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Blank Page

This slide is intentionally left blank, in order to accommodate the
processing of acronyms in LATEX.
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Obtaining the Latest Handouts
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Source localisation and blind source separation (BSS). An
example of topics using statistical signal processing.
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Obtaining the Latest Handouts

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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Obtaining the Latest Handouts

This research tutorial is intended to cover a wide range of
aspects which cover the fundamentals of statistical signal
processing.

This tutorial is being continually updated, and feedback is
welcomed. The hardcopy documents published or online may
differ slightly to the slides presented on the day.

The latest version of this document can be obtained from the
author, Dr James R. Hopgood, by emailing him at:

mailto:james.hopgood@ed.ac.uk

(Update: The notes are no longer online due to the desire to
maintain copyright control on the document.)

Extended thanks to the many MSc students over the past 14
years who have helped improve these documents.

mailto:james.hopgood@ed.ac.uk
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Module Abstract

This topic is covered in two parts, which correspond to the two
related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing.
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Module Abstract

This topic is covered in two parts, which correspond to the two
related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing.

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.
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Module Abstract

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.

Module investigates relevant statistical properties, how they
are estimated from real signals, and how they are used.
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Introduction and Overview
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Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
the fulfillment of human needs and aspirations.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to have:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides
the foundation for further study, research, and application
to new problems.
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;



Aims and Objectives

•Obtaining the Latest

Handouts
•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

- p. 8/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;

8. an application investigating the estimation of sinusoids in
noise, outperforming the Fourier transform.
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Passive and Active Target Localisation

A number of signal processing problems rely on knowledge of
the desired source position:

1. Tracking methods and target intent inference.

2. Estimating mobile sensor node geometry.

3. Look-direction in beamforming techniques (for example in
speech enhancement).

4. Camera steering for audio-visual BSS (including Robot
Audition).

5. Speech diarisation.

Passive localisation is particularly challenging.
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most passive target localisation (PTL) techniques rely on the
fact that an impinging wavefront reaches one sensor before it
reaches another.
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Passive Target Localisation Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most PTL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Most PTL algorithms are designed assuming there is no
multipath or reverberation present, the free-field assumption.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;
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Source Localization Strategies

Existing source localisation methods can loosely be divided into:

1. those based on maximising the steered response power (SRP)
of a beamformer:

location estimate derived directly from a filtered, weighted,
and sum version of the signal data;

2. techniques adopting high-resolution spectral estimation
concepts:

any localisation scheme relying upon an application of the
signal correlation matrix;

3. approaches employing TDOA information:

source locations calculated from a set of TDOA estimates
measured across various combinations of sensors.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N nodes located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the sensor node at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of the impinging wavefront.
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Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.
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Ideal Free-field Model

In an anechoic free-field environment, the signal from source
k, denoted sk(t), propagates to the i-th sensor at time t as:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise.

Note that, in the frequency domain, this expression becomes:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source and noise sources at other sensors.

The TDOA between the i-th and j-th sensor is given by:

τijk = τik − τjk = T (mi, mj , xk)
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
adaptive eigenvalue decomposition (AED) algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
sensor.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of PTL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.



Aims and Objectives

Signal Processing

•Passive and Active Target

Localisation
•Passive Target Localisation

Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

• Indirect TDOA-based

Methods
•Hyperbolic Least Squares

Error Function
•TDOA estimation methods

•GCC TDOA estimation

•GCC Processors

•Direct Localisation

Methods
•Steered Response Power

Function
•Conclusions

•Probability, Random

Variables, and Estimation

Theory

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo - p. 16/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Hyperbolic Least Squares Error Function

If a TDOA is estimated between two sensor nodes i and j,
then the error between this and modelled TDOA is

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

ǫij(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

where

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum least-squares estimate (LSE) does not
possess a closed-form solution.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when multipath is high;

focus of current research is on combating the effect of
multipath.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the adaptive eigenvalue decomposition (AED)
algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a multipath rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the channel.
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the cross-power spectral density (CPSD) is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]
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GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]

For the free-field model, it can be shown that:

∠Pxixj
(ω) = −jω T (mi, mj , xk)
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GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors
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Normal cross-correlation and GCC-phase
transform (PHAT) (GCC-PHAT) functions for a frame of

speech.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The steered beamformer (SBF) or SRP function is a measure of
correlation across all pairs of microphone signals for a set of
relative delays that arise from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

E [S (x̂)] =

N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk]

≡
N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conclusions

To fully appreciate the algorithms in PTL, we need:

1. Signal analysis in time and frequency domain.

2. Least Squares Estimation Theory.

3. Expectations and frequency-domain statistical analysis.

4. Correlation and power-spectral density theory.

5. And, of course, all the theory to explain the above!
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Introduction

How many water taxis are there in Venice?
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Introduction

How many water taxis are there in Venice?

How does your answer change when you see more taxis?
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Introduction

The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

By considering fundamentals such as the probability of
individual events, we can develop a probabilistic framework
for analysing signals.

It is observed that certain averages approach a constant value
as the number of observations increases; and that this value
remains the same if the averages are evaluated over any
sub-sequence specified before the experiment is performed.
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Introduction

If an experiment is performed n times, and the event A
occurs nA times, then with a high degree of certainty, the
relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very
imprecise.
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Classical Definition of Probability

For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It
is given by the ratio:

Pr (A) =
NA

N

where:

N is the total number of outcomes,

and NA is the total number of outcomes that are favourable to
the event A, provided that all outcomes are equally probable.
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Bertrand’s Paradox

Consider a circle C of radius r; what is the probability p that the
length ℓ of a randomly selected cord AB is greater than the

length, r
√
3, of the inscribed equilateral triangle?

r

A

B

Circle C

l

r/2

r

Bertrand’s paradox, problem definition.
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Bertrand’s Paradox

A

B

M

Different selection methods.

1. In the random midpoints method, a cord is selected by
choosing a point M anywhere in the full circle, and two
end-points A and B on the circumference of the circle, such
that the resulting chord AB through these chosen points has
M as its midpoint.

p =
π
(
r
2

)2

πr2
=

1

4
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Bertrand’s Paradox

A

B

M

A

BD

E

Different selection methods.

1. In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

p =
2πr
3

2πr
=

1

3
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Bertrand’s Paradox

A

B

M

A

BD

E

A B
R

Different selection methods.

1. Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

p =
r

2r
=

1

2

There are thus three different but reasonable solutions to the
same problem. Which one is valid?
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other
measure of infinity for determining the classical probability
ratio is needed, such as length, or area. This leads to
difficulties, as discussed in Bertrand’s paradox.
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Axiomatic Definition

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0



Aims and Objectives

Signal Processing

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory
- p. 29/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Axiomatic Definition

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then:

Pr (S) = 1
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Axiomatic Definition

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then:

Pr (S) = 1

3. If the events A and B are mutually exclusive, then:

Pr (A ∪B) = Pr (A) + Pr (B)



Aims and Objectives

Signal Processing

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory
- p. 29/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Axiomatic Definition

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.
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Axiomatic Definition

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

However, a local statistician lends them a horse so that they have
eighteen. The childrren then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.
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Axiomatic Definition

Example (Farmer and his Will). A farmer leaves a will saying that
they wish for their first child to get half of his property, the
second child to get a third, and the third child to get a ninth. As
seventeen horses have been left, the children are distressed
because they don’t want to cut any horses up.

However, a local statistician lends them a horse so that they have
eighteen. The childrren then take nine, six, and two horses,
respectively. This adds up to seventeen, so they give the
statistician the horse back, and everyone is happy.

What is wrong with this story?
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Set Theory

Unions and Intersections are commutative, associative, and
distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC
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Set Theory

Unions and Intersections are commutative, associative, and
distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S not in A:

A ∪A = S and A ∩A ≡ AA = {∅}
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Set Theory

Unions and Intersections are commutative, associative, and
distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S not in A:

A ∪A = S and A ∩A ≡ AA = {∅}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equates to S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)

=
(
AB

)
∪
(
AC

)

= A ∪B ∪A ∪ C

⇒ A ∪BC = (A ∪ B) (A ∪ C)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then :

Pr
(
A
)
= 1− Pr (A)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then :

Pr
(
A
)
= 1− Pr (A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B)
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Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A ∪B and B as the union of two mutually
exclusive events.

First, note that

A ∪B =
(
A ∪A

)
(A ∪B) = A ∪

(
AB

)

and that since A
(
AB

)
=

(
AA

)
B = {∅}B = {∅}, then A and

AB are mutually exclusive events.

Second, note that:

B =
(
A ∪A

)
B = (AB) ∪

(
AB

)
�

and that (AB) ∩
(
AB

)
= AAB = {∅}B = {∅} and are

therefore mutually exclusive events.
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Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)

Eliminating Pr
(
AB

)
by subtracting these equations gives the

desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) �
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A)+Pr (B)−Pr (A ∪B) ≥ Pr (A)+Pr (B)−1 =
1

12
�

which is the case when the whole sample space is covered by
the two events. The second bound occurs since A ∩B ⊂ B and
similarly A ∩B ⊂ A, where ⊂ denotes subset. Therefore, it can
be deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to
the events {x ≤ xi}.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification, it suffices to assign probabilities to
the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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Conditional Probability

If an experiment is repeated n times, and the occurrences or
non-occurrences two events A and B are observed. Suppose that
only those outcomes for which B occurs are considered.



Aims and Objectives

Signal Processing

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory
- p. 33/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Conditional Probability

If an experiment is repeated n times, and the occurrences or
non-occurrences two events A and B are observed. Suppose that
only those outcomes for which B occurs are considered.

In this collection of trials, the proportion of times that A occurs,
given that B has occurred, is:

Pr
(
A
∣
∣B

)
≈ nAB

nB
=

nAB/n
nB/n

=
Pr (AB)

Pr (B)

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov
Axioms.
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Conditional Probability

Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or
female, and it is assumed that each is equally likely.
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Conditional Probability
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Handout 2
Scalar Random Variables
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Definition

R

Abstract
sample space, S

X( )z1

X( )z2

X( )z3 R

R

Outcome

z1=“Red”

Outcome

z2=“Green”

Outcome

z3=“Blue”

real number line

Physical
Experiment

Pr( )z1

Pr( )z2

Pr( )z3

x1=1

x2=2

x3=4

Green

Blue

Red

A graphical representation of a random variable for a more
specific example.
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Definition

A random variable (RV) X(ζ) is a mapping that assigns a real
number X ∈ (−∞, ∞) to every outcome ζ from an abstract
probability space.

1. the interval {X(ζ) ≤ x} is an event in the abstract probability
space for every x ∈ R;

2. Pr (X(ζ) = ∞) = 0 and Pr (X(ζ) = −∞) = 0.
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Definition

Example (Rolling die). Consider rolling a die, with six outcomes
{ζi, i ∈ {1, . . . , 6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X(ζ) is given by:

X(ζ1) = X(ζ3) = X(ζ5) = 0 and X(ζ2) = X(ζ4) = X(ζ6) = 1
⋊⋉
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X(ζ) ≤ x) is a function of
the set {X(ζ) ≤ x}, and therefore of the point x ∈ R.
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

The probability set function Pr (X(ζ) ≤ x) is a function of
the set {X(ζ) ≤ x}, and therefore of the point x ∈ R.

This probability is the cumulative distribution
function (cdf), FX (x) of a RV X(ζ), and is defined by:

FX (x) , Pr (X(ζ) ≤ x)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X(ζ) ≤ xr) = Pr (X(ζ) ≤ xr)− Pr (X(ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)
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Distribution functions

x

FX( )x

x1

Pr( )X�< x1

x2

Pr( )X�< x2

The cumulative distribution function.

It hence follows that the probability of being within an
interval (xℓ, xr] is given by:

Pr (xℓ < X(ζ) ≤ xr) = Pr (X(ζ) ≤ xr)− Pr (X(ζ) ≤ xℓ)

= FX (xr)− FX (xℓ)

For small intervals, it is clearly apparent that gradients are
important.
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Kolmogorov’s Axioms

The events {X ≤ x1} and {x1 < X ≤ x2} are mutually exclusive
events. Therefore, their union equals {x ≤ x2}, and thus:

Pr (X ≤ x1) + Pr (x1 < X ≤ x2) = Pr (X ≤ x2)
∫ x1

−∞
p (v) dv + Pr (x1 < X ≤ x2) =

∫ x2

−∞
p (v) dv

⇒ Pr (x1 < X ≤ x2) =

∫ x2

x1

p (v) dv

Moreover, it follows that Pr (−∞ < X ≤ ∞) = 1 and the
probability of the impossible event, Pr (X ≤ −∞) = 0. Hence,
the cdf satisfies the axiomatic definition of probability.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

•Definition

•Distribution functions

•Kolmogorov’s Axioms

•Density functions

•Properties: Distributions

and Densities
•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

- p. 38/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Density functions

The probability density function (pdf), fX (x) of a RV X(ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x)
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Density functions

The probability density function (pdf), fX (x) of a RV X(ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞
fX(v) dv
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Density functions

