otherwords, the PSD is periodic with period 2π.

• If x[n] is real-valued, then:

– rxx[`] is real and even;

– Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.

• The area under Pxx(ejω) is nonnegative and is equal to the average power of x[n]. Hence:

1

2π

∫ π

−π
Pxx(e

jω) dω = rxx[0] = E
[
|x[n] |2

]
≥ 0 (M:3.3.45)

Example 3.1 ( [Manolakis:2001, Example 3.3.4, Page 109]). Determine the PSD of a zero-mean
WSS process x(n) with rxx(l) = a|l|, −1 < a < 1.

SOLUTION. Using the definition of the PSD directly, then:

Pxx(e
jω) =

∑
l∈Z

rxx(l) e
−jωl (3.16)

=
∑
l∈Z

a|l| e−jωl (3.17)

=
∞∑
l=0

(
a e−jω

)l
+
∞∑
l=0

(
a ejω

)l − 1 (3.18)

which, by using the expressions for geometric series, gives:

Pxx(e
jω) =

1

1− a e−jω
+

1

1− a ejω
− 1 (M:3.3.42)

=
1− a2

1− 2a cosω + a2
(3.19)
�

which is a real-valued, even, and nonnegative function of ω.
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3.3.2 General form of the PSD
New slideA process, x[n], and therefore its corresponding autocorrelation sequence (ACS), rxx[`], can always be

decomposed into a zero-mean aperiodic component, r(a)
xx [`], and a non-zero-mean periodic component,

r
(p)
xx [`]:

rxx[`] = r(a)
xx [`] + r(p)

xx [`] (3.20)

Theorem 3.1 (PSD of a non-zero-mean process with periodic component). The most general
definition of the PSD for a non-zero-mean stochastic process with a periodic component is given by:

Pxx(e
jω) = P (a)

xx (ejω) +
2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (T:4.41)

The term P
(a)
xx (ejω) is the DTFT of the aperiodic component r(a)

xx [`], while P (p)
xx (k) are the discrete

Fourier transform (DFT) coefficients for the periodic component r(p)
xx [`] assuming a periodicity of

length K, and where ωk = 2πk
K

.

Moreover, it can be seen that P (a)
xx (ejω) represents the continuous part of the spectrum, while the sum

of weighted impulses represent the discrete part or lines of the spectrum.

PROOF. The non-zero-mean periodic component, r(p)
xx (l) can itself be decomposed using a discrete

Fourier transform:
r(p)
xx (l) =

1

K

∑
k∈K

P (p)
xx (k) ejωkl (3.21)

where K = {0, . . . , K − 1}, and ωk = 2π
K
k. Thus, the PSD of X(ζ), becomes:

Pxx(e
jω) = P (a)

xx (ejω) +
1

K

∑
`∈Z

∑
k∈K

P (p)
xx (k) ejωk` e−jω` (3.22)

As usual, change the order of summation:

= P (a)
xx (ejω) +

1

K

∑
k∈K

P (p)
xx (k)

∑
`∈Z

e−j`(ω−ωk) (3.23)

= P (a)
xx (ejω) +

2π

K

∑
k∈K

P (p)
xx (k) δ (ω − ωk) (3.24)

where Poisson’s formula, which can be derived by writing down the Fourier series for an impulse
train, is used:

∞∑
n=−∞

δ (t− nT ) =
1

T

∞∑
`=−∞

e−j`ω0t (3.25)

where ω0 = 2π
T

. Thus, by letting T = 2π, and t = ω − ωk, then:

2π
∞∑

n=−∞

δ (ω − ωk − 2πn) =
∞∑

`=−∞

e−j`(ω−ωk) (3.26)

Since −2π < ωk ≤ 2π, and Pxx(ejω) is periodic in ω with period 2π, then it is sufficient to write for
|ω| ≤ 2π, that:

2πδ (ω − ωk) =
∞∑

l=−∞

e−jl(ω−ωk) (3.27)
�

which can be substituted to give the desired result.
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Example 3.2 ( [Manolakis:2001, Harmonic Processes, Page 110-111]). Determine the PSD of the
harmonic process introduced in the previous handout and defined by:

x[n] =
M∑
k=1

Ak cos(ωkn+ φk), ωk 6= 0 (M:3.3.50)

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are pairwise independent and identically
distributed (i. i. d.) RVs uniformly distributed in the interval [0, 2π].

SOLUTION. As shown in the previous handout, x[n] is a stationary process with zero-mean, and
autocorrelation sequence (ACS):

rxx[`] =
1

2

M∑
k=1

|Ak|2 cosωk`, −∞ < ` <∞ (M:3.3.52)

Note that rxx[`] consists of a sum of in-phase cosines with the same frequencies as in x[n]. By writing

cosωk` =
ejωk` + e−jωk`

2
(3.28)

then Equation M:3.3.52 may be written as:

rxx[`] =
1

4

M∑
k=1

|Ak|2
(
ejωk` + e−jωk`

)
=

M∑
k=1

|Ak|2

4
ejωk` +

M∑
k=1

|Ak|2

4
e−jωk`

=
M∑
k=1

|Ak|2

4
ejωk` +

−M∑
k̂=−1

|A−k̂|2

4
e−jω−k̂`

(3.29)

Hence, the ACS can be written as:

rxx[`] =
M∑

k=−M

|Ak|2

4
ejωk`, −∞ < ` <∞ (3.30)

where the following are defined: A0 = 0, Ak = A−k, and ω−k = −ωk.

Hence, it directly follows using the results above that:

Pxx(e
jω) = 2π

M∑
k=−M

|Ak|2

4
δ(ω − ωk) =

π

2

M∑
k=−M

|Ak|2δ(ω − ωk) (3.31)
�

The harmonic process is predictable because any given realisation is a sinusoidal sequence with fixed
amplitude, frequency and phase. The independence and uniform distribution of the phase, however,
is strictly required to ensure the stationarity of the process x[n].

June 20, 2017 – 00 : 07



64 Power Spectral Density

3.4 The cross-power spectral density

New slideThe cross-power spectral density (CPSD) of two jointly stationary stochastic processes, x[n] and y[n],
provides a description of their statistical relations in the frequency domain. It is defined, naturally, as
the DTFT of the cross-correlation, rxy(`) , E [x(n) y∗(n− `)]:

Pxy(e
jω) = F{rxy(`)} =

∑
l∈Z

rxy(`) e
−jω` (M:3.3.56)

The cross-correlation rxy(l) can be recovered by using the inverse-DTFT:

rxy(l) =
1

2π

∫ π

−π
Pxy(e

jω) ejωl dω, l ∈ R (M:3.3.57)

Since this integral is essentially a summation, then an interpretation that can be given to the
cross-spectrum is that Pxy(ejω0) measures the correlation between two RVs at a given frequency ω0.

The cross-spectrum Pxy(e
jω) is, in general, a complex function of ω.

Some properties of the CPSD and related definitions include:

1. Pxy(ejω) is periodic in ω with period 2π.

2. Since rxy(l) = r∗yx(−l), then it follows:

Pxy(e
jω) = P ∗yx(e

jω) (M:3.3.58)

Thus, Pxy(ejω) and Pyx(ejω) have the same magnitude, but opposite phase.

3. If the process x(n) is real, then rxy(l) is real, and:

Pxy(e
jω) = P ∗xy(e

−jω) (3.32)

4. The normalised cross-correlation, or coherence function, is given by:

Γxy(e
jω) ,

Pxy(e
jω)√

Pxx(ejω)
√
Pyy(ejω)

(M:3.3.59)

Its squared magnitude is known as the magnitude square coherence (MSC) function.

∣∣Γxy(ejω)
∣∣2 =

|Pxy(ejω)|2

Pxx(ejω)Pyy(ejω)
(3.33)

If y[n] = x[n], then Γxy(e
jω), corresponding to maximum correlation, whereas if x[n] and y[n]

are uncorrelated, then rxy[`] = 0, and therefore Γxy(e
jω) = 0. Hence:

0 ≤ |Γxy(ejω)|2 ≤ 1 (M:3.3.60)
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3.5 Complex Spectral Density Functions

New slide The analysis of discrete-deterministic signals is also performed through the the z-transform and,
therefore, in addition to using the Fourier transform, it is also very important to analyse stationary
random processes using this transform; it is a perfectly natural extension.

The second moment quantities that described a random process in the z-transform domain are known
as the complex spectral density and complex cross-spectral density functions. The PSD and CPSD
functions discussed previously can be considered as special cases of the complex spectral density
functions when the latter are evaluated on the unit circle.

If the sequences rxx(l) and rxy(l) are absolutely summable within a certain ring of the complex
z-plane, then their z-transforms exist. Hence, rxx(l)

z

 Pxx(z) and rxy(l)

z

 Pxy(z), where:

Pxx(z) =
∑
l∈Z

rxx(l) z
−l (M:3.3.61)

Pxy(z) =
∑
l∈Z

rxy(l) z
−l (M:3.3.62)

Note that these are bilateral z-transforms. If the unit circle, defined by z = ejω is within the region of
convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω (M:3.3.63)

Pxy(e
jω) = Pxy(z)|z=ejω (M:3.3.64)

The inverse of the complex spectral and cross-spectral densities are given by the contour integral:

rxx(l) =
1

2πj

∮
C

Pxx(z) zl−1 dz (3.34)

rxy(l) =
1

2πj

∮
C

Pxy(z) zl−1 dz (3.35)

where the contour of integration C is to be taken counterclockwise and in the region of convergence.
In practice, these integrals are usually never performed, and tables, instead, are used.

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗xx(1/z
∗) and Pxy(z) = P ∗xy(1/z

∗) (3.36)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1) (3.37)

The possible existence of lines in the PSD function due to a periodic component of the random
process, as discussed in Section 3.3.2, poses some mathematical problems in defining the complex
spectral density function since the z-transform does not exist. Try, for example, finding the complex
spectral density of a function with a non-zero mean. In the case of the PSD, these functions were
included formally as impulses in frequency. A similar approach to that in Equation T:4.41 is used
here, and the complex spectral density function is written as:

Pxx(z) = P (a)
xx (z) + 2π

∑
k∈K

P (p)
xx (k) δ

(
z − ejωk

)
(3.38)

where P (a)
xx (z) corresponds to the aperiodic component of the autocorrelation function, and the second

summation term denotes the line spectra.
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Sidebar 5 Equivalent Expressions

A variety of equivalent expressions can result from some simple manipulations; thus, other tables of
z-transforms may appear to list different results, but are actually equivalent. Some examples include:

x(n) =

{
a|

n
2 | n ∈ {0, even}

0 for n odd

z



1

1− az2
+

az−2

1− az−2
=

{
az2

1− az2
+ 1

}
+

{
1

1− az−2
− 1

}
=

az2

1− az2
+

1

1− az−2

and

x(n) = a|n|
z



1

1− az−1
+

az

1− az
=

{
1

1− az−1
− 1

}
+

{
az

1− az
+ 1

}
=

az−1

1− az−1
+

1

1− az

The fact that there are so many equivalent expressions means that sometimes it can be difficult to find
the exact transform relation in tables. The particular form of the z-transform that needs to be inverted
can vary depending on how it is calculated.

