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 Speech separation and cocktail party problem as an example 
 Convolutive source separation and frequency domain 

methods 
 Computational auditory scene analysis and ideal binary mask 
 Convolutive ICA (in frequency domain) and binary masking 
 Ideal ratio mask and kurtosis ratio 
 Soft time-frequency mask: A model based approach for stereo 

source separation (determined and underdetermined) 
 Sparse representation and dictionary learning for source 

separation 
 Deep learning for source separation 
 Underwater acoustic source localisation/separation 
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Speech separation problem 

 In a natural environment, target speech is usually corrupted by 
acoustic interference, creating a speech segregation problem 

l Also known as cocktail-party problem (Cherry’53) or ball-room 
problem (Helmholtz, 1863) 

 Speech segregation is critical for many applications, such as 
automatic speech recognition and hearing prosthesis 

  Potential techniques for the speech separation problem 

 Beamforming 

 Blind source separation 

 Speech enhancement 

 Compuational auditory scene analysis 

 “No machine has yet been constructed to do just that [solving the 
cocktail party problem].” (Cherry’57) 
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Blind source separation & 

independent component analysis 
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Scale and permutation 

ambiguities: an example 
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Blind source separation for instantaneous mixtures with the JADE algorithm 
(SNR=30dB): (a)(b) original sources; (c)(d) mixtures; (e)(f) separated sources 
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Convolutive BSS:  

mathematical model 
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Transform convolutive BSS  

into the frequency domain 
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Convolutive 

BSS problem 

Multiple complex-valued 

instantaneous BSS problems  



De-mixing operation 

9 

t.independen

mutually  become t),(Yt),...,,(Y

 thatsuch determined )( in Parameters

N1 

W

  ),()(),( tt XWY

NT

N

MN

CtYtYt

C



 

)],(),...,,([),(

)(

1 



Y

Wwhere  

L. Parra and C. Spence, “Convolutive blind source separation of nonstationary 
sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320–327, May 2000. 



Joint diagonalisation criterion 
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Exploiting the non-stationarity of signals measured by 

the cross-spectrum of the output signals, 
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Frequency domain BSS &  

permutation problem 
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Solutions: 
• Beamforming 
• Spectral envelope correlation 
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Constrained convolutive ICA: 

penalty function approach 

 

 
• Introducing additional constraints could further improve the separation 

performance, such as unitary and non-unitary constraints to prevent the 
degenerate trivial solutions to the unmixing matrix, as shown in Wang et 
al. (2005). 

• Penalty function can be used to convert the constrained optimisation 
problem into an unconstrained one. 



Sound demonstration 

W. Wang, S. Sanei, and J. A. Chambers, Penalty function based joint diagonalization approach 

for convolutive blind separation of nonstationary sources, in IEEE Trans. Signal Processing, vol. 

53, no. 5, pp. 1654-1669, May 2005. 

A man speaking 

with TV on 

Two speaking 

sentences artificially 

mixed together 

Sources Mixtures Parra&Spence Our approach 
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Auditory scene analysis 

• Listeners parse the complex mixture of sounds arriving at 

the ears in order to form a mental representation of each 

sound source  

• This perceptual process is called auditory scene analysis 

(Bregman’90)  

• Two conceptual processes of auditory scene analysis 

(ASA): 

– Segmentation. Decompose the acoustic mixture into 

sensory elements (segments) 

– Grouping. Combine segments into groups, so that 

segments in the same group likely originate from the 

same sound source 
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Computational auditory  

scene analysis (CASA) 

• Computational auditory scene analysis (CASA) 
approaches sound separation based on ASA principles 

– Feature based approaches 

– Model based approaches 

• CASA has made significant advances in speech 
separation using monaural and binaural analysis 

• CASA challenges 

– Reliable pitch tracking of noisy speech 

– Unvoiced speech 

– Room reverberation 
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Ideal binary mask (IBM) 

• Auditory masking phenomenon: In a narrowband, a 
stronger signal masks a weaker one 

• Motivated by the auditory masking phenomenon, the 
ideal binary mask has been suggested as a main goal 
of CASA (D.L. Wang’05) 

• The definition of the ideal binary mask 

 

 

 

– s(t, f ): Target energy in unit (t, f ) 

– n(t, f ): Noise energy 

– θ: A local SNR criterion in dB, which is typically 
chosen to be 0 dB 

– Optimality: Under certain conditions the ideal binary 
mask with θ = 0 dB is the optimal binary mask from 
the perspective of SNR gain 

– It does not actually separate the mixture! 
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IBM illustration (after DeLiang Wang) 
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  Recent psychophysical tests show that the ideal binary mask results in dramatic 

speech intelligibility improvements (Brungart et al.’06; Li & Loizou’08) 



ICA versus IBM 

• ICA: Excellent performance if (no or low ) 
reverberation or noise is present in the mixture. 
For highly reverberant and noisy mixtures, the 
performance is limited. 