The probability density function (pdf), fX (x) of a RV X(ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X(ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞
fX(v) dv

For discrete-valued RV, use the pmf, pk, the probability that

X(ζ) takes on a value equal to xk: pk , Pr (X(ζ) = xk).
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Density functions

0a x

f xX( )

1-p
p

2

b c x

F xX( )

1-p

1

0a b c

A probability density function and its corresponding
cumulative distribution function for a RV which is a mixture

of continuous and discrete components.
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞
fX (x) dx = 1

Probability of arbitrary events:

Pr (x1 < X(ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx
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Common Continuous RVs

Uniform distribution

fX (x) =

{
1

b−a if a < x ≤ b,

0 otherwise

Normal distribution

fX (x) =
1

√

2πσ2
X

exp

[

−1

2

(
x− µX

σX

)2
]

, x ∈ R

Cauchy distribution

fX (x) =
β

π

1

(x− µX)2 + β2

The Cauchy random variable is symmetric around the value
x = µX , but its mean and variance do not exist.
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Common Continuous RVs

Gamma distribution

fX (x) =

{

0 if x < 0,
1

Γ(β)α
β xβ−1 e−αx if x ≥ 0,

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Gamma pdf

x

f X
(x

)
β = 2
β = 2.5
β = 3
β = 3.5
β = 4

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
Gamma cdf

x

F
X
(x

)

β = 2
β = 2.5
β = 3
β = 3.5
β = 4

The Gamma density and distribution functions, for the
case when α = 1 and for various values of β.
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Common Continuous RVs

Weibull distribution

fX (x) =

{

0 x < 0

αβxβ−1 e−αxβ

x ≥ 0

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Weilbull pdf

x

f X
(x

)
α = 0.5
α = 0.75
α = 1
α = 1.3
α = 1.5

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Weilbull cdf

x

F
X
(x

)

α = 0.5
α = 0.75
α = 1
α = 1.3
α = 1.5

The Weibull density and distribution functions, for the
case when α = 1, and for various values of the parameter
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X(ζ), which has pdf given by fX (x). What is fY (y)?

The mapping y = g(x), and the effect of the mapping on
intervals.
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X(ζ), which has pdf given by fX (x). What is fY (y)?

Y g X( ) ( ( ))z z=
X( )z Y( )z

f xX( ) f yY( )
?

The mapping y = g(x).

The mapping y = g(x), and the effect of the mapping on
intervals.
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Probability transformation rule

The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

fY (y) =
N∑

n=1

fX (xn)

|g′(xn)|
♦
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Probability transformation rule

The mapping y = g(x), and the effect of the mapping on
intervals.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

Then, if the Y (ζ) = g(X(ζ)), the pdf of Y (ζ) is given by:

fY (y) =

N∑

n=1

fX (xn)

|g′(xn)|
♦
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

�
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

Considering the transformation y = g(x) = ex, there is one root,
given by x = ln y. Therefore, the derivative of this expression is
g′(x) = ex = y.

Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

1

y
√
2π

e−
(ln y)2

2 �
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

f xX( )

m

Mean
- 1st order statistic
- Centre of mass

Variance
- 2nd order statistic
- “spread of the pdf”

Skewness
- 3rd order statistic
- Measure of asymmetry
- Difference in tails

Kurtosis
- 4th order statistic
- Measure of size

of tails

x

s
2

The four saliant or key features or statistics of the pdf.
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Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx
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Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx

If X(ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX (x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.
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Expectations

The expected or mean value of a function of a RV X(ζ) is:

E [X(ζ)] =

∫

R

x fX (x) dx

If X(ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX (x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.

Hence, for a discrete RV, the expected value is given by:

µx =

∫

R

x fX (x) dx =

∫

R

x
∑

k

pk δ(x− xk) dx =
∑

k

xk pk
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX (x) is an even function, then µX = 0. Note that since
fX (x) ≥ 0, then fX (x) cannot be an odd function.

If fX (x) is symmetrical about x = a, such that
fX (a− x) = fX (x+ a), then µX = a.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX (x) is an even function, then µX = 0. Note that since
fX (x) ≥ 0, then fX (x) cannot be an odd function.

If fX (x) is symmetrical about x = a, such that
fX (a− x) = fX (x+ a), then µX = a.

The expectation operator is linear:

E [αX(ζ) + β] = αµX + β
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX (x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX (x) is an even function, then µX = 0. Note that since
fX (x) ≥ 0, then fX (x) cannot be an odd function.

If fX (x) is symmetrical about x = a, such that
fX (a− x) = fX (x+ a), then µX = a.

The expectation operator is linear:

E [αX(ζ) + β] = αµX + β

If Y (ζ) = g{X(ζ)} is a RV obtained by transforming X(ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X(ζ)}] =
∫ ∞

−∞
g(x) fX (x) dx
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Moments

Recall that mean and variance can be defined as:

E [X(ζ)] = µX =

∫

R

x fX(x) dx

var [X(ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X(ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.
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Moments

Recall that mean and variance can be defined as:

E [X(ζ)] = µX =

∫

R

x fX(x) dx

var [X(ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X(ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X(ζ): the m-th moment of X(ζ) is given by:

r
(m)
X , E [Xm(ζ)] =

∫

R

xm fX(x) dx

Note, of course, that in general: E [Xm(ζ)] 6= E
m [X(ζ)].
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X(ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

Positive SkewNegative Skew

f xX( ) f xX( )

x x
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a
distribution. It is a normalised third-order central moment:

κ̃
(3)
X , E

[{
X(ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

The skewness is:

κ̃
(3)
X =







< 0 if the density leans or stretches out towards the left

0 if the density is symmetric about µX

> 0 if the density leans or stretches out towards the right
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X(ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X(ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3

This measure is relative with respect to a normal distribution,

which has the property γ
(4)
X = 3σ4

X , therefore having zero
kurtosis.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.

This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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Definition of Random Vectors

Abstract
sample space, S

X( )z1

=[ ]x ,y ,z1 1 1

T

Outcome

z1

Outcome

z2

Outcome

z3

Outcome

zk

real vector
space

Pr( )z1

Pr( )z2

Pr( )z3

Pr( )zk

x1

y1

z1

X( )z2

=[ ]x ,y ,z2 2 2

T

x2

y2

z2

X( )z3

=[ ]x ,y ,z3 3 3

T

x3

y3

z3

X( )zk

=[ ]x ,y ,zk k k

T

xk

yk

zk

Physical
Experiment

A graphical representation of a random vector.
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Generating WGN samples

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density
- p. 48/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X(ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .

Denote a specific value for a random vector as:

x =
[

x1 x2 · · · xN

]T

Then the notation X (ζ) ≤ x is equivalent to the event
{Xn(ζ) ≤ xn, n ∈ N}.
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Distribution and Density Functions

The joint cdf completely characterises a random vector:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf:

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN
FX (x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf:

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN
FX (x)

Hence, it follows:

FX (x) =

∫ x1

−∞
· · ·

∫ xN

−∞
fX (v) dvN · · · dv1 =

∫ x

−∞

fX (v) dv
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1

Probability of arbitrary events; note that

Pr (x1 < X (ζ) ≤ x2) =

∫ x2

x1

fX (v) dv 6= FX (x2)− FX (x1)
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the joint-cumulative distribution function, FZ (z).
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1

0

=
1

4
+

3

4
= 1
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The pdf is shown here:

−2

0

2

−2

0

2
0

0.5

1

1.5

2

x

PDF

y

f Z
(z

)

Region of support for pdf. �
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)�

Finally, if x > 1 or y > 1, the upper limit of integration for the
corresponding variable becomes equal to 1.
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. Hence, in summary, it follows:

FZ (z) =







0 x ≤ 0 or y ≤ 0
xy
4 (x+ 3y) 0 < x, y ≤ 1
x
4 (x+ 3) 0 < x ≤ 1, 1 < y
y
4 (1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y < ∞
�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The cdf is plotted here:
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A plot of the cumulative distribution function. �
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

k =









k1

k2
...

kM
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

Now define a M -dimensional random vector, Xk(ζ), that
contains the M random variables which are components of X (ζ)
and indexed by the elements of k. In other-words, if

k =









k1

k2
...

kM









then Xk(ζ) =









Xk1(ζ)

Xk2(ζ)
...

XkM
(ζ)
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X(ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. By definition:

fX (x) =

∫

R

fZ (z) dy

fY (y) =

∫

R

fZ (z) dx
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞
fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

FX (x) =







0 x ≤ 0
x
4 (x+ 3) 0 ≤ x ≤ 1

1 x > 1
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2 + 3y

)
0 ≤ y ≤ 1

0 otherwise

and

FY (y) =







0 y ≤ 0
y
4 (1 + 3y) 0 ≤ y ≤ 1

1 y > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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)
The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X(ζ).



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Generating WGN samples

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density
- p. 50/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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Y
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y

f Y
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Y
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Y
(y

)
The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).

The conditional pdf of Y(ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y(ζ), given the random vector X (ζ).

The conditional pdf of Y(ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)

If the random vectors X (ζ) and Y(ζ) are independent, then the
conditional pdf must be identical to the unconditional pdf:
fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)

Since fY (y) can be expressed as:

fY (y) =

∫

R

fXY (x, y) dx =

∫

R

fY|X (y | x) fX (x) dx

then it follows

fX|Y (x | y) = fY|X (y | x) fX (x)
∫

R
fY|X (y | x) fX (x) dx
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

However, it is important to understand that multiple RVs leads
to the notion of measuring their interaction or dependence.
This concept is useful in abstract, but also when dealing with
stochastic processes or time-series.
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN







Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).

If the Xi(ζ) and Xj(ζ) are orthogonal then their correlation
is zero:

rXiXj
= E

[
Xi(ζ)X

∗
j (ζ)

]
= 0, i 6= j
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Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN
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Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







The diagonal terms

γXiXi
, σ2

Xi
= E

[

|Xi(ζ)− µXi
|2
]

, i ∈ {1, . . . , N}

are the variances of each of the RVs, Xi(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).

It should also be noticed that the covariance and correlation
matrices are positive semidefinite; that is, they satisfy the
relations:

aH RXa ≥0

aH ΓXa ≥0

for any complex vector a.
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Statistical Description

Theorem (Positive semi-definiteness). PROOF. Consider the sum of
RVs:

Y (ζ) =
N∑

n=1

an Xn(ζ) = aT X(ζ) �

where X(ζ) =
[

X1(ζ) · · · XN (ζ)
]T

and a =
[

a1 · · · aN

]T

is a arbitrary vector of coefficients.
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Statistical Description

Theorem (Positive semi-definiteness). PROOF. Consider the sum of
RVs:

Y (ζ) =
N∑

n=1

an Xn(ζ) = aT X(ζ)

where X(ζ) =
[

X1(ζ) · · · XN (ζ)
]T

and a =
[

a1 · · · aN

]T

is a arbitrary vector of coefficients.

The variance of Y (ζ) must, by definition, be positive, as must its
second moment. Considering the second moment, then:

E
[
Y 2(ζ)

]
= E

[

aT X(ζ)X(ζ)
T
a
]

= aTE
[

X(ζ)X(ζ)T
]

a = aT RX a ≥ 0 �
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Statistical Description

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

0 1

2 3

]

⋊⋉
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Statistical Description

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

0 1

2 3

]

SOLUTION. This is not a valid correlation matrix as it is not
symmetric, which is a requirement of a valid correlation matrix.

In otherwords, RT
X 6= RX .
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Statistical Description

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

⋊⋉
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Statistical Description

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

SOLUTION. Writing out the product I = aTRXa gives:

I =
[

α β
]
[

1 2

2 1

][

α

β

]

=
[

α β
]
[

α+ 2β

2α+ β

]

= α (α+ 2β) + β (2α+ β)

= α2 + 4αβ + β2

︸ ︷︷ ︸

look to complete the square
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Statistical Description

Example (Valid correlation matrix). Determine whether the following
is a valid correlation matrix:

RX =

[

1 2

2 1

]

SOLUTION. Writing out the product I = aTRXa gives:

I = = α2 + 2αβ + β2

︸ ︷︷ ︸

complete the square

+2αβ

= (α+ β)
2

︸ ︷︷ ︸

always positive

+2αβ �

Noting the term 2αβ is not always positive, then selecting
α = −β, it follows that I = −2α2 < 0. Hence, RX is not
correlation matrix.
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Generating WGN samples

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density
- p. 53/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0

Note, however, that uncorrelatedness does not imply
independence, unless the RVs are jointly-Gaussian.
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y(ζ)− µY}H
]

= RXY − µXµH
Y
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y(ζ)− µY}H
]

= RXY − µXµH
Y

Uncorrelated if ΓXY = 0 ⇒ RXY = µXµH
Y .