3.6 Table of bilateral z-transforms

New slide

The bilateral z-transform is defined by the following pairs of equations:

X(z) , Z[x(n)] =
∞∑

n=−∞

x(n) z−n (M:2.2.29)

x(n) =
1

2πj

∮
C

X(z) zn−1 dz (M:2.2.30)

In the following table, it is assumed that |a| ≤ 1. It is important to note that this is a crucial condition,
as it will distinguish signals that exist only for n ≥ 0 and those for x < 0. To use these tables, it
is crucial to match an expression with an identity exactly, otherwise the incorrect inverse transform
might accidentally be used.

For the purposes of the table, recall that u(n) is the discrete-time step function given by:

u(n) =

{
1 n ≥ 0

0 n < 0
(3.39)

The region of convergence (ROC) is also shown for completeness, although it is usual to assume that
z is only considered within the ROC. Note that if the signal x(n) = 0 for n < 0, it is known as a
causal sequence, and if x(n) = 0 for n > 0, it is known as an anticausal sequence.
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Notes x[n] X (z) ROC

x[n] = 0, n < 0 u[n]
1

1− z−1
≡ z

z − 1
|z| > 1

x[n] = 0, n > 0 u[−n]
1

1− z
|z| < 1

x[n] = 0, n < 0 an u[n]
z

z − a
≡ 1

1− az−1
|z| > |a|

x[n] = 0, n ≤ 0 an u[n− 1]
a

z − a
≡ az−1

1− az−1
|z| > |a|

x[n] = 0, n > 0 a−n u[−n]
1

1− az
≡ z−1

z−1 − a
|z| < 1

|a|

x[n] = 0, n ≥ 0 a−n u[−n− 1]
az

1− az
≡ a

z−1 − a
|z| < 1

|a|

x[n] = 0, n < 0 nan u[n]
az−1

(1− az−1)2 |z| > |a|

x[n] = 0, n ≥ 0 −na−n u[−n− 1]
az

(1− az)2 |z| < 1

|a|

See note 3
{
a|

n
2 | n ∈ {0, even}

0 for n odd

1

1− az2
+

az−2

1− az−2

or
1− a2

(1− az2) (1− az−2)

|a|
1
2 < |z| < 1

|a| 12

{
a|

n
2 |+ 1

2 for n odd
0 otherwise

az

1− az2
+

az−1

1− az−2

|a|
1
2 < |z| < 1

|a| 12

See notes 1 , 3 a|n|

1

1− az−1
+

az

1− az
or

1− a2

(1− az) (1− az−1)

|a| < |z| < 1

|a|

See note 2 |n|a|n| az−1

(1− az−1)2 +
az

(1− az)2
|a| < |z| < 1

|a|

Notes: 1. This identity follows since a|n| ≡ an u[n] + a−n u[−n− 1].

2. Similarly, note that |n|a|n| = nan u[n]− na−n u[−n− 1].

3. Note other similar expressions result, as shown in Sidebar 5.
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4
Linear Systems with Stationary Random Inputs

Considers the concept of applying a stochastic signal to the input of a system and determining
the resulting output. Looks at the special case of linear time-invariant (LTI) systems with
stationary inputs. Analysis by looking at the input and output statistics, as well as the input-output
joint-statistics. Discusses system identification using cross-correlation. Provides examples for
systems with rationale transfer functions (using time domain analysis by solving difference equations
and frequency domain analysis).

4.1 Systems with Stochastic Inputs

New slide Signal processing involves the transformation of signals to enhance certain characteristics; for
example, to suppress noise, or to extract meaningful information. This handout considers the
processing of random processes by systems, and in particular linear systems.

What does it mean to apply a stochastic signal to the input of a system? This question is an interesting
one since a stochastic process is not just a single sequence but an ensemble of sequences.

If the system is a general nonlinear possibly time-varying system, then one approach of expressing
the relationship is as follows: Given a stochastic process x(n, ζ), assign according to some rule to
each of its realisations x[n, ζk] a function y[n, ζk]. Thus, another process has been created in which:

y[n] = T [x[n]] (4.1)

whose realisations are the functions {y[n, ζk]}. This process y[n] so formed can be considered as the
output of a system or transformation with, as its input, the process x[n]. The system is completely
specified in terms of the transformation function (or operator) T ; that is, the rule of correspondence
between the samples of the input x[n] and the output y[n]. This relationship is indicated in Figure 4.1.

In principle, the statistics of the output of a system can be expressed in terms of the statistics of
the input. However, in general this is a complicated problem except in special cases. A special
case is that of linear systems, and this is considered in the next section. In particular, if the input
is a stationary stochastic process, and the system linear time-invariant (LTI), the statistics are even
simpler. Moreover, it leads to a slightly simpler and intuitive explanation for the response of the

68
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Figure 4.1: A graphical representation of a random process at the output of a system in relation to a
random process at the input of the system.

system to the input. There are other systems that can be analysed, but due to time constraints, they are
not considered in this course. For more information see, for example, [Papoulis:1991, Chapter 10].

4.2 LTI Systems with Stationary Inputs

New slideThe notation:
y[n] = L[x[n]] (P:10-76)

will indicate that y[n] is the output of a linear system with input x[n]. This means that for K random
processes {xk[n]}Kk=1 and K scalar values {αk}Kk=1, then

y[n] = L

[
K∑
k=1

αk xk[n]

]
=

K∑
k=1

αk L[xk[n]] (P:10-77)

Since each sequence (realisation) of a stochastic process is a deterministic signal, there is a
well-defined input signal producing a well-defined output signal corresponding to a single realisation
of the output stochastic process:

y(n, ζ) =
∞∑

k=−∞

h(k)x(n− k, ζ) (M:3.4.1)

This is the familiar convolution integral for LTI systems, and the impulse response of this system is
given by:

h(n) = L[δ(n)] (P:10-78)

If the sum in the right hand side (RHS) of Equation M:3.4.1 exists for all ζ such that Pr (ζ) = 1, then
it is said that this sum has almost-everywhere convergence with probability of 1.

Theorem 4.1 (Input-output realisations for a LTI). If the process x(n, ζ) is stationary with
E [|x(n, ζ)|] < ∞ and if the system is bounded-input, bounded-output (BIBO) stable, such that∑∞
−∞ |h(k)| < ∞, then the output y(n, ζ) of the system in Equation M:3.4.1 converges absolutely

with probability 1, or:

y(n, ζ) =
∞∑

k=−∞

h(k)x(n− k, ζ) for all ζ ∈ A, Pr (A) = 1 (M:3.4.2)
♦
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• A complete description of y[n, ζ] requires the computation of an infinite number of
convolutions, corresponding to each value of ζ .

• Thus, a better description would be to consider the statistical properties of y[n, ζ] in terms of
the statistical properties of the input and the characteristics of the system. For Gaussian signals,
which are used very often in practice, first- and second- order statistics are sufficient, since
higher-order statistics are completely specified by these first two moments.

To investigate the statistical input-output properties of a linear system, note the following fundamental
theorem:

Theorem 4.2 (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]] (4.2)

In other words, the mean µy(n) of the output y(n) equals the response of the system to the mean
µx(n) of the input:

µy(n) = L[µx(n)] (4.3)

PROOF. This is a simple extension of the linearity of expected values to arbitrary linear operators.

This result will be used throughout the next section.

4.2.1 Input-output Statistics of a LTI System

New slide If a stationary stochastic process x[n] with mean value µx and correlation rxx[`] is applied to the input
of a LTI system with impulse response h[n] and transfer function H(ejω), then the:

Output mean value is given by:

µy = µx

∞∑
k=−∞

h[k] = µxH(ej0) (M:3.4.4)

This is easily shown by using the linearity property of the expectation operator:

µy = E

[
∞∑

k=−∞

h[k]x[n− k]

]
=

∞∑
k=−∞

h[k]E [x[n− k]] (M:3.4.4)

and since the process is stationary, then E [x[n− k]] = µx, giving the desired result.
Since µx and H(ej0) are constant, µy is also constant. Note that H(ej0) is the “direct
current” (DC) gain of the spectrum.

Input-output cross-correlation is given by:

rxy[`] = h∗[−`] ∗ rxx[`] =
∞∑

k=−∞

h∗[−k] rxx[`− k] (M:3.4.5)
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Figure 4.2: An equivalent LTI system for autocorrelation filtration.

This can be shown by writing:

rxy(l) = E [x(n) y∗(n− l)] = E [x(n+ l) y∗(n)] (4.4)

= E

[
x(n+ l)

∞∑
k=−∞

h∗(k)x∗(n− k)

]
(4.5)

=
∞∑

k=−∞

h∗(k)E [x(n+ l)x∗(n− k)] (4.6)

=
∞∑

k=−∞

h∗(k) rxx(l + k) (4.7)

which by making the substitution m = −k, gives:

rxy(l) =
∞∑

m=−∞

h∗(−m) rxx(l −m) = h∗(−l) ∗ rxx(l) (4.8)

as required.
Similarly, it follows that ryx(l) = h(l) ∗ rxx(l). Since rxy(l) depends only on the lag
l, then the input and output processes of a BIBO stable linear time-invariant system,
when driven by a wide-sense stationary (WSS) input, are jointly WSS.

Output autocorrelation is obtained by pre-multiplying the system-output by y∗(n − l) and taking
expectations:

ryy(l) =
∞∑

k=−∞

h(k)E [x(n− k) y∗(n− l)] = h(l) ∗ rxy(l) (M:3.4.8)

Substituting the expression for rxy(l) gives:

ryy(l) = h(l) ∗ h∗(−l) ∗ rxx(l) = rhh(l) ∗ rxx(l) (M:3.4.10)

where rhh(l) = r∗hh(−l) is the autocorrelation, for want of a better phrase, of the
system impulse response:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

n=−∞

h(n)h∗(n− l) (M:3.4.11)

where,means defined as. If the relationship in Equation M:3.4.11 is not apparent, it
can be proven by writing g(l) = h∗(−l), such that the standard convolution formula
gives:

rhh(l) , h(l) ∗ g(l) =
∞∑

n=−∞

h(n) g(l − n) (4.9)
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and, since g(l−n) = h∗(−[l−n]) = h∗(n−l), Equation M:3.4.11 follows. However,
this equation can also be written in an alternative form by making the substitution
m = n− l such that when n→ ±∞, m→ ±∞, and Equation M:3.4.11 becomes:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

m=−∞

h(m+ l)h∗(m) (M:3.4.11)

Both of these forms of the convolution rhh[`] , h[`] ∗ h∗[−`] are equally valid. It is
straightforward to show that rhh[`] = r∗hh[−`] by writing:

r∗hh[−`] = (h[−`] ∗ h∗[+`])∗ = h[−`]∗ ∗ h[+`] = rhh[`] (4.10)

Since µy, as given by Equation M:3.4.4 is constant, and ryy(l) depends only on the
lag l, the response of a BIBO stable linear time-invariant to a stationary input is also
a stationary process. A careful examination of Equation M:3.4.10 shows that when a
signal x[n] is filtered by a LTI system with impulse response h[n], its autocorrelation
sequence is filtered by a system with impulse response equal to the autocorrelation
of its impulse response. This idea is illustrated in Figure 4.2.