 

• IBM: Excellent performance if both target and 
background interference are known. Otherwise, 
the IBM has to be estimated from the acoustic 
mixture, which however remains an open 
challenging task!  
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A multistage approach  

fusing ICA and IBM 
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Musical noise 
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Example of musical noise generation: the input signal on the left plot 
is corrupted by white Gaussian noise, and the output signal on the 
right plot is obtained by applying a source separation algorithm to the 
input. Figure due to Saruwatari and Miyazaki (2014) 

H. Saruwatari and R. Miyazaki, “Statistical analysis and evaluation of blind speech extraction 
algorithms,”  in G. Naik and W. Wang (eds), Blind Source Separation: Advances in Theory, 
Algorithms and Applications, Springer, May, 2014 



Kurtosis ratio 
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H. Saruwatari and R. Miyazaki, “Statistical analysis and evaluation of blind speech extraction 
algorithms,”  in G. Naik and W. Wang (eds), Blind Source Separation: Advances in Theory, 
Algorithms and Applications, Springer, May, 2014 

Relation between kurtosis ratio and human perceptual score of degree 
of musical noise generation. Figure due to Saruwatari et al. (2014). 



Cepstral smoothing  
to mitigate musical noise 
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Converting mask from spectral domain to cepstral domain: 

Smoothing with various smoothing level to different frequency bands 
(low smoothing to envelop and pitch band to maintain its structure, 
more smoothing to other band to remove the artefacts): 

Transform back to the spectral domain: 



Sources and mixtures 
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T60 = 100ms 
Simulated using 
room image 
model  



Output of convolutive ICA and IBM 
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Output of cepstral smoothing 
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Sound demos:  

simulated reverberant mixtures  
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Speakers 

Mixtures 

RT60=30ms 

Mixtures 

RT60=150ms 
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Sound demos:  

real reverberant mixtures  
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Sensor signals 

Conv. ICA Conv. ICA 

+IBM 

Conv. ICA 

+IBM+Cepstral 

Smoothing 

Separated source signals 

T. Jan, W. Wang, and D.L. Wang, "A Multistage Approach to Blind Separation of 
Convolutive Speech Mixtures," Speech Communication, vol. 53, pp. 524-539, 2011. 



Limitation of the IBM 

28 

C. Hummersone, T. Stokes, and T. Brookes, “On the ideal ratio mask as the goal of 
computational auditory scene analysis,” in Blind Source Separation: Advances in Theory, 
Algorithms and Applications, G. Naik, and W. Wang (ed). , Springer, May, 2014. 

• Processing artefacts such as musical noise appears to have a 
deleterious effect on the audio quality of the separated output.  

• Not problematic for applications where the output is not 
auditioned (such as ASR or databasing tasks), but may be 
problematic for applications (such as speech enhancement or 
auditory scene reconstruction) where the audio quality is 
important. 

• Recent tests by Hummersone et al. (2014) show that even 
though the BM gives higher SNR to many other BSS techniques, 
it gives poorer overall perceptual score (OPS) as compared with 
these BSS techniques.  



Ideal ratio mask (IRM) 
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• Flexible: any source can be designated as the target, and the sum 
of remaining sources is typically designated as the interference.  

• Well-defined: the interference component may constitute any 
number of sources.  

• Optimality: closely related to the ideal Wiener filter, which is the 
optimal linear filter with respect to MMSE.  

• Psychoacoustic principles: IRM is perhaps a better approximation 
of auditory masking and ASA principles than the IBM. 

In terms of Hummersone et al. (2014), IRM has the following properties: 

S. Srinivasan, N. Roman, and D. Wang, “Binary and ratio time-frequency masks for robust 
speech recognition,” Speech Commun., vol. 48, no. 11, pp. 1486-1501, 2006.  



IRM v.s. IBM 
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Visual analogies of disjoint allocation and duplex perception when objects overlap (left), the 
disjoint allocation case (middle) is analogous to IBM, while the duplex perception case is 
analogous to the IRM (right). Plots taken from Hummersone et al. (2014). 