Orthogonal if RXY = 0.
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y(ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N
♦
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y(ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N

Assuming M -real vector-roots of the equation y = g(x) by
{xm, m ∈ M},

y = g(x1) = · · · = g(xM )

then the joint-pdf of Y(ζ) in terms of (i. t. o.) the joint-pdf of
X (ζ)is:

fY (y) =
M∑

m=1

fX (xm)

|J(xm)| ♦

The Jacobian is defined in the notes, but is the usual definition!
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X(ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X(ζ)
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X(ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X(ζ)

The Jacobian is given by:

Jg(c) =

∣
∣
∣
∣
∣

cos θ −r sin θ

sin θ r cos θ

∣
∣
∣
∣
∣

−1

=
1

r

Thus, it follows that:

fR,Θ (r, θ) = rfXY (r cos θ, r sin θ)
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Generating WGN samples

It is often important to generate samples from a Gaussian
density, primarily for simulation studies.

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus
covering the range of real numbers. This is the product of y1
alone and y2 alone, and therefore each y is independent and
identically distributed (i. i. d.) according to the normal
distribution, as required.

Consequently, this transformation allows one to sample from a
uniform distribution in order to obtain samples that have the
same pdf as a Gaussian random variable.
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Generating WGN samples

It is often important to generate samples from a Gaussian
density, primarily for simulation studies.

Consider the transformation between two uniform random
variables given by,

fXk
(xk) = I0,1 (xk) , k = 1, 2

where IA (x) = 1 if x ∈ A, and zero otherwise.

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus
covering the range of real numbers. This is the product of y1
alone and y2 alone, and therefore each y is i. i. d. according to
the normal distribution, as required.
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Generating WGN samples

It is often important to generate samples from a Gaussian
density, primarily for simulation studies.

Consider the transformation between two uniform random
variables given by,

fXk
(xk) = I0,1 (xk) , k = 1, 2

where IA (x) = 1 if x ∈ A, and zero otherwise.

Now let two random variables y1, y2 be given by:

y1 =
√

−2 lnx1 cos 2πx2

y2 =
√

−2 lnx1 sin 2πx2

Hence, it follows:

fY (y1, y2) =
x1

2
=

[
1√
2

e−y2
1/2

] [
1√
2

e−y2
2/2

]
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Generating WGN samples

It follows, by rearranging these equations, that:

x1 = exp

[

−1

2
(y21 + y22)

]

x2 =
1

2π
arctan

y2
y1

J(x1, x2) =

∣
∣
∣
∣
∣

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

−1
x1

√−2 ln x1
cos 2πx2 −2π

√
−2 lnx1 sin 2πx2

−1
x1

√
−2 lnx1

sin 2πx2 2π
√−2 lnx1 cos 2πx2

∣
∣
∣
∣
∣
=

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus
covering the range of real numbers. This is the product of y1
alone and y2 alone, and therefore each y is i. i. d. according to
the normal distribution, as required.
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Generating WGN samples

It follows, by rearranging these equations, that:

x1 = exp

[

−1

2
(y21 + y22)

]

x2 =
1

2π
arctan

y2
y1

The Jacobian determinant can be calculated as:

J(x1, x2) =

∣
∣
∣
∣
∣

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

−1
x1

√−2 ln x1
cos 2πx2 −2π

√
−2 lnx1 sin 2πx2

−1
x1

√
−2 lnx1

sin 2πx2 2π
√−2 lnx1 cos 2πx2

∣
∣
∣
∣
∣
=

Hence, it follows:

fY (y1, y2) =
x1

2π
=

[
1√
2π

e−y2
1/2

] [
1√
2π

e−y2
2/2

]

since the domain [0, 1]2 is mapped to the range (−∞,∞)2, thus
covering the of real numbers. This is the product of
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing a auxiliary variable.
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =

M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =

M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X(ζ) , Y (ζ)) of
two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =

M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X(ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX(ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a , y = w.

Thus:

fZ (z) =
1

|a|

∫

R

fXY

(
z − bw

a
, w

)

dw �
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)

T
Γ−1
X (x− µX)

]

where N is the dimension of X (ζ), and X (ζ) has mean µX and
covariance ΓX. It is often denoted as:

fX (x) = N
(
x
∣
∣µX, ΓX

)
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Generating WGN samples

•Auxiliary Variables

•Multivariate Gaussian

Density Function

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density
- p. 58/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.

4. If X (ζ) and Y(ζ) are jointly-Gaussian, then so are their
marginal-distributions, and their conditional-distributions.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

This handout will consider the problem of Parameter
Estimation. This refers to the estimation of a parameter that
is fixed, but is unknown.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.

Since θ̂ is a function of a number of particular realisations of a
random outcome (or experiment), then it is itself a RV, and thus
has a mean and variance.
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What makes a good estimator?

m

f( )m

m E[ ]m

B[ ]�=�E[ ]-m m m

Here, the pdf of the estimated value, µ̄, is biased away from
the true value, µ. However, the spread of the estimated value

around the true value is small.
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What makes a good estimator?

m

var[ ]�=�E[( -E[ ]) ]m m m
2

f( )m

m

Here, the pdf of the estimated value, µ̄, is centered on the
true value, µ. However, the spread of the estimated value

around the true value is very large.
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What makes a good estimator?

m

f( )m

m
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

. The normalised bias is often used:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

. The normalised bias is often used:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0

Example (Biasness of sample mean estimator). Is the sample mean,

µ̂x = 1
N

∑N−1
n=0 x[n] biased?

SOLUTION. No, since

E [µ̂x] = E

[
1
N

∑N−1
n=0 x[n]

]

= 1
N

∑N−1
n=0 E [x[n]] = NµX

N = µX .
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

ǫr ,
σθ̂

θ
, θ 6= 0
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Mean square error

Minimising variance can increase bias. A compromise criterion is
the mean-squared error (MSE):

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2
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Mean square error

Minimising variance can increase bias. A compromise criterion is
the mean-squared error (MSE):

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is the
minimum mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂)
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Mean square error

Minimising variance can increase bias. A compromise criterion is
the mean-squared error (MSE):

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is the
minimum mean-square error:

θ̂MSE = argθ̂ min MSE(θ̂)

This measures the average mean squared deviation of the
estimator from its true value.

Unfortunately, adoption of this natural criterion leads to
unrealisable estimators; ones which cannot be written solely
as a function of the data.
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
minimum variance unbiased estimators (MVUEs).
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
MVUEs.

MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

] ♦

The function ln fX (x | θ) is called the log-likelihood of θ.
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

Furthermore, an unbiased estimator may be found that attains
the bound for all θ if, and only if, (iff)

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

♦
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around
θ, and as N → ∞, it will become an impulse at θ.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around
θ, and as N → ∞, it will become an impulse at θ.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as
the likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ)

Note that since θ̂ml(x) depends on the random observation
vector x, and so is itself a RV.
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary

3. MLE is asymptotically distributed according to a Gaussian
distribution:

θ̂ml ∼ N
(
θ, J−1(θ)

)
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
⋊⋉

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.