Output-power of the process y(n) is given by ryy(0) = E [|y(n)|2], and therefore since ryy(l) =
rhh(l) ∗ rxx(l),

Pyy = rhh(l) ∗ rxx(l)|l=0 =
∞∑

k=−∞

rhh(k) rxx(−k) (4.11)

Noting power, Pyy, is real, then taking complex-conjugates using r∗xx(−l) = rxx(l):

Pyy =
∞∑

k=−∞

r∗hh(k) rxx(k) =
∞∑

n=−∞

h∗(n)
∞∑

k=−∞

rxx(n+ k)h(k) (4.12)

This last step can be shown as follows:

Pyy =
∞∑

k=−∞

r∗hh(k) rxx(k) =
∞∑

k=−∞

{
∞∑

n=−∞

h∗(n)h(n− k)

}
rxx(n) (4.13)

Hence, by rearranging the order of summation, and bringing the h∗[n] forward, this
gives:

=
∞∑

n=−∞

h∗(n)
∞∑

k=−∞

h(n− k) rxx(n) (4.14)

Then, by letting m = n− k, the desired result is obtained.

Output probability density function (pdf) In general, it is very difficult to calculate the pdf of the
output of a LTI system, except in special cases, namely Gaussian processes.
If x[n] is a Gaussian process, then the output is also a Gaussian process with mean and
autocorrelation sequence given by Equation M:3.4.4 and Equation M:3.4.10 above.
Also, if x[n] is independent and identically distributed (i. i. d.), the pdf of the output
is obtained by noting that y[n] is a weighted sum of independent random variables
(RVs). Indeed, as shown in earlier handouts, the pdf of the sum of independent RVs
is the convolution of their pdfs or the product of their characteristic functions.
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Figure 4.3: A LTI system for [Therrien:1991, Example 5.1, Page 229].

Figure 4.4: The input-output cross-covariance sequences for [Therrien:1991, Example 5.1, Page 229].

Finally, before concluding this section, note that the covariance sequences (or functions) is just the
correlation sequences for the random process with the mean removed. As a result, the covariance
functions satisfy a set of equations analogous to those derived above. For completeness, they are
listed below:

γyx(l) = h(l) ∗ γxx(l) (T:5.18)
γxy(l) = h∗(−l) ∗ γxx(l) (T:5.19)
γyy(l) = h(l) ∗ γxy(l) (T:5.20)

= h(l) ∗ h∗(−l) ∗ γxx(l) (T:5.21)

The following example illustrates the application of these results.

Example 4.1 ( [Therrien:1991, Example 5.1, Page 229]). The LTI system shown in Figure 4.3 is
driven by a process with mean µx and covariance sequence γxx(l) = σ2

xδ(l); note that this input
process is white noise with an added nonzero mean. Calculate the mean, autocorrelation and
autocovariance sequences of the output, y(n), as well as the cross-correlation and cross-covariance
functions between the input and the output.

SOLUTION. Each of these functions may be calculated using the equations listed in this section.
Hence:

Output mean value Using Equation M:3.4.4, then:

µy = µx

∞∑
k=−∞

h(k) = µx

∞∑
k=0

ρk =
µx

1− ρ
(4.15)

Input-output cross-covariance Since the input and the output both have nonzero mean, then it
is easiest to first calculate the auto- and cross-covariance functions, and then use
these to find the auto- and cross-correlation functions. Thus, the output-input
cross-covariance is given by Equation T:5.18:

γyx(l) = h(l) ∗ γxx(l) =
(
ρlu(l)

)
∗
(
σ2
xδ(l)

)
= σ2

xρ
lu(l) (4.16)

and therefore the input-output cross-covariance is

γxy(l) = γ∗yx(−l) = σ2
x(ρ
∗)−lu(−l) (4.17)
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Output autocovariance Next, using Equation T:5.20, then:

γyy(l) = h(l) ∗ γxy(l) =
∞∑

k=−∞

h(k) γxy(l − k) (4.18)

The input-output cross-covariance sequence, γxy(l), is plotted in Figure 4.4, along
with γxy(l − k) as a function of k. Hence, if l > 0 it follows

γyy(l) =
∞∑
k=l

h(k) γxy(l − k) =
∞∑
k=l

ρk σ2
x(ρ
∗)−(l−k) (4.19)

Substituting m = k − l, such that when k = l, ∞, then m = 0, ∞, and so:

γyy(l) = σ2
x

∞∑
m=0

ρl ρm (ρ∗)m = σ2
xρ

l

∞∑
m=0

(
|ρ|2
)m

=
σ2
xρ

l

1− |ρ|2
, l > 0 (4.20)

If l ≤ 0, then the summation is slightly different:

γyy(l) =
∞∑
k=0

ρk σ2
x(ρ
∗)−(l−k) = σ2

x(ρ
∗)−l

∞∑
k=0

(
|ρ|2
)k

=
σ2
x(ρ
∗)−l

1− |ρ|2
, l ≤ 0 (4.21)

Input-output cross-correlation This can now be calculated using the relationship:

rxy(l) = γxy(l) + µx µ
∗
y (4.22)

= σ2
x(ρ
∗)−lu(−l) + µx

µ∗x
1− ρ∗

(4.23)

= σ2
x(ρ
∗)−lu(−l) +

|µx|2

1− ρ∗
(4.24)

Output autocorrelation In a similar manner, the autocorrelation of the output is given by:

ryy(l) = γyy(l) + |µy|2 =


σ2
xρ
l

1−|ρ|2 +
∣∣∣ µx1−ρ

∣∣∣2 l > 0

σ2
x(ρ∗)−l

1−|ρ|2 +
∣∣∣ µx1−ρ

∣∣∣2 l ≤ 0
(4.25)
�

Note that these results show that a process with the exponential correlation function can always be
generated by applying white noise to a stable first-order system.

4.2.2 System identification by cross-correlation

New slide The input-output cross-correlation of a LTI system is the basis for a classical method of identification
of an unknown linear system.

The system is excited with a white Gaussian noise (WGN) input with autocorrelation function:

rxx(l) = δ(l) (4.26)

Since the output-input cross-correlation can be written as:

ryx(l) = h(l) ∗ rxx(l) (M:3.4.6)
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Figure 4.5: System identification by cross-correlation.

Figure 4.6: General linear time-varying (LTV) system with nonstationary input; the impulse response
h(n, k) is the response at index n to an impulse occurring at time index k.

then, with rxx(l) = δ(l), it follows:

ryx(l) = h(l) ∗ δ(l) = h(l) (4.27)

Hence, the impulse response of an unknown LTI system can be estimated by exciting the system with
WGN and evaluating the input-output cross-correlation.

If the discrete system represents a sampled continuous system, this method of estimating the impulse
response out-performs an estimation based on simply driving the system by an impulse since:

1. it is easier to generate an approximation to white noise than to generate an approximation to an
impulse, since the latter must have finite energy in an almost zero-width pulse;

2. application of an impulse to a physical system requires driving it very hard, albeit for a very
short time, and may cause damage. Driving a system with white noise is less traumatic. As an
example, consider estimating the acoustic impulse response (AIR) of a concert hall or office;
one method of generating an impulse is to fire a gun and, obviously, this will damage the concert
hall, which is less than desirable.

4.3 LTV Systems with Nonstationary Inputs

New slideIt is also possible to analyse a general linear system that is not necessarily time-invariant, as shown in
Figure 4.6; such a system is called linear time-varying (LTV).

The input and output are related by the generalised convolution:

y(n) =
∞∑

k=−∞

h(n, k)x(k) (T:5.1)

where h(n, k) is the response at time-index n to an impulse occurring at the system input at time-index
k. The mean, autocorrelation and autocovariance sequences of the output, y(n), as well as the
cross-correlation and cross-covariance functions between the input and the output, can be calculated
in a similar way as for LTI systems with stationary inputs. It is left as an exercise to the reader to
derive these, but the results are summarised in the next section.

June 20, 2017 – 00 : 07



76 Linear Systems Theory

4.3.1 Input-output Statistics of a LTV System

It is important to note that the input-output statistics of a LTI system with a stationary input are simply
special cases of the following results. Thus, it is perhaps preferable to remember these more general
results and simplify them as necessary.

Output mean value is given by

µy(n) =
∞∑

k=−∞

h(n, k)µx(k) (T:5.2)

This can be written as:
µy(n) = L[µx(n)] (P:10-80)

Output-input cross-correlation is given by

ryx(n,m) =
∞∑

k=−∞

h(n, k) rxx(k,m) (T:5.5)

and the input-output cross-correlation is:

rxy(n,m) = r∗yx(m,n) (T:5.4)

Output autocorrelation is a similar form, given by:

ryy(n,m) =
∞∑

k=−∞

h(n, k) rxy(k,m) (T:5.3)

Output-input cross-covariance has an identical form to that for the input-output cross-correlation
functions:

γyx(n,m) = ryx(n,m)− µy(n)µ∗x(m) (4.28)

=
∞∑

k=−∞

h(n, k) γxx(k,m) (T:5.9)

and
γyx(n,m) = γ∗xy(m,n) (T:5.8)

Output autocovariance is given by:

γyy(n,m) = ryy(n,m)− µy(n)µ∗y(m) (T:5.6)

=
∞∑

k=−∞

h(n, k) γxy(k,m) (T:5.7)

Note that if the impulse response of the system has finite support, in the sense the region over which
it has non-zero values is a well-defined finite region, then it is possible to represent the correlation
functions and the impulse response function in matrix form:

Ryy = HRxxH
H (4.29)

Correlation matrices were introduced in an earlier handout.
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Figure 4.7: Cross-correlation with respect to a third random process.

4.3.2 Effect of Linear Transformations on Cross-correlation

Another situation worth considering is the cross-correlation with respect to a third random process,
as shown in Figure 4.7.

A random process x(n) is transformed by a LTV system to produce another signal y(n). The process
x(n) is related to a third process z(n), and rxz(n1, n2) is known. It is desirable to find ryz(n1, n2).
The response of the LTV system to x(n) is:

y(n) =
∑
k∈Z

h(n, k)x(k) (T:5.22)

Hence, multiplying both sides by z∗(m) and taking expectations:

ryz(n,m) =
∑
k∈Z

h(n, k) rxz(k,m) = h(n, k) ∗ rxz(k,m) (T:5.24)

If the system is LTI, then this simplifies to:

ryz(l) =
∑
k∈Z

h(k) rxz(l − k) = h(l) ∗ rxz(l) (4.30)

4.4 Difference Equation

New slideA mathematically elegant analysis of stochastic systems comes about when a LTI system can be
represented by difference equations. This will be particularly useful in the next handout on linear
signal models. Although the results of the preceding sections apply to these systems, the difference
equation offers an alternative representation of the results that can sometimes be quite useful and
important.

Consider a LTI system that can be represented by a difference equation:

P∑
p=0

ap y[n− p] =

Q∑
q=0

bq x[n− q] (4.31)

where a0 , 1. Assuming that both x(n) and y(n) are stationary processes, such that E [x(n− p)] =
µx and E [y(n− q)] = µy, then taking expectations of both sides gives, after a little rearrangement:

µy =

∑Q
q=0 bq

1 +
∑P

p=1 ap
µx (4.32)
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Next, multiplying the system equation throughout by y∗(m) and taking expectations gives:

P∑
p=0

ap ryy(n− p,m) =

Q∑
q=0

bq rxy(n− q,m) (4.33)

Similarly, rather than multiplying throughout the system equation by y∗(m), instead multiply though
by x∗(m) to give:

P∑
p=0

ap ryx(n− p,m) =

Q∑
q=0

bq rxx(n− q,m) (4.34)

These two difference equations may be used to solve for ryy(n1, n2) and rxy(n1, n2). Similar
expressions can be obtained for the covariance functions. They are given by:

P∑
p=0

ap γyy(n− p,m) =

Q∑
q=0

bq γxy(n− p,m) (4.35)

and
P∑
p=0

ap γyx(n− p,m) =

Q∑
q=0

bq γxx(n− p,m) (4.36)

Example 4.2 ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x(n) be a random process
generated by the first order difference equation given by:

x(n) = αx(n− 1) + w(n), |α| ≤ 1, n ∈ Z (4.37)

where w(n) ∼ N (µw, σ
2
w) is an i. i. d. WGN process.