IRM v.s. IBM 
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Examples of ideal (top row) and “estimated” masks (middle and bottom rows, with error 
puturbations). Binary masks (left column) and ratio masks (right column). Plots due to 
Hummersone et al. (2014). 



Soft time-frequency mask:  
a model based approach for binaural source separation 
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 Information considered: mixing vector (MV), binaural cues 
(interaural level difference (ILD), interaural phase difference 
(IPD)) 

 Model and algorithm used:  
• For each time-frequency point, the cues are modelled as 

Gaussian distributed, and a mixture of Gaussians are 
therefore used to model the joint distribution of the cues.  

• The model parameters estimated and refined using the 
expectation maximisation (EM) algorithm  

 Soft mask generation: the probability that each source present 
at each time-frequency point of the mixtures is therefore 
estimated by the EM which leads to a soft mask that can be 
used to separate the sources. 



Soft mask 
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A. Alinaghi, P. Jackson, Q. Liu, and W. Wang, "Joint Mixing Vector and Binaural Model Based Stereo 
Source Separation", IEEE Transactions on Audio Speech and Language Processing, 2014. (in press) 

 

 

  

 

 

 

 

 



Signal model 
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Sparsifying the mixtures with a time-
frequency transform, such as STFT 

Assuming the sparsity, each time-frequency 
point will be dominated by one source 

where 



Estimating cues from mixtures:  

mixing vector 

35 

H. Sawada, S. Araki, and S. Makino, “Underdetermined convolutive blind source separation via frequency 
bin-wise clustering and permutation alignment,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 3, 
pp. 516–527, March 2011. 



Estimating cues from mixtures: 

ILD/IPD cues 
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M. I. Mandel, R. J. Weiss, and D. P. W. Ellis, “Model-based expectationmaximization source separation and 
localization,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 382–394, February 2010. 



GMM model 
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Log-likelihood of the observations: 

Model parameters: 



Parameter estimation via 

expectation maximization  
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 The E-step calculates the expected value of the log-likelihood 
function with respect to the observations of the IPD, ILD, and MV, 
under the current estimates of the parameters.  
 
o In other words, given the estimated parameters     and the 

observations, and assuming the statistical independence of the 
cues, the probability of each source occupying at each time-
frequency point of the mixture is calculated: 



Parameter estimation via 

expectation maximization  
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 The M-step calculates the model parameters (mean and variance): 

ILD: IPD: 

MV: 

Weights: 



2D representation of the  

observation vectors 
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A unit cylinder wall is used to visualise the observation vectors after 
normalisation and whitening, in frequency channel 3.85 kHz, for two 
different sources that are close to each other. 



Unwrapped 2D plane 
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MV v.s. binaural cues:  

closely spaced sources 
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Scatter plot and probability contours (dashed lines) for sources in room A at 0o in 
circles, and 10o in triangles with decision boundaries by solid lines based on mixing 
vectors and binaural cues in the frequency band of 3.85 kHz. 



MV v.s. binaural cues:  

sources placed far from each other 
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Scatter plot and probability contours (dashed lines) for sources in room A at 0o in circles, and 
80o in triangles with decision boundaries by solid lines based on mixing vectors and binaural 
cues in the frequency band of 3.85 kHz. 



MV v.s. binaural cues:  

KL divergence measure 

44 
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MV v.s. binaural cues:  
KL divergence difference (KLMV – KLBinaural) 

The difference between the KL divergences obtained respectively from the MV and the binaural 
models. The KL divergence between the two source models is calculated based on binaural 
cues and MV cues in room A (RT=0.32s), where one source is placed at 0o and the other at 
10o (left plot), and 80o (right plot) respectively. 



MV v.s. binaural cues: 
High reverberations 
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KL divergence between the clean and noisy signal models for three different cues 
and two types of noise averaged over all frequencies. 



Sound demos 
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Sparse representation based  

source separation 
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Reformulation: 
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 The above problem can be interpreted as a signal recovery 
problem in compressed sensing, where M is a measurement 
matrix, and b is a compressed vector of samples in f.        is a 
diagonal matrix whose elements are all equal to       .  

 A sparse representation may be employed for f, such as:  
Φcf 

       is a transform dictionary, and c is the weighting coefficients 
corresponding to the dictionary atoms.  
Φ

ij

ija

Source separation formulated as a   

compressed sensing problem 



Reformulation: 

 According to compressed sensing, if         satisfies the restricted 
isometry property (RIP), and also c is sparse, the signal f can be 
recovered from b using an optimisation process. 