SOLUTION. Since this is a memoryless system, and w[n] are
i. i. d., then so is x[n], and therefore:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)
2

2σ2
w

Differentiating this expression w. r. t. A and setting to zero:

Âml =
1

N

∑

n∈N
x[n] �
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) ♦

where θ̂ml is the MLE of θ.
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). If the
function g is not an invertible function, then α̂ maximises the
modified likelihood function p̄T (x | α) defined as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) ♦
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of
least squares.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of
least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of
least squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

As will be seen, it turns out that the LSE can be calculated
when just the first and second moments are known, and
through the solution of linear equations.
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The Least Squares Approach

In the least-squares (LS) approach, it is sought to minimise the
squared difference between the given, or observed, data x[n] and
the assumed, or hidden, signal or noiseless data.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS
error criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS
error criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2

The LSE is given by:

θ̂LSE = argθ min J(θ)
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA min J(A) where J(A) =

N−1∑

n=0

(x[n]−A)
2

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑

n=0

x[n] �

which is the sample mean estimator.
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ] :

s = H θ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ] :

s = H θ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ] :

s = H θ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx, to be solved for θ̂, are termed the
normal equation.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation: involves finding the solution to

θ̂ = argmax
θ∈Θ

h(θ)

where h(·) is a scalar function of a multi-dimensional vector
of parameters, θ.

Typically, h(·) might represent some cost function, and it
is implicitly assumed that the optimisation cannot be
calculated explicitly.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.

For example, the Gaussian-error function:

Φ(t) =

∫ t

−∞

1√
2π

e−
θ2

2 dθ

Again, the integral may be multi-dimensional, and in general
θ is a vector.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

- p. 77/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation and Integration Some problems involve both
integration and optimisation: a fundamental problem is the
maximisation of a marginal distribution:

θ̂ = argmax
θ∈Θ

∫

Ω

f(θ, ω) dω
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Deterministic Numerical Methods
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 h
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)

Function h(x) = (cos 50x + sin 20x)2

Plot of the function h(x) = (cos 50x+ sin 20x)
2
, 0 ≤ x ≤ 1.

There are various deterministic solutions to the optimisation and
integration problems.
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Deterministic Numerical Methods

Optimisation: 1. Golden-section search and Brent’s Method in one
dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in
multi-dimensions, typically an extension of
Newton-Raphson methods.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent
variables θ, a sequence θn is produced such that:
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent
variables θ, a sequence θn is produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn)

Numerous variants of Newton-Raphson-type techniques exist,
and include the steepest descent method, or the
Levenberg-Marquardt method.
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Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

- p. 80/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].

Another formula is Simpson’s rule:

Î =
δ

3

{

f(a) + 4

N∑

k=1

f(θ2k−1) + 2

N∑

k=1

h(θ2k) + f(b)

}

in the case of equally spaced samples with δ = θk+1 − θk.
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Monte Carlo Numerical Methods

Monte Carlo methods are stochastic techniques, in which random
numbers are generated and use to examine some problem.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1

This may be written as an expectation:

I = Eπ

[
f(θ)

π(θ)

]
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Monte Carlo Integration

This expectation can be estimated using the idea of the sample
expectation, and leads to the idea behind Monte Carlo
integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1}

2. Calculate the sample average of the expectation using

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
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Stochastic Optimisation

There are two distinct approaches to the Monte Carlo
optimisation of the objective function h(θ):

θ̂ = argmax
θ∈Θ

h(θ)

The first method is broadly known as an exploratory approach,
while the second approach is based on a probabilistic
approximation of the objective function.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.

Stochastic Approximation The Monte Carlo EM algorithm
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Generating Random Variables

This section discusses a variety of techniques for generating
random variables from a different distributions.
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

- p. 85/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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Transformation Methods

It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

PROOF. The proof is given in the handout on scalar random
variables.
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Inverse Transform Method

A simple derivation of the inverse transform method

X(ζ) and Y (ζ) are RVs related by the function Y (ζ) = Π(X(ζ)).

Π(ζ) is monotonically increasing so that there is only one

solution to the equation y = Π(x), x = Π−1(y).
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Inverse Transform Method

A simple derivation of the inverse transform method

fX (x) =
dΠ(x)

dx
fY (y)

Now, suppose Y (ζ) ∼ U[0, 1] is a uniform random variable. If

Π(x) is the cdf corresponding to a desired pdf π (x), then

fX (x) = π(x), where x = Π−1(y)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).

Therefore, if U(ζ) ∼ U[0, 1], then the RV from the

transformation X(ζ) = − logU(ζ) has the exponential
distribution (since U(ζ) and 1− U(ζ) are both uniform). ⋊⋉
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Acceptance-Rejection Sampling

For most distributions, it is often difficult or even impossible to
directly simulate using either the inverse transform or probability
transformations.
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Acceptance-Rejection Sampling

On average, you would expect to have too many variates that
take on the value X by a factor of

u(X) =
Pp

Pπ
=

p (X)

π (X)
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa = π(X)
Mp(x) ;

3. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

A problem with many sampling methods, which can make the
density π (x) difficult to simulate, is that the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity by looking for
another computationally simple function, q (x) which bounds
π (x) from below.
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Envelope and Squeeze Methods

If X satisfies q (X) ≤ π (X), then it should be accepted when

U ≤ q(X)
Mp(x) , since this also satisfies U ≤ π(X)

Mp(x) .
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.

By construction of a lower envelope on π (x), the number of
function evaluations is potentially decreased by a factor of

Pπ̄ =
1

M

∫

q (x) dx

which is the probability that π (x) is not evaluated.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.

Approximate by empirical average:

Î =
1

N

N−1∑

k=0

IΘ

(

θ(k)
)

, where θ(k) ∼ f(θ)

where IA (a) is the indicator function, and is equal to one if
a ∈ A and zero otherwise.
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
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Other Methods

Include:

representing pdfs as mixture of distributions;

algorithms for log-concave densities, such as the adaptive
rejection sampling scheme;

generalisations of accept-reject;

method of composition (similar to Gibbs sampling);

ad-hoc methods, typically based on probability
transformations and order statistics (for example, generating
Beta distributions with integer parameters).
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Markov chain Monte Carlo Methods

A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:

Y ∼ g
(
y | X(k)

)
.