• Demonstrate that the process x(n) is stationary, and determine the mean µx.

• Determine the autocovariance and autocorrelation function, γxx(l) and rxx(l).

SOLUTION. Note that this is a first-order autoregressive (AR) process, which will be discussed in
more detail later in the lecture course. The case written above is, in fact, the stationary case, and
[Manolakis, Exercise 3.23, Page 145] poses the case where there is an initial transient, resulting
in a nonstationary autocorrelation function. This exercise is left for those interested, although be
forewarned that this is not an easy exercise. This example uses the theory described above.

• The output of a LTI system with a stationary input is always stationary. It follows directly from
the results above that:

µx =
µw

1− α
(4.38)

• Using the results for the input-output covariance of a LTI system represented by difference
equation:

γxx(n,m)− α γxx(n− 1,m) = γwx(n,m) (4.39)
γxw(n,m)− α γxw(n− 1,m) = γww(n,m) (4.40)

which, since the system is stationary, can be written as:

γxx(l)− α γxx(l − 1) = γwx(l) (4.41)
γxw(l)− α γxw(l − 1) = γww(l) (4.42)
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Noting x(n) cannot depend on future values of w(n), then γxw(n + l, n) = γxw(l) = 0, l < 0.
This can also be demonstrated by explicitly evaluating γxw(n,m), m < n, and noting that x(n)
and w(n) are independent and zero mean. Since γww(l) = σ2

w δ(l), the second of the equations
above becomes:

γxw(l) =


α γxw(l − 1) l > 0

σ2
w l = 0

0 l < 0

(4.43)

Solving for l ≥ 0 gives by repeated substitution, γxw(l) = αl σ2
w, and zero for l < 0.

Since γwx(l) = γ∗xw(−l), then the difference equation for the autocovariance function of x(n)
simplifies to:

γxx(l)− α γxx(l − 1) =

{
0 l > 0

α−l σ2
w l ≤ 0

(4.44)

Note the solution for l > 0 is the solution of the homogeneous equation. Hence, since γxx(l) =
γxx(−l) for a real process, then this equation is solved by assuming the solution:

γxx(l) = aα|l| + b (4.45)

The values of a and b can be found by directly substituting the proposed solution for l ≤ 0 into
the difference equation:

aα−l + b− α
(
aα−(l−1) + b

)
= α−l σ2

w (4.46)

α−l
(
1− α2

)
a+ (1− α) b = α−l σ2

w (4.47)

from which it directly follows that b = 0 and a = σ2
x = σ2

w

1−α2 , corresponding to the case when
l = 0. Hence, in conclusion

γxx(l) =
σ2
w

1− α2
α|l| (4.48)

Using the relationship that rxx(l) = γxx(l) + µ2
x, it follows that the output auto-correlation is

given by

rxx(l) =
σ2
w

1− α2
α|l| +

µ2
w

(1− α)2
(4.49)
�

As usual, if µw = 0, then rxx(l) = γxx(l).

4.5 Frequency-Domain Analysis of LTI systems

New slideNow consider how a LTI transformation affects the power spectra and complex power density spectra
of a stationary random process. Recall that the power spectral density (PSD) is the Fourier transform
of the autocorrelation functions. Alternatively, it is possible to note that the frequency response of a
system is the z-transform evaluated on the unit circle.

This therefore leads to the following spectral densities:

Pxy(e
jω) = H∗(ejω)Pxx(e

jω) (M:3.4.19)

Pyx(e
jω) = H(ejω)Pxx(e

jω) (M:3.4.20)

Pyy(e
jω) = |H(ejω)|2 Pxx(ejω) (M:3.4.21)
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Figure 4.8: The PSD at the input and output of a LTI system with stationary input.

These results are derived very easily from the results in Section 4.2.1 and the properties of the
Fourier transform, especially that convolution becomes multiplication. It is important to stress the
similarity of these results with those for the frequency analysis of linear time-invariant systems with
deterministic signal inputs. The system is depicted in Figure 4.8.

• If the input and output autocorrelations or autospectral densities are known, the magnitude
response of a system |H(ejω)| can be determined, but not the phase response.

• Only cross-correlation or cross-spectral information can help determine the phase response.

A set of similar relations to Equation M:3.4.19, Equation M:3.4.20 and Equation M:3.4.21 can also
be derived for the complex spectral density function. Specifically, if h(l)

z

 H(z), then h∗(−l)

z



H∗
(

1
z∗

)
and therefore:

Pxy(z) = H∗
(

1

z∗

)
Pxx(z) (T:5.41)

Pyx(z) = H(z)Pxx(z) (T:5.40)
Pyy(z) = H(z)Pxy(z) (T:5.42)

Pyy(z) = H(z)H∗
(

1

z∗

)
Pxx(z) (T:5.44)

Note that Pyy(z) satisfies the required property for a complex spectral density function, namely that
Pyy(z) = P ∗yy

(
1
z∗

)
. Also, note the following result for real filters that make the above equations

simplify accordingly.

Theorem 4.3 (Transfer function for a real filter). For a real filter:

h(−l)
z

 H∗

(
1

z∗

)
= H(z−1) (4.50)

PROOF. Writing:

H(z) =
∞∑

n=−∞

h(n) z−n (4.51)

then setting z → 1
z∗

gives:

H

(
1

z∗

)
=

∞∑
n=−∞

h(n)

[
1

z∗

]−n
(4.52)

Now, taking complex-conjugates, using the following facts:
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• the conjugate of a sum/product of complex numbers is the sum/product of the conjugates of the
complex numbers, or in otherwords (a+ b)∗ = a∗ + b∗ and (ab)∗ = a∗b∗,

• the filter coefficients are real, such that h(n)∗ = h(n),

then

H∗
(

1

z∗

)
=

∞∑
n=−∞

h(n) zn ≡
∞∑

m=−∞

h(−m) z−m (4.53)
�

where in the last step, the substitution m = −n has been made. Hence, this gives the desired result.
It is straightfoward to adapt the final stage of this proof to show that h∗(−l)

z

 H∗

(
1
z∗

)
in general.

Consider again the earlier example based on [Therrien:1991, Example 5.1, Page 229].

Example 4.3 ( [Therrien:1991, Example 5.3, Page 237]). Again, the LTI system shown in
Figure 4.3 is driven by a process with mean µx and covariance sequence γxx(l) = σ2

x δ(l).
Calculate the power spectral density (PSD), cross-power spectral density (CPSD) and the complex
cross-spectral densities.

SOLUTION. The first-order system with impulse response h(n) = ρnu(n) has system transfer
function

H(z) =
1

1− ρ z−1
(4.54)

The complex spectral density function for the white noise with added mean is given by the z-transform
of the autocorrelation sequence. Since γxx(l) = σ2

xδ(l), then rxx(l) = γxx(l) + µ2
x = σ2

xδ(l) + |µx|2.
Taking z-transforms gives:

Pxx(z) = σ2
x + 2π|µx|2δ(z − ej0) (4.55)

= σ2
x + 2π|µx|2δ(z − 1) (4.56)

where the complex spectral density result in Equation (T:4.59) at the end of the previous handout has
been used. Hence, the complex cross-spectral density is given by:

Pxy(z) = H∗
(

1

z∗

)
Pxx(z) =

(
1

1− ρ
[

1
z∗

]−1

)∗ [
σ2
x + 2π|µx|2δ(z − 1)

]
(4.57)

=
σ2
x

1− ρ∗z
+

2π|µx|2

1− ρ∗z
δ(z − 1) (4.58)

Moreover, the complex spectral density is given by:

Pyy(z) = H(z)Pxy(z) =

(
1

1− ρz−1

)(
1

1− ρ∗z

)[
σ2
x + 2π|µx|2δ(z − 1)

]
(4.59)

=
σ2
x

1 + |ρ|2 − ρ∗z − ρz−1
+

2π|µx|2

|1− ρ|2
δ(z − 1) (4.60)

Thus, the CPSD and the PSD can be obtained by setting z = ejω to obtain:

Pxy(e
jω) =

σ2
x

1− ρ∗ejω
+

2π|µx|2

1− ρ∗ejω
δ(ejω − 1) (4.61)

June 20, 2017 – 00 : 07



82 Linear Systems Theory

Moreover, the complex spectral density is given by:

Pyy(e
jω) =

σ2
x

1 + |ρ|2 − 2|ρ| cos(ω − arg ρ)
+

2π|µx|2

|1− ρ|2
δ(ejω − 1) (4.62)

where the simplification that:

ρ∗ejω + ρe−jω = |ρ|
[
e−j arg ρ ejω + ej arg ρe−jω

]
= |ρ|

[
ej(ω−arg ρ) + e−j(ω−arg ρ)

]
(4.63)

= 2|ρ| cos(ω − arg ρ) (4.64)
�

has been used.



5
Linear Signal Models

This handout looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (LTI) system with white noise. A particular focus is placed on system functions that
are rational; that is, they can be expressed at the ratio of two polynomials. Thus, the time-domain
and frequency domain characteristics of pole-zero, all-pole, and all-zero models are investigated,
including their time-series equivalents.

5.1 Abstract
New slide• In the last lecture, the response of a linear-system when a stochastic process is applied at

the input was considered. General linear systems were considered, and no focus on their
interpretation or their practical applications was discussed.

• This lecture looks at the special class of stationary signals that are obtained by driving a linear
time-invariant (LTI) system with white noise. A particular focus is placed on system functions
that are rational; that is, they can be expressed at the ratio of two polynomials. The power
spectral density (PSD) of the resulting process is also rational, and its shape is completely
determined by the filter coefficients. As a result, linear signal models provide a method for
modelling the PSD of a process, and thus leads to parametric PSD estimation, also known as
modern spectral estimation.

• The following models are considered in detail:

– All-pole systems and autoregressive (AR) processes;

– All-zero systems and moving average (MA) processes;

– and pole-zero systems and autoregressive moving average (ARMA) processes.

• Pole-zero models are widely used for modelling stationary signals with short memory; the
concepts will be extended, in overview at least, to nonstationary processes.
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Figure 5.1: White noise PSD.

Linear signal models are developed first by assuming that the second order moments of the random
process are known, and equations are developed whose solution provides the model parameters. In
most practical applications of the theory, however, the fixed quantities in the equations, namely the
correlation functions and the model orders, are not known a priori but need to be estimated from the
data. This, as a result, introduces the issue of estimation of the model parameters and leads to the
notion of, for example, maximum likelihood estimation and least squares estimates as discussed in
the next handout.

5.2 The Ubiquitous WGN Sequence

New slide The simplest random signal model is the wide-sense stationary (WSS) white Gaussian noise (WGN)
sequence:

w(n) ∼ N
(
0, σ2

w

)
(5.1)

The sequence is independent and identically distributed (i. i. d.), and has a flat PSD: Pww(ejω) =
σ2
w, −π < ω ≤ π. The PSD is shown below in Figure 5.1.