 This indicates that source estimation in the underdetermined 
problem can be achieved by computing c using signal recovery 
algorithms in compressed sensing, such as:  

M

cMb  MΦM and 

 Basis pursuit (BP)  (Chen et al., 1999) 
 Matching pursuit (MP) (Mallat and Zhang, 1993) 
 Orthogonal matching pursuit (OMP) (Pati et al., 1993) 
 L1 norm least squares algorithm (L1LS) (Kim et al., 2007) 
 Subspace pursuit (SP) (Dai et al., 2009) 
 … 

Source separation formulated as a   

compressed sensing problem (cont.) 



 Sparse decompositions of a signal highly rely on the 
fit between the dictionary and the data, leading to 
the important problem of dictionary design: 
  Predefined transform, such as DCT, DFT, etc. 
  Learned dictionary (via a training process), such 

as MOD, K-SVD, GAD, and SimCO. 
o  Learning dictionary      from training data Φ

Dictionary learning for  

sparse representations 



Problem: 
2

,
min

F
ΦCX

CΦ


:nmX

:dmΦ

:ndC Sparse coefficients 

An overcomplete dictionary  

Training data 

Applications: 

 Signal denoising 
 Source separation 
 Speaker tracking 

Dictionary learning 



Sparse coding 

(Fix    , update C) 

Dictionary  update 

(update      ) 

 MOD and its extensions 
(Engan, 1999, 2007 ) 

 K-SVD and its extensions 
(Aharon and Elad, 2006, 
2009) 

 GAD (Maria and Plumbley, 
2010) 

 … 

Optimisation process: Representative algorithms: 

Optimisation process in  

dictionary learning 

Φ

Φ



Separation system for the case of M = 2 and N =4: 

Dictionary learning for  

underdetermined source separation 



T. Xu, W. Wang, and W. Dai, Compressed sensing with adaptive dictionary learning for 
underdetermined blind speech separation, Speech Communication, vol. 55, pp. 432-450, 2013. 

s1 s2 s3 s4 

es1 es2 es3 es4 

x1 x2 

Sound demo for underdetermined  

source separation 



Deep learning methods for stereo 

source separation 

Y. Yu, W. Wang, and P. Han, Localisation based stereo speech source separation based on 
probabilistic time-frequency masking  and deep neural network, EURASIP Journal on Audio 
Speech and Language Processing, Feb, 2016. 



Deep learning methods for stereo 

source separation 



Deep learning methods for stereo 

source separation 



Deep learning methods for stereo 

source separation 



Sound demos 

60 

left 

right 

es1 

es2 

2-source case: 

Original Room A: 

Room D: 

left 

right 

es1 

es2 

Sources at -15, 30 degrees Sources at 55, 30 degrees 

left 

right 

es1 

es2 

left 

right 

es1 

es2 



Convolutive source separation for 

underwater acoustic sources 

61 

• Separation  and de-noising of underwater acoustic signals 
• Applications include tracking surface and underwater  acoustic 

sources, underwater communications, geology and biology 
• Measurements using hydrophone arrays 

Hydrophone array 

Acoustic sources 



Sequential sparse Bayesian methods    

• Extends the classic Bayesian approach to a sequential 

maximum a posterior (MAP) estimation of the signal over time. 

• Sparsity constraint is enforced with a Laplacian like prior at 

each time step. 

• An adaptive LASSO cost function  is minimised at each time 

step 

 

C. Mecklenbruker, P. Gerstoft, A. Panahi, M. Viberg, “Sequential Bayesian Sparse Signal 

Reconstruction using Array Data,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 

6344 - 6354, 2013. 



An example for underwater source 



Simulation results 

M. Barnard and W. Wang, "Adaptive Bayesian sparse representation for underwater acoustic signal 
denoising", in Proc. 2nd IET International Conference on Intelligent Signal Processing (ISP 2015), 
London, UK, December 1-2, 2015. 



Summary & future work 

65 

We have covered the following: 
 
 Concept of convolutive source separation 
 Methods for performing convolutive/underdetermined source 

separation, such as 
• Convolutive ICA and frequency domain ICA 

(permutation/scaling ambiguities)  
• Time-frequency masking (CASA, IBM, IRM, etc) 
• Integrating ICA/IBM 
• Musical noise problem & mitigation 
• Model-based convolutive stereo source separation 

(ILD/IPD, MV, etc.) 
• Deep learning based methods 
• Sparse representation techniques 

 Underwater acoustic source localisation/separation 
 Future work include improving source separation performance 

in highly noisy environment, and/or missing data scenarios. 
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… and finally 
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