2. Set the new random variate to be:

X(k+1) =

{

Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{

π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}

≡ min

{
π (y)

π (x)

g (x | y)
g (y | x) , 1

}
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The Metropolis-Hastings algorithm
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θℓ | {θm}Mm=1,m6=ℓ

)
π
(
{θm}Mm=1,m6=ℓ

)

The Gibbs sampler works by drawing random variates from the

marginal densities π
(

θℓ | {θm}Mm=1,m6=ℓ

)

in a cyclic iterative

pattern.
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Gibbs Sampling

First iteration:

θ
(1)
1 ∼ π

(

θ1 | θ(0)2 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
2 ∼ π

(

θ2 | θ(1)1 , θ
(0)
3 , θ

(0)
4 , . . . , θ

(0)
M

)

θ
(1)
3 ∼ π

(

θ3 | θ(1)1 , θ
(1)
2 , θ

(0)
4 , . . . , θ

(0)
M

)

...
...

θ
(1)
M ∼ π

(

θM | θ(1)1 , θ
(1)
2 , θ

(1)
4 , . . . , θ

(1)
M−1

)



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

- p. 94/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Gibbs Sampling

Second iteration:

θ
(2)
1 ∼ π

(

θ1 | θ(1)2 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
2 ∼ π

(

θ2 | θ(2)1 , θ
(1)
3 , θ

(1)
4 , . . . , θ

(1)
M

)

θ
(2)
3 ∼ π

(

θ3 | θ(2)1 , θ
(2)
2 , θ

(1)
4 , . . . , θ

(1)
M

)

...
...

θ
(2)
M ∼ π

(

θM | θ(2)1 , θ
(2)
2 , θ

(2)
4 , . . . , θ

(2)
M−1

)
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Gibbs Sampling

k + 1-th iteration:

θ
(k+1)
1 ∼ π

(

θ1 | θ(k)2 , θ
(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
2 ∼ π

(

θ2 | θ(k+1)
1 , θ

(k)
3 , θ

(k)
4 , . . . , θ

(k)
M

)

θ
(k+1)
3 ∼ π

(

θ3 | θ(k+1)
1 , θ

(k+1)
2 , θ

(k)
4 , . . . , θ

(k)
M

)

...
...

θ
(k+1)
M ∼ π

(

θM | θ(k)1 , θ
(k)
2 , θ

(k)
4 , . . . , θ

(k)
M−1

)

At the end of the j-th iteration, the samples θ
(j)
0 , θ

(j)
1 , . . . , θ

(j)
M

are considered to be drawn from the joint-density
π (θ0, θ1, . . . , θM ).
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Fourier Series and transforms

In this review of Fourier series and transforms, the topics covered
are:

Complex Fourier series

Fourier transform

The discrete-time Fourier transform

Discrete Fourier transform
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Complex Fourier series

A periodic continuous-time deterministic signal, xc(t), with
fundamental period Tp can be expressed as a linear combination
of harmonically related complex exponentials:

xc(t) =
∞∑

k=−∞
X̌c(k) e

jkω0t, t ∈ R,

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency.
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Complex Fourier series

A periodic continuous-time deterministic signal, xc(t), with
fundamental period Tp can be expressed as a linear combination
of harmonically related complex exponentials:

xc(t) =
∞∑

k=−∞
X̌c(k) e

jkω0t, t ∈ R,

where ω0 = 2πF0 = 2π
Tp

is the fundamental frequency.

Moreover,

X̌c(k) =
1

Tp

∫ Tp

0

xc(t) e
−jkω0t dt, k ∈ Z

are the Fourier coefficients, or spectrum of xc(t).
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Complex Fourier series

Example (Complex Fourier Series). Find the complex form of the
Fourier series expansion of the periodic function f(t) defined by:

f(t) = cos
1

2
t (−π < t < π)

f(t+ 2π) = f(t)

Function f(t) of Example ?? ⋊⋉
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Parseval’s Theorem

Energy Signals A signal xc(t) is said to be an energy signal if the
total energy, E, dissipated by the signal over all time is both
nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞
|xc(t)|2 dt
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Parseval’s Theorem

Energy Signals A signal xc(t) is said to be an energy signal if the
total energy, E, dissipated by the signal over all time is both
nonzero and finite. Thus:

0 < E < ∞ where E =

∫ ∞

−∞
|xc(t)|2 dt

Power signals If the average power delivered by the signal over all
time is both nonzero and finite, the signal is classified as a
power signal:

0 < P < ∞ where P = lim
T→∞

1

2T

∫ T

−T

|xc(t)|2 dt
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Parseval’s Theorem

The average power of xc(t) is given by Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞
|X̌c(k)|2
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Parseval’s Theorem

The average power of xc(t) is given by Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞
|X̌c(k)|2

|X̌c(k)|2 represents the power in the kth frequency component,

at frequency ωk = k 2π
Tp

. Hence,

P̌x(k) = |X̌c(k)|2, −∞ < k < ∞, k ∈ Z

is called the power spectrum of xc(t).
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Parseval’s Theorem

The average power of xc(t) is given by Parseval’s theorem:

Px =
1

Tp

∫ Tp

0

|xc(t)|2 dt =
∞∑

k=−∞
|X̌c(k)|2

|X̌c(k)|2 represents the power in the kth frequency component,

at frequency ωk = k 2π
Tp

. Hence,

P̌x(k) = |X̌c(k)|2, −∞ < k < ∞, k ∈ Z

is called the power spectrum of xc(t).

Later in this course, the notion of a power spectrum will be
extended to stochastic signals.
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Fourier transform

An aperiodic continuous-time deterministic signal, xc(t), can be
expressed in the frequency domain using the Fourier transform
pairs:

xc(t) =
1

2π

∫ ∞

−∞
Xc(ω) e

jωt dω

and

Xc(ω) =

∫ ∞

−∞
xc(t) e

−jωt dt

Xc(ω) is the spectrum of xc(t). Continuous-time aperiodic
signals have continuous aperiodic spectra.
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Fourier transform

Example (Fourier Transforms). Find the Fourier transform of the
one-sided exponential function

f(t) = H(t) e−at where a > 0

and where H(t) is the Heaviside unit step function given by:

H(t) =

{

1 if t ≥ 0

0 otherwise
⋊⋉
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Parseval’s Theorem

The energy of xc(t) is, as for Fourier series, computed in either
the time or frequency domain by Parseval’s theorem:

Ex =

∫ ∞

−∞
|xc(t)|2 dt =

1

2π

∫ ∞

−∞
|Xc(ω)|2 dω

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of
xc(t) as a function of frequency, ω, and is called the energy
spectrum of xc(t).
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Parseval’s Theorem

The energy of xc(t) is, as for Fourier series, computed in either
the time or frequency domain by Parseval’s theorem:

Ex =

∫ ∞

−∞
|xc(t)|2 dt =

1

2π

∫ ∞

−∞
|Xc(ω)|2 dω

The function |Xc(ω)|2 ≥ 0 shows the distribution of energy of
xc(t) as a function of frequency, ω, and is called the energy
spectrum of xc(t).