5.2.1 Generating WGN samples

Recall that the probability transformation rule takes random variables from one distribution as
inputs and outputs random variables in a new distribution function:

Theorem 5.1 (Probability transformation rule (revised)). If {x1, . . . xn} are random variables
with a joint-probability density function (pdf) fX (x1, . . . , xn), and if {y1, . . . yn} are random
variables obtained from functions of {xk}, such that yk = gk(x1, x2 . . . xn), then the joint-pdf,
fY (y1, . . . , yn), is given by:

fY (y1, . . . , yn) =
1

|J(x1, . . . , xn)|
fX (x1, . . . , xn) (5.2)

where J(x1, . . . , xn) is the Jacobian of the transformation given by:

J(x1, . . . , xn) =
∂(y1, . . . yn)

∂(x1, . . . xn)
(5.3)
♦

One particular well-known example is the Box-Muller (1958) transformation that takes two uniformly
distributed random variables, and transforms them to a bivariate Gaussian distribution. Consider the
transformation between two uniform random variables given by,

fXk (xk) = I0,1 (xk) , k = 1, 2 (5.4)
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Figure 5.2: Signal models with continuous and discrete (line) power spectrum densities.

where IA (x) = 1 if x ∈ A, and zero otherwise, and the two random variables y1, y2 given by:

y1 =
√
−2 lnx1 cos 2πx2 (5.5)

y2 =
√
−2 lnx1 sin 2πx2 (5.6)

It follows, by rearranging these equations, that:

x1 = exp

[
−1

2
(y2

1 + y2
2)

]
(5.7)

x2 =
1

2π
arctan

y2

y1

(5.8)

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣∣∣∣∣ ∂y1∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ =

∣∣∣∣∣ −1
x1
√
−2 lnx1

cos 2πx2 −2π
√
−2 lnx1 sin 2πx2

−1
x1
√
−2 lnx1

sin 2πx2 2π
√
−2 lnx1 cos 2πx2

∣∣∣∣∣ =
2π

x1

(5.9)

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π
e−y

2
1/2

] [
1√
2π
e−y

2
2/2

]
(5.10)

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus covering the range of real numbers.
This is the product of y1 alone and y2 alone, and therefore each y is i. i. d. according to the normal
distribution, as required.

Consequently, this transformation allows one to sample from a uniform distribution in order to obtain
samples that have the same pdf as a Gaussian random variable.

5.2.2 Filtration of WGN
New slideBy filtering a WGN through a stable LTI system, it is possible to obtain a stochastic signal at the

output with almost any arbitrary aperiodic correlation function or continuous PSD. The PSD of the
output is given by:

Pxx(e
jω) = σ2

w|H(ejω)|2 = G2

∏Q
k=1 |1− zk e−jω|

2∏P
k=1 |1− pk e−jω|

2
(5.11)
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Figure 5.3: The speech synthesis model.

Note that the shape of the power spectrum depends only upon the magnitude of the filter’s frequency
response.

Random signals with line PSDs can be generated by using the harmonic process model, which is
a linear combination of sinusoidal sequences with statistically independent random phases. Signal
models with mixed PSDs can be obtained by combining these two models; a process justified by the
Wold decomposition. This is highlighted in Figure 5.2; contrast this with the speech synthesis model
shown in Figure 5.3, which was also shown in the introductory handout.

5.3 Nonparametric and parametric signal models

New slide Nonparametric models have no restriction on its form, or the number of parameters characterising
the model. For example, specifying a LTI filter by its impulse response is a
nonparametric model.
If the inputw(n) is a zero-mean white noise process with variance σ2

w, autocorrelation
rww(l) = σ2

wδ(l) and Pww(ejω) = σ2
w, −π < ω ≤ π, then the autocorrelation,

complex spectral density, and PSD of the output x(n) are given by, respectively:

rxx(l) = σ2
w

∞∑
k=−∞

h(k)h∗(k − l) = σ2
wrhh(l) (M:4.1.2)

Pxx(z) = σ2
wH(z)H∗

(
1

z∗

)
(M:4.1.3)

Pxx(e
jω) = σ2

w|H(ejω)|2 (M:4.1.4)

Notice that the shape of the autocorrelation and the power spectrum of the output
signal are completely characterised by the system. This is known as a system based
signal model, and in the case of linear systems, is also known as the linear random
signal model, or the general linear process model.

Parametric models, on the other hand, describe a system with a finite number of parameters. For
example, if a LTI filter is specified by a finite-order rational system function, it is a
parametric model.
Two important analysis tools present themselves for parametric modelling:
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Figure 5.4: Filter block diagram for ARMA model.

1. given the parameters of the model, analyse the characteristics of that model (in
terms of moments etc.);

2. design of a parametric system model to produce a random signal with a specified
autocorrelation function or PSD. This problem is known as signal modelling.

5.4 Parametric Pole-Zero Signal Models

New slideParametric models describe a system with a finite number of parameters. Consider a system described
by the following linear constant-coefficient difference equation:

x(n) = −
P∑
k=1

ak x(n− k) +

Q∑
k=0

dk w(n− k) (M:4.1.21)

This rational transfer function was introduced in the first lecture, and the filter block diagram is shown
in Figure 5.4. Taking z-transforms gives the system function:

H(z) =
X(z)

W (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(M:4.1.22)

,
D(z)

A(z)
= G

∏Q
k=1(1− zk z−1)∏P
k=1(1− pk z−1)

(M:4.1.23)

This system has Q zeros, {zk, k ∈ Q} where Q = {1, . . . , Q}, and P poles, {pk, k ∈ P}. Note that
poles and zeros at z = 0 are not considered here. The term G is the system gain. It is assumed that
the polynomials A(z) and D(z) do not have any common roots; that is, common poles and zeros have
already been cancelled.
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Figure 5.5: Types of linear model; top to bottom, these are the AR, MA and ARMA models.

5.4.1 Types of pole-zero models

New slideThere are three cases of interest as shown in Figure 5.5:

All-pole model when Q = 0. The input-output difference equation is given by:

x(n) = −
P∑
k=1

ak x(n− k) + d0w(n) (M:4.1.26)

This is commonly denoted as the AP (P ) model.

All-zero model when P = 0. The input-output relation is given by:

x(n) =

Q∑
k=0

dk w(n− k) (M:4.1.25)

This is commonly denoted as the AZ(Q) model.

Pole-zero model when P > 0 and Q > 0.
This is commonly denoted as the PZ(P,Q) model, and if it is assumed to be causal,
is given by Equation M:4.1.21. This is, of course, the most general of the linear signal
models.

If a parametric model is excited with WGN, the resulting output signal has second-order moments
determined by the parameters of the model. These stochastic processes have special names in the
literature, and are known as:

a moving average (MA) process when it is the output of an all-zero model;

an autoregressive (AR) process when it is the output of an all-pole model;

an autoregressive moving average (ARMA) process when it is the output of an pole-zero model;

each subject to a WGN process at the input.

The parametric signal model is usually specified by normalising d0 = 1 and setting the variance of
the input to σ2

w. The alternative is to specify σ2
w = 1 and leave d0 arbitrary, but this isn’t quite as

elegant when it comes to deriving pdfs. It is also important to stress that these models assume the
resulting processes are stationary, which is ensured if the corresponding systems are bounded-input,
bounded-output (BIBO) stable.
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5.4.2 All-pole Models

New slideA discussion of linear signal models should begin with all-pole models because they are the easiest
to analyse, and the most often used in practical applications. Assume an all-pole model of the form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

where d0 is the system gain, and P is the order of the model.

All-pole models are frequently used in signal processing applications since they are:

• mathematically convenient since model parameters can be estimated by solving a set of linear
equations, and

• they widely parsimoniously approximate rational transfer functions, especially resonant
systems.

There are various model properties of the all-pole model that are useful; these include:

1. the systems impulse response;

2. the somewhat inappropriate term called the autocorrelation of the impulse response;

3. and minimum-phase conditions.

Although the autocorrelation of the impulse response is useful to gain additional insight into aspects
of the all-pole filter, it is better to consider the autocorrelation function of an AR process (i.e. the
autocorrelation function of the output of an all-pole filter). However, for completeness, the details of
the autocorrelation of the impulse response is included in these notes.

5.4.2.1 Frequency Response of an All-Pole Filter

New slideThe all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0∏P

k=1(1− pk z−1)
(M:4.2.1)

and therefore its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0∏P

k=1(1− pk e−jω)
(5.12)

When each of the poles are written in the form pk = rke
jωk , then the frequency response can be

written as:
H(ejω) =

d0∏P
k=1(1− rk e−j(ω−ωk))

(5.13)

Hence, it can be deduced that resonances occur near the frequencies corresponding to the phase
position of the poles. When the system is real, the complex-poles occur in conjugate-pairs.

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 =

G2∏P
k=1 |1− rk e−j(ω−ωk)|2

(5.14)
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(b) Positions of poles.

Figure 5.6: The frequency response and position of the poles in an all-pole system.
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Figure 5.7: Power spectral response of an all-pole model.

where G = σw d0 is the overall gain of the system.

Consider the all-pole model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.985, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.15)

The pole positions and magnitude frequency response of this system is plotted in Figure 5.6. For
comparison, the PSD of the output of the system is shown in Figure 5.7.

5.4.2.2 Impulse Response of an All-Pole Filter

New slide Recalling that the input-output difference equation for an all-pole filter is given by:

x(n) = −
P∑
k=1

ak x(n− k) + d0w(n) (M:4.1.26)

then the impulse response, h(n), is the output of this system when the input is a delta function,
w(n) = δ(n).
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The impulse response of the all-pole filter satisfies the equation:

h(n) = −
P∑
k=1

ak h(n− k) + d0 δ(n) (M:4.2.3)

The derivation in [Manolakis:2000, page 157] is somewhat verbose; nevertheless, their approach is to
re-write the system function of the all-pole filter as:

H (z) +
P∑
k=1

akH (z) z−k = d0 (5.16)

and thus by taking the inverse z-transform gives the same result as above. If H (z) has its poles inside
the unit circle, then h[n] is a causal, stable sequence, and the system is minimum-phase.

Assuming causality, such that h[n] = 0, n < 0 then it follows h[−k] = 0, k > 0, and therefore:

h[n] =


0 if n < 0

d0 if n = 0

−
∑P

k=1 ak h[n− k] if n > 0

(M:4.2.5)

Thus, except for the value at n = 0, h[n] can be obtained recursively as a linearly weighted summation
of its previous values, {h[n− p] , p = {1, . . . , P}}. Thus, in this sense, h[n] can be predicted, for
n 6= 0, with zero error from the past P past values. Thus, the coefficients {ak} are often referred to
as predictor coefficients.

Finally, note that a causal H (z) can be written as a one-sided z-transform, or infinite polynomial,
H (z) =

∑∞
n=0 h[n] z−n. This representation implies that any finite-order, all-pole model can

be represented equivalently by an infinite number of zeros, and conversely a single zero can be
represented by an infinite number of poles. If the poles are inside the unit circle, then so are the
corresponding zeros, and vice-versa.

5.4.2.3 Autocorrelation of the Impulse Response

The impulse response h[n] of an all-pole model has infinite duration, so that its autocorrelation
involves an infinite summation, which is not practical to write in closed form except for low-order
models. However, the autocorrelation function for the all-pole model can be written as a recursive
relation that relates the autocorrelation values to the model parameters. As introduced previously, the
autocorrelation of the system impulse response is given by:

rhh(l) , h(l) ∗ h∗(−l) =
∞∑

n=−∞

h(n)h∗(n− l) (5.17)

Multiplying both side of Equation M:4.2.3 by h∗(n− l) gives and summing over all n:

∞∑
n=−∞

P∑
k=0

ak h(n− k)h∗(n− l) = d0

∞∑
n=−∞

h∗(n− l)δ(n) (M:4.2.14)

where a0 = 1. Interchanging the order of summations (as usual) in the left hand side (LHS), and
setting n̂ = n− k gives:

P∑
k=0

ak

∞∑
n̂=−∞

h(n̂)h∗(n̂− (l − k)) = d0 h
∗(−l) (5.18)
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which can also be written as

P∑
k=0

ak rhh(l − k) = d0 h
∗(−l) (M:4.2.15)

Since h(n) = 0, n < 0, then h(−l) = 0, l > 0, and h(0) = d0, then:

rhh(l) =


d0 h

∗(−l)−
∑P

k=1 ak rhh(l − k) l < 0

|d0|2 −
∑P

k=1 ak rhh(−k) l = 0

−
∑P

k=1 ak rhh(l − k) l > 0

(5.19)

These are recursive relationships for rhh[`] in terms of past values of the autocorrelation function.

It is also possible to write the autocorrelation in terms of the poles of the model, and to also investigate
the response of the model to an impulse train (harmonic) excitation. These are not considered in this
handout, but are detailed in [Manolakis:2000, Section 4.2].

5.4.2.4 All-Pole Modelling and Linear Prediction

New slide A linear predictor forms an estimate, or prediction, x̂[n], of the present value of a stochastic process
x[n] from a linear combination of the past P samples; that is:

x̂[n] = −
P∑
k=1

ak x[n− k] (M:1.4.1)

The coefficients {ak} of the linear predictor are determined by attempting to minimise some function
of the prediction error given by:

e(n) = x(n)− x̂(n) (M:1.4.2)

Usually the objective function is equivalent to mean-squared error (MSE), given by E =
∑

n e
2(n).

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑
k=1

ak x(n− k) (M:4.2.50)

• Thus, the prediction error is equal to the excitation of the all-pole model; e(n) = w(n). Clearly,
finite impulse response (FIR) linear prediction and all-pole modelling are closely related.

• Many of the properties and algorithms developed for either linear prediction or all-pole
modelling can be applied to the other.

• To all intents and purposes, linear prediction, all-pole modelling, and AR processes (discussed
next) are equivalent terms for the same concept.

5.4.2.5 Autoregressive Processes

New slide While all-pole models refer to the properties of a rational system containing only poles, AR processes
refer to the resulting stochastic process that occurs as the result of WGN being applied to the input of
an all-pole filter.
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As such, the same input-output equations for all-pole models still apply although, in this case, the AR
process refers to x[n], whereas all-pole modelling would refer to the system itself, as defined by the
linear difference equation and the parameters {ak}.
Thus:

x[n] = −
P∑
k=1

ak x[n− k] + w[n] , w[n] ∼ N
(
0, σ2

w

)
(M:4.2.52)

The AR process is valid only if the corresponding all-pole system is stable. The autoregressive
output, x[n], is a stationary sequence with a mean value of zero, µx = 0.

The autocorrelation sequence (ACS) can be calculated in a similar approach to finding the output
autocorrelation and cross-correlation for linear systems.

Multiply the difference Equation M:4.2.52 through by x∗(n− l) and take expectations to obtain:

rxx(l) +
P∑
k=1

ak rxx(l − k) = rwx(l) (M:4.2.54)

Observing that x(n) cannot depend on future values of w(n) since the system is causal, then rwx(l) =
E [w(n)x∗(n− l)] is zero if l > 0, and σ2

w if l = 0.

Thus, writing Equation M:4.2.54 for l = {0, 1, . . . , P} gives:

rxx(0) + a1 rxx(−1) + · · ·+ aP rxx(−P ) = σ2
w (5.20)

rxx(1) + a1 rxx(0) + · · ·+ aP rxx(−P + 1) = 0 (5.21)
... (5.22)

rxx(P ) + a1 rxx(P − 1) + · · ·+ aP rxx(0) = 0 (5.23)

This can be written in matrix-vector form (noting that rxx(l) = r∗xx(−l) and that the parameters {ak}
are real) as: 

rxx(0) r∗xx(1) · · · r∗xx(P )
rxx(1) rxx(0) · · · r∗xx(P − 1)

...
... . . . ...

rxx(P ) rxx(P − 1) · · · r∗xx(0)




1
a1
...
aP

 =


σ2
w

0
...
0

 (M:4.2.56)

These Yule-Walker equations have an identical form to the normal equations which are a result of
analysing linear prediction. The differences are minor, but the interested reader can find out more in
[Therrien:1992, Chapter 8]. It is important to note that the Yule-Walker equations are linear in the
parameters ak, and there are several different efficient methods for solving them. Details, again, can
be found in [Therrien:1992, Chapters 8 and 9].

5.4.2.6 Autocorrelation Function from AR parameters

In the previous section, an expression for calculating the AR coefficients given the autocorrelation
values was given. But what if the AR coefficients are known, and it is desirable to calculate the
autocorrelation function given these parameters. A formulation is given here. Assume that an AR
process is real, such that the Yule-Walker equations become:

rxx(0) rxx(1) · · · rxx(P )
rxx(1) rxx(0) · · · rxx(P − 1)

...
... . . . ...

rxx(P ) rxx(P − 1) · · · rxx(0)

 â = b where â =


1
a1
...
aP

 and b =


σ2
w

0
...
0


(5.24)
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To generate the autocorrelation values from the AR parameters, it is desirable to obtain an equation
of the form Ar = b, where

[
rxx(0) · · · rxx(P )

]T , and the matrix A and vector b are functions of
the parameters {ak} and the input variance σ2

w. Write the Yule-Walker equations as:

rxx(0)


1 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0 1

 â + rxx(1)


0 1 · · · 0

1
. . . . . . ...

... . . . . . . 1
0 · · · 1 0

 â + · · ·+ rxx(P )


0 0 · · · 1

0
. . . . . . ...

... . . . . . . 0
1 · · · 0 0

 â = b

(5.25)
By defining the P ×P matrix IP,k with ones on the kth diagonal away from the leading diagonal, and
zero elsewhere, then it follows:

P∑
k=0

(IP+1,k â) rxx(k) = b (5.26)

Next defining the vector âk = IP+1,k â and the matrix
[
â0 · · · âP

]
, then the matrix-vector equation

Ar = b (5.27)

has been obtained. In low-order cases, it might be more straightforward to explicitly compute the
autocorrelation functions by writing out the Yule-Walker equations.

All-pole models therefore have the unique property that the model parameters are completely
specified by the first P + 1 autocorrelation coefficients via a set of linear equations, as given by
the equation Ar = b. An alternative way of writing this is:

σ2
w

a1
...
aP

↔
 rxx(0)

...
rxx(P )

 (5.28)

Thus, the mapping of the model parameters to the autocorrelation coefficients is reversible and unique.
This correlation matching of all-pole models is quite remarkable, and is not shared by all-zero
models, and is true for pole-zero models only under certain conditions.

Example 5.1 (Calculating Autocorrelation Functions of All-Pole Model). Given the parameters
σ2
w, a1, and a2, of a second-order all-pole model, compute the autocorrelation values rxx(k) for
{k = 0, 1, 2}.
SOLUTION. Using the results above, it follows that:

rxx(0)

1 0 0
0 1 0
0 0 1

 1
a1

a2

+ rxx(1)

0 1 0
1 0 1
0 1 0

 1
a1

a2

+ rxx(2)

0 0 1
0 0 0
1 0 0

 1
a1

a2

 =

σ2
w

0
0

 (5.29)

or,  1 a1 a2

a1 1 + a2 0
a2 a1 1

rxx(0)
rxx(1)
rxx(2)

 =

σ2
w

0
0

 (5.30)

Although you could try a direct version to solve this, a slightly more ad-hoc approach quickly yields
a solution in this case, and is related to Gaussian elimination. Multiplying the second row by a1 and
the last row by a2, and then subtracting them both from the first row gives:1− a2

1 − a2
2 −2a1a2 0

a2
1 a1(1 + a2) 0
a2

2 a1 a2 a2

rxx(0)
rxx(1)
rxx(2)

 =

σ2
w

0
0

 (5.31)
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It can thus be seen that the first two equations for rxx(0) and rxx(1) do not depend on rxx(2) and
therefore, by inverting the 2 by 2 matrix, this gives:[

rxx(0)
rxx(1)

]
=

1

a1(1 + a2)(1− a2
1 − a2

2) + 2a3
1 a2

[
a1(1 + a2) 2a1 a2

−a2
1 1− a2

1 − a2
2

] [
σ2
w

0

]
(5.32)

=
σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

[
1

− a1
1+a2

]
(5.33)

Moreover,

rxx(2) = − 1

a2

[
a2

2 a1 a2

] [rxx(0)
rxx(1)

]
=

σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

(
a2

1

1 + a2

− a2

)
(5.34)

In summary, rxx(0)
rxx(1)
rxx(2)

 =
σ2
w

(1− a2
1 − a2

2) +
2a21 a2
1+a2

 1
− a1

1+a2
a21

1+a2
− a2

 (5.35)
�

5.4.3 All-Zero models
New slideWhereas all-pole models can capture resonant features of a particular PSD, it cannot capture nulls in

the frequency response. These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of delayed versions of the input signal. Thus,
assume an all-zero model of the form:

x(n) =

Q∑
k=0

dk w(n− k) (M:4.3.1)

where Q is the order of the model, and the corresponding system function is given by:

H(z) = D(z) =

Q∑
k=0

dk z
−k (M:4.3.2)

Similar to the relationship between all-pole models and AR processes, all-zero models refer to
the properties of a rational system containing only zeros, while MA processes refer to the resulting
stochastic process that occurs as the result of WGN being applied to the input of an all-zero filter.

All-zero models are difficult to deal with since, unlike the Yule-Walker equations for the all-pole
model, the solution for model parameters given the autocorrelation functions involves solving
nonlinear equations, which becomes quite a complicated task.

5.4.3.1 Frequency Response of an All-Zero Filter

New slideThe all-zero model has form:

H(z) = D(z) =

Q∑
k=0

dk z
−k = d0

Q∏
k=1

(
1− zk z−1

)
(5.36)
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(b) Positions of zeros.

Figure 5.8: The frequency response and position of the zeros in an all-zero system.

where {zk} are the zeros of the all-zero model. Therefore, its frequency response is given by:

H(ejω) =

Q∑
k=0

dk e
−jkω = d0

Q∏
k=1

(
1− zk e−jω

)
(5.37)

When each of the zeros are written in the form zk = rke
jωk , then the frequency response can be

written as:

H(ejω) = d0

Q∏
k=1

(
1− rk e−j(ω−ωk)

)
(5.38)

Hence, it can be deduced that troughs or nulls occur near frequencies corresponding to the phase
position of the zeros. When the system is real, the complex-zeros occur in conjugate-pairs.

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

Q∏
k=1

∣∣1− rk e−j(ω−ωk)
∣∣2 (5.39)

whereG = σw d0 is the overall gain of the system. Consider the all-zero model with zeros at positions:

{zk} = {rk ejωk} where

{
{rk} = {0.985, 1, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.40)

The zero positions and magnitude frequency response of this system is plotted in Figure 5.8. For
comparison, the power spectral density of the output of the system is shown in Figure 5.9. Note that
one of the zeros is on the unit circle, and that the frequency response at this point is zero.

5.4.3.2 Impulse Response

The impulse response of an all-zero model is an FIR system with impulse response:

h(n) =

{
dn 0 ≤ n ≤ Q

0 elsewhere
(5.41)
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Figure 5.9: Power spectral response of an all-zero model.

5.4.3.3 Autocorrelation of the Impulse Response

Following a similar line to that shown for all-pole models, the autocorrelation of the impulse response
of an all-zero system can be found.

Theorem 5.2. The autocorrelation sequence of the impulse response of an all-zero system is given
by:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] =


Q−`∑
k=0

dk+` d
∗
k 0 ≤ ` ≤ Q

0 ` > Q

(M:4.3.4)

and r∗hh[−`] = rhh[`] for all `.

PROOF. The autocorrelation sequence of the impulse response of an all-zero system is given by the
discrete-time convolution:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] (5.42)

Considering the term h[n],

h[n] =

{
dn 0 ≤ n ≤ Q

0 otherwise
(5.43)

or, in otherwords, h(n) = 0 when n < 0 and n > Q. Hence Equation 5.42 becomes:

rhh[`] =

Q∑
n=0

dn h
∗[n− `] (5.44)

Moreover, the lower-limit is constrained since

h∗[n− l] =

{
d∗n−` 0 ≤ n− ` ≤ Q

0 otherwise
(5.45)

or, in otherwords, h∗[n− l] = 0 if n < ` and when n > Q + `. Assuming that ` ≥ 0, the second
condition is already met by the upper-limit in Equation 5.44. Therefore, Equation 5.44 becomes:

rhh[`] =

Q∑
n=`

dn d
∗
n−` (5.46)

June 20, 2017 – 00 : 07



98 Linear Signal Models

By substituting k = n− `, such that when n = {`, Q}, k = {0, Q− `}, then:

rhh[`] =

Q−`∑
k=0

dk+` d
∗
k, for ` ≥ 0 (5.47)

Clearly this expression is equal to zero if ` > Q. Therefore, using the result from the previous handout
that rhh[`] = r∗hh[−`], it follows:

rhh[`] =
∞∑

n=−∞

h[n] h∗[n− `] =


Q−`∑
k=0

dk+` d
∗
k 0 ≤ ` ≤ Q

0 ` > Q

(M:4.3.4)
�

and r∗hh[−`] = rhh[`] for all `.

5.4.3.4 Moving-average processes

New slide As an analogy with Section 5.4.2.5, a MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1 driven by WGN. That is,

x[n] = w[n] +

Q∑
k=1

dk w[n− k] , w[n] ∼ N
(
0, σ2

w

)
(M:4.3.9)

The output x[n] has zero-mean, and variance of

σ2
x = σ2

w

[
1 +

Q∑
k=1

|dk|2
]

(5.48)

The autocorrelation sequence and PSD are given by:

rxx[`] = σ2
wrhh[`] = σ2

w

Q−`∑
k=0

dk+l d
∗
k, for 0 ≤ ` ≤ Q (5.49)

and is zero for ` > Q, with rxx[`] = r∗xx[−`], where d0 = 1, and also where Pxx(ejω) = σ2
w |D(ejω)|2.

The fact that rxx[`] = 0 if the samples are more than Q samples apart, means that they are therefore
uncorrelated. An alternative derivation for the autocorrelation sequence for an MA process is given
in the following section, Section 5.4.3.5.

5.4.3.5 Autocorrelation Function for MA Process

As stated in the previous section, using the results for the statistics of a stationary signal passed
through a linear system, then the autocorrelation sequence for a MA process is given by rxx[`] =
σ2
wrhh[`], where rhh[`] is given by Equation M:4.3.4. For completeness, this section gives an

alternative derivation from first principles.

Multiplying the difference equation, Equation M:4.3.1, through by x∗[n− `] and taking expectations
gives:

rxx[`] =

Q∑
k=0

dk rwx[`− k] (5.50)
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Similarly, post-multiplying by w∗[n− `] gives:

rxw[`] =

Q∑
k=0

dk rww[`− k] =

{
σ2
w d` 0 ≤ ` ≤ Q

0 otherwise
(5.51)

since rww[`] = σ2
w δ(`). Recalling that rwx[`] = r∗xw[−`], then:

rwx[`] =

{
σ2
w d
∗
−` 0 ≤ −` ≤ Q

0 otherwise
(5.52)

with the limit 0 ≤ −` ≤ Q being equivalent to −Q ≤ ` ≤ 0. Consequently,

rwx[`− k] =

{
σ2
w d
∗
k−` 0 ≤ k − ` ≤ Q

0 otherwise
(5.53)

where this should be viewed as a function of k for a given `. The range of non-zero values is given by
` ≤ k ≤ Q+ `. Considering ` > 0, the autocorrelation sequence for an MA process is thus:

rxx[`] = σ2
w

Q∑
k=`

dk d
∗
k−` = σ2

w

Q−`∑
k=0

dk+` d
∗
k (5.54)

for 0 ≤ ` ≤ Q, and zero for ` > Q. The last expression was been obtained by making the substitution
k → k − `. Using the relationship rxx[−`] = r∗xx[`] gives the ACS for all values of `.

Unlike AR models, is is not possible to solve for the model parameters using linear algebra techniques.
It requires the solution of highly nonlinear equations, and is therefore more difficult than dealing with
AR process. This, hence, is one reason why many algorithms in statistical signal processing prefer to
use all-pole models over all-zero models.

5.4.4 Pole-Zero Models
New slideFinally, the most general of LTI parametric signal models is the pole-zero model which, as the

name suggests, is a combination of the all-pole and all-zero models, and can therefore model both
resonances as well as nulls in a frequency response.

The output of a causal pole-zero model is given by the recursive input-output relationship:

x[n] = −
P∑
k=1

ak x[n− k] +

Q∑
k=0

dk w[n− k] (M:4.4.1)

where it is assumed that the model orders P > 0 and Q ≥ 1. The corresponding system function is
given by:

H (z) =
D (z)

A (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

(5.55)

5.4.4.1 Frequency Response of an Pole-Zero Model

New slideThe pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q
k=1 (1− zk z−1)∏P
k=1 (1− pk z−1)

(5.56)
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Figure 5.10: The frequency response and position of the poles and zeros in an pole-zero system.

where {pk} and {zk} are the poles and zeros of the pole-zero model. Therefore, its frequency response
is given by:

H(ejω) = d0

∏Q
k=1 (1− zk e−jω)∏P
k=1 (1− pk e−jω)

(5.57)

As before, it can be deduced that troughs or nulls occur at frequencies corresponding to the phase
position of the zeros, while resonances occur at frequencies corresponding to the phase of the poles.
When the system is real, the complex-poles and complex-zeros occur in conjugate-pairs.

The PSD of the output of a pole-zero filter is given by:

Pxx(e
jω) = σ2

w

∣∣H(ejω)
∣∣2 = G2

∏Q
k=1 |1− zk e−jω|

2∏P
k=1 |1− pk e−jω|

2
(5.58)

where G = σw d0 is the overall gain of the system.

Consider the pole-zero model with poles at positions:

{pk} = {rk ejωk} where

{
{rk} = {0.925, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;

(5.59)

and zeros at:

{zk} = {rk ejωk} where

{
{rk} = {1, 0.855}
{ωk} = 2π × {700, 1000}/2450;

(5.60)

The pole and zero positions, and the magnitude frequency response of this system is plotted in
Figure 5.10, while the PSD of the output of the system is shown in Figure 5.11. Note again that
one of the zeros lies on the unit-circle, and therefore at the corresponding frequency, the frequency
response is zero.

5.4.4.2 Impulse Response

The impulse response of a causal pole-zero filter can be obtained from Equation M:4.4.1 by
substituting w(n) = δ(n) and x(n) = h(n), such that:

h(n) = −
P∑
k=1

ak h(n− k) + dn, n ≥ 0 (M:4.4.2)
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Figure 5.11: Power spectral response of an pole-zero model.

where dn = 0 for n > Q and n < 0, and h(n) = 0 for n < 0. Hence, writing this explicitly as:

h(n) =


0 n < 0

−
∑P

k=1 ak h(n− k) + dn 0 ≤ n ≤ Q

−
∑P

k=1 ak h(n− k) n > 0

(5.61)

it can be seen that the impulse response obeys a linear prediction equation for n > Q. Thus, given
h(n) for 0 ≤ n ≤ P + Q, the all-pole parameters {ak} can be calculated by using the P equations
specified by Q + 1 ≤ n ≤ P + Q. Given the {ak}’s, it is then possible to compute the all-zero
parameters from Equation M:4.4.2 using the equations for 0 ≤ n ≤ Q. Thus, it is clear that the first
P +Q+ 1 values of the impulse response completely specify the pole-zero model.

5.4.4.3 Autocorrelation of the Impulse Response

Multiplying both sides of Equation M:4.4.2 by h∗(n− l) and summing over all n gives:

∞∑
n=−∞

h(n)h∗(n− l) = −
P∑
k=1

ak

∞∑
n=−∞

h(n− k)h∗(n− l) +
∞∑

n=−∞

dn h
∗(n− l) (5.62)

where dn = 0 if n < 0 or n > Q. Note that the order of summations in the middle term has implicitly
been reordered. Using the definition for rhh(l) and noting that h∗(n− l) = 0 for n− l < 0 then this
equation may be expressed as:

rhh(l) = −
P∑
k=1

ak rhh(l − k) +

Q∑
n=0

dn h
∗(n− l) (M:4.4.6)

Since the impulse response h(n) is a function of the parameters {ak}’s and {dk}’s, then this set of
equations is nonlinear in terms of these parameters. However, noting that the right hand side (RHS)
of this equation is zero for l > Q, then:

P∑
k=1

ak rhh(l − k) = −rhh(l), l > Q (5.63)

This equation, unlike Equation M:4.4.6, is linear in the all-pole parameters {ak}’s. Therefore, given
the autocorrelation of the impulse response, the all-pole parameters can be calculated by solving
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Equation 5.63 for l ∈ {Q+ 1, . . . , Q+ P} to give:
rhh(Q) rhh(Q− 1) · · · rhh(Q+ 1− P )

rhh(Q+ 1) rhh(Q) · · · rhh(Q+ 2− P )
...

... . . . ...
rhh(Q+ P − 1) rh(Q+ P − 2) · · · rhh(Q)



a1

a2
...
aP

 = −


rhh(Q+ 1)
rhh(Q+ 2)

...
rhh(Q+ P )

 (M:4.4.8)

or, alternatively,

Rhh a = −rhh (M:4.4.9)

The matrix Rhh in Equation M:4.4.9 is a non-Hermitian Toeplitz matrix; it can be solved using a
variety of linear algebra techniques.

Given the all-pole parameters, it then falls to solve Equation M:4.4.6 for the all-zero parameters
{dk}’s. This is somewhat involved, but they can be found using spectral factorisation. The details
are omitted from this handout, but can be found in [Therrien:1992, Section 9.1, page 509] or
[Manolakis:2000, Page 178].

5.4.4.4 Autoregressive Moving-Average Processes

As with the all-pole and all-zero models, the corresponding random process associated with a
pole-zero model is the ARMA process. This is the output of a pole-zero model, when the input
of the system is driven by WGN. Hence, a causal ARMA model with model orders P and Q is
defined by:

x(n) = −
P∑
k=1

ak x(n− k) + w(n) +

Q∑
k=1

dk w(n− k) (M:4.4.15)

where w(n) ∼ N (0, σ2
w), the model-orders are P and Q, and the full set of model parameters are

{σ2
w, a1, . . . , aP , d1, . . . , dQ}. The output has zero-mean and variance that can be shown to equal:

σ2
x = −

P∑
k=1

ak rxx(k) + σ2
w

[
1 +

Q∑
k=1

dk h(k)

]
(M:4.4.16)

where h(n) is the impulse response of the pole-zero filter. The derivation of this result is left as an
exercise for the reader. The presence of h(n) in the expression for the variance makes the dependence
of σ2

x on the model parameters highly nonlinear.

Finally, in a manner similar to the derivations of the autocorrelation function for the other models, it
can be shown that the autocorrelation function for the output is given by:

rxx(l) = −
P∑
k=1

ak rxx(l − k) + σ2
w

[
1 +

Q∑
n=l

dn h
∗(n− l)

]
(5.64)

where it has been noted that d0 = 1. Similar in manner to Equation M:4.4.8 and Equation M:4.4.9 it
is possible to obtain equations for finding the model parameters given the autocorrelation functions.
Further details can be found in [Therrien:1992, Section 9.1, page 506]. The interested reader may
wish to explore derivations of said equations.
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5.5 Estimation of AR Model Parameters from Data

The Yule-Walker equations introduced earlier in this handout provide an approach for finding the
model parameters for an AR process. Although a valid technique, there are two implicit assumptions
that limit its use for practical problems. These assumptions are:

• That the order, P , of the model is known.

• That the correlation function, rxx[`], is known.

If these two conditions are met then, using the Yule-Walker equations, the model parameters, ak, can
be found exactly. Unfortunately, in most practical situations, neither of these conditions is met.

From a theoretical perspective, the first assumption that the model order is known is less of an issue
than the second assumption. This is since if a larger model order than the true model order is chosen,
then the excess parameters will theoretically be zero. In practice, choosing the models order is not that
straightforward, and there are numerous methods for model order estimation. Model order selection
criteria include names such as final prediction error (FPE), Akaike’s information criterion (AIC),
minimum description length (MDL), Parzen’s criterion autoregressive transfer function (CAT) and
B-Information criterion (BIC). There is not time in this course to discuss these techniques, although
there are plenty of tutorial papers in the literature, as well as being covered by many text books.

The second assumption leads to both theoretical and practical problems since, if the correlation
function is not known, it must be estimated from the data. This brings up the following questions:

1. If the correlation function is estimated, how good is the resulting estimate for the model
parameters, in a statistical sense?

2. Why estimate the correlation function at all when it is the model parameters that need to be
estimated?

3. What is the best procedure for this problem?

5.5.1 LS AR parameter estimation

Suppose that a particular realisation of a process that is to be modelled as an AR process is given. It
is possible to estimate the correlation function as a time-average from the realisation, assuming that
the process is time-ergodic, and then use these estimates in the Yule-Walker equations. The method
described in this chapter effectively estimates the AR parameters in this way, although the problem is
not formulated as such. Two common data-oriented methods, known as the autocorrelation method
and the covariance method, are presented in this section and the next section. A description of these
methods begins with the autocorrelation method.

Suppose linear prediction is used to model a particular realisation of a random process as accurately
as possible. Thus, suppose a linear predictor forms an estimate, or prediction, x̂[n], of the present
value of a stochastic process x[n] from a linear combination of the past P samples; that is:

x̂[n] = −
P∑
k=1

ak x[n− k] (M:1.4.1)
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Then the prediction error is given by:

e[n] = x[n]− x̂[n] = x[n] +
P∑
k=1

ak x[n− k] (M:4.2.50)

Note that this is different to the WGN sequence that drives a linear system to generate an
autoregressive random process; the difference is that here, the prediction error is the difference
between the actual value and the predicted value of a particular realisation of a random process.

Writing Equation M:4.2.50 for n ∈ {nI , . . . , nF}, in matrix-vector form:
e[nI ]

e[nI + 1]
...

e[nF ]


︸ ︷︷ ︸

e

=


x[nI ]

x[nI + 1]
...

x[nF ]


︸ ︷︷ ︸

x

+


x[nI − 1] x[nI − 2] · · · x[nI − P ]
x[nI ] x[nI − 1] · · · x[nI − P + 1]

...
... · · · ...

x[nF − 1] x[nF − 2] · · · x[nF − P ]


︸ ︷︷ ︸

X


a1

a2
...
aP


︸ ︷︷ ︸

a

(5.65)

which can hence be written as:
e = x + Xa (5.66)

The parameters a can now be estimated using any of the parameter estimation techniques discussed
above. Here, the least-squares estimate (LSE) is used. Thus, noting that:

J(a) =

nF∑
n=nI

e2[n] = eTe (5.67)

= (x + Xa)T (x + Xa) (5.68)

= xTx + 2xTXa + aTXTXa (5.69)

where it has been noted that aTXTx = xTXa. Hence, differentiating with respect to (w. r. t.) a and
setting to zero gives the LSE, â. Noting that for real vector a,

∂

∂a

(
bT a

)
= b and

∂

∂a

(
aT Ba

)
=
(
B + BT

)
a (5.70)

The reader is invited to derive these results. Hence,

∂J(a)

∂a
= 2XT x + 2XT Xa (5.71)

where it has been noted that the matrix XTX is symmetric. Setting this to zero, and rearranging
noting that XTX is of full rank, gives the LSE:

aLSE = −
(
XTX

)−1
XT x (5.72)

Defining Np = nF − nI + 1, the least-squares (LS) error is then given by:

J (aLSE) = xT
(
INp −X

(
XTX

)−1
XT
)
x (5.73)

= xT (x + XaLSE) (5.74)

Observe the similarity of these results with those of the linear LS formulation. In fact, this derivation
is identical to the LS formulation with the matrix H replaced by X! There are two different methods
which result from different choices of nI and nF . These are called the autocorrelation method
and the covariance method. However, as mentioned in [Therrien:1991], these terms do not bear
any relation to the statistical meanings of these terms, and so they should not be confused with the
statistical definitions. The names for these methods are unfortunate, but have found a niche in signal
processing, and are unlikely to be changed.
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5.5.2 Autocorrelation Method

In the autocorrelation method, the end points are chosen as nI = 0 and nF = N + P − 1. Thus,
the AR filter model runs over the entire length of the data, predicting some of the early points from
zero valued samples, and predicting P additional zero values at the end. Since this method uses zeros
for the data outside of the given interval, it can be thought of as applying a rectangular window to the
data. For this method, the (N + P )× P data matrix X has the specific structure:

X =



0 0 · · · 0
x[0] 0 · · · 0
x[1] x[0] · · · 0

...
... . . . ...

x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
...

...
x[N − 1] x[N − 2] · · · x[N − P ]

0 x[N − 1] · · · x[N − P + 1]
...

... . . . ...
0 0 · · · x[N − 1]



(T:9.112)

When formed into the product XT X, this data matrix produces a Toeplitz correlation matrix;
consequently, the normal equations may be solved very efficiently, for example using the Levinson
recursion. Moreover, the matrix XT X is strictly positive definite, and thus a valid correlation matrix.

5.5.3 Covariance Method

An alternative method is to choose nI = P and nF = N − 1. With this method, no zeros are either
predicted, or used in the prediction. In other words, the limits are chosen so that the data that the AR
filter operates on always remain within the measured data; no window is applied. For this method,
the (N − P )× P data matrix has the specific form:

X =


x[P − 1] x[P − 2] · · · x[0]
x[P ] x[P − 1] · · · x[1]

...
... . . . ...

x[N − 2] x[N − 3] · · · x[N − P − 1]

 (T:9.113)

A variation of this method called the prewindowed covariance method chooses nI = 0 and nF =
N−1, and results in a data matrix that consists of the firstN rows of Equation T:9.112. Moreover, the
postwindowed covariance method chooses nI = P and nF = N + P − 1. In the autocorrelation
method, the data is said to be both prewindowed and postwindowed.

With the covariance method, or the prewindowed covariance method, the resulting correlation matrix
is positive semidefinite, but it is not Toeplitz. Thus, the Yule-Walker equations are more difficult to
solve. Moreover, the resulting AR model may not be stable, since the poles corresponding to the
estimated parameters may not lie within the unit circle. Nevertheless, unstable cases rarely seem
to occur in practice, and the covariance method is often preferred because it makes use of only the
measured data. This avoids any bias in the estimation of the AR filter coefficients. In addition,
with some mild conditions, the method can be shown to be equivalent to the maximum-likelihood
estimate (MLE).
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Example 5.2 ( [Therrien:1991, Example 9.6, Page 539]). It is desired to estimate the parameters
of a second-order AR model for the sequence {x[n]}4

0 = {1, −2, 3, −4, 5} by using both the
autocorrelation and covariance methods.

SOLUTION. Applying both methods as requested:

Autocorrelation Method The data matrix can be obtained from Equation T:9.112, and is given by:

X =



0 0
x[0] 0
x[1] x[0]
x[2] x[1]
x[3] x[2]
x[4] x[3]

0 x[4]


=



0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(5.75)

Hence, it can be shown that:

XTX =

[
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


0 0
1 0
−2 1
3 −2
−4 3
5 −4
0 5


(5.76)

=

[
55 −40
−40 55

]
(5.77)

Note that the matrix is Toeplitz. The least squares Yule-Walker equations can then be
found by solving:

aLSE = −
(
XTX

)−1
XT x (5.78)

= −
[

55 −40
−40 55

]−1 [
0 1 −2 3 −4 5 0
0 0 1 −2 3 −4 5

]


1
−2
3
−4
5
0
0


(5.79)

Solving these equations gives:

aLSE =

[
232
285
34
285

]
≈
[
0.8140
0.1193

]
(5.80)

The LS error is then given by:

J (aLSE) = xT (x + XaLSE) = 25.54 (5.81)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

25.54

7
= 3.64 (5.82)
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Covariance Method Next, apply the covariance method to the same problem. Since the AR filter
stays entirely within the data, the error is evaluated from n = 2 to n = 4. The data
matrix is therefore:

X =

x[1] x[0]
x[2] x[1]
x[3] x[2]

 =

−2 1
3 −2
−4 3

 (5.83)

Notice that, in this data matrix, not all the the data has been used, since x[4] does not
appear. Hence, the correlation matrix is given by:

XT X =

[
−2 3 −4
1 −2 3

]−2 1
3 −2
−4 3

 =

[
29 −20
−20 14

]
(5.84)

This matrix is not Toeplitz. The LSE estimate is therefore:

aLSE = −
(
XTX

)−1
XT x (5.85)

= −
[

29 −20
−20 14

]−1 [−2 3 −4
1 −2 3

] 3
−4
5

 =

[
2
1

]
(5.86)

Moreover, the LS error is then given by:

J (aLSE) = xT (x + XaLSE) = 0 (5.87)

Hence, the prediction error variance is estimated as:

σ2
e =

J (aLSE)

N
=

0

3
= 0 (5.88)

Evidently, this filter predicts the data perfectly. Indeed, if the prediction error, e[n], is
computed over the chosen range n = 2 to n = 4, it is found to be zero at every point.
The price to be paid for this perfect prediction, however, is an unstable AR model.
The transfer function for this AR model can be written as:

H(z) =
1

1 + 2z−1 + z−2
=

1

(1 + z−1)2
(5.89)
�

which has a double pole at z = −1. Therefore, a bounded-input into this filter can
potentially produce an unbounded-output. Further, any errors in computation of the
model coefficients can easily put a pole outside of the unit circle.
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