PROOF. The derivation proceeds as follows:

Ex =

∫ ∞

−∞
xc(t)x

⋆
c(t) dt =

∫ ∞

−∞
xc(t)

1

2π

∫ ∞

−∞
X⋆

c (ω) e
−jωt dω dt

=
1

2π

∫ ∞

−∞
X⋆

c (ω)

∫ ∞

−∞
xc(t) e

−jωt dt dω =
1

2π

∫ ∞

−∞
X⋆

c (ω)Xc(ω) dω

�
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The DTFT

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can

be synthesised from its spectrum using the inverse-discrete-time
Fourier transform,

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ Z

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=

∑

all n

x[n] e−jωn, ω ∈ R
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The DTFT

An aperiodic discrete-time deterministic signal, {x[n]}∞−∞, can

be synthesised from its spectrum using the inverse-discrete-time
Fourier transform,

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ Z

and the discrete-time Fourier transform (DTFT):

X
(
ejωT

)
=

∑

all n

x[n] e−jωn, ω ∈ R

Since X
(
ejωT

)
= X

(
ej(ω+2πk)

)
, discrete-time aperiodic signals

have continuous periodic spectra with fundamental period 2π.

Ex =

∞∑

n=−∞
|x[n] |2 =

1

2π

∫ π

−π

|X
(
ejωT

)
|2 dω
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Discrete Fourier transform

Any finite-length or periodic discrete-time deterministic signal,

{x[n]}N−1
0 , can be written by the Fourier series, or

inverse-DFT (IDFT):

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
nk, n ∈ N

where N = {0, 1, . . . , N − 1} ⊂ Z
+, and where the discrete

Fourier transform (DFT):

Xk =
N−1∑

n=0

x[n] e−j 2π
N

nk, k ∈ N

are the corresponding Fourier coefficients.
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Discrete Fourier transform

Any finite-length or periodic discrete-time deterministic signal,

{x[n]}N−1
0 , can be written by the Fourier series, or IDFT:

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
nk, n ∈ N

where N = {0, 1, . . . , N − 1} ⊂ Z
+, and where the DFT:

Xk =

N−1∑

n=0

x[n] e−j 2π
N

nk, k ∈ N

are the corresponding Fourier coefficients.

The sequence Xk, k ∈ R is the spectrum of x[n]. Xk is
discrete and periodic with the same period as x[n].
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The DFT as a Linear Transformation

The formulas for the DFT and IDFT may be expressed as:

Xk =
N−1∑

n=0

x[n] Wnk
N , k ∈ N

x[n] =
1

N

N−1∑

k=0

Xk W
−nk
N , n ∈ N

where, by definition:

WN = e−j 2π
N
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The DFT as a Linear Transformation

The formulas for the DFT and IDFT may be expressed as:

Xk =
N−1∑

n=0

x[n] Wnk
N , k ∈ N

x[n] =
1

N

N−1∑

k=0

Xk W
−nk
N , n ∈ N

where, by definition:

WN = e−j 2π
N

It is instructive to view the DFT and IDFT as linear
transformations on the sequences {x[n]}N−1

0 and {Xk}N−1
0 .
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The DFT as a Linear Transformation

xN =







x[0]
...

x[N − 1]






, XN =







X0

...

XN−1







WN =












1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... ·
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N
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The DFT as a Linear Transformation

xN =







x[0]
...

x[N − 1]






, XN =







X0

...

XN−1







WN =












1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

... ·
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N












Then the N -point DFT may be expressed as:

XN = WNxN
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Properties of the DFT

Linearity If x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then

α1x[n] + α2y[n]
DFT
⇋ α1Xk + α2Yk
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Properties of the DFT

Linearity If x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then

α1x[n] + α2y[n]
DFT
⇋ α1Xk + α2Yk

Symmetry of real-valued sequences If x[n]
DFT
⇋ Xk is real, then

XN−k = X∗
k = X−k
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Properties of the DFT

Linearity If x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then

α1x[n] + α2y[n]
DFT
⇋ α1Xk + α2Yk

Symmetry of real-valued sequences If x[n]
DFT
⇋ Xk is real, then

XN−k = X∗
k = X−k

Complex-conjugate properties If x[n]
DFT
⇋ Xk then

x∗[n]
DFT
⇋ X∗

N−k
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Properties of the DFT

Linearity If x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk, then

α1x[n] + α2y[n]
DFT
⇋ α1Xk + α2Yk

Symmetry of real-valued sequences If x[n]
DFT
⇋ Xk is real, then

XN−k = X∗
k = X−k

Complex-conjugate properties If x[n]
DFT
⇋ Xk then

x∗[n]
DFT
⇋ X∗

N−k

Time reversal of a sequence If x[n]
DFT
⇋ Xk then

x[N − n]
DFT
⇋ XN−k
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Properties of the DFT

Circular Convolution As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency
domain, and vice-versa.
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Properties of the DFT

Circular Convolution As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency
domain, and vice-versa.

Since the signals are periodic, it is necessary to introduce
the idea of circular convolution.
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Properties of the DFT

Circular Convolution As with many linear transforms, convolution
in the time-domain becomes multiplication in the frequency
domain, and vice-versa.

Since the signals are periodic, it is necessary to introduce
the idea of circular convolution.

Assuming that convolution is interpreted in the circular
sense (i.e. taking advantage of the periodicity of the

time-domain signals), then if x[n]
DFT
⇋ Xk and y[n]

DFT
⇋ Yk,

then:

x[n] ∗ y[n] DFT
⇋ Xk Yk
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Discrete-time systems

The following aspects of discrete-time systems are reviewed:

Basic discrete-time signals

The z-transform

Review of linear time-invariant systems

Rational transfer functions
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Basic discrete-time signals

1. The unit impulse sequence δ[n] is defined as:

δ[n] =

{

1 n = 0

0 n 6= 0
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Basic discrete-time signals

1. The unit impulse sequence δ[n] is defined as:

δ[n] =

{

1 n = 0

0 n 6= 0

2. The unit step sequence, u[n] is defined as:

u[n] =

{

1 n ≥ 0

0 n < 0
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Basic discrete-time signals

1. The unit impulse sequence δ[n] is defined as:

δ[n] =

{

1 n = 0

0 n 6= 0

2. The unit step sequence, u[n] is defined as:

u[n] =

{

1 n ≥ 0

0 n < 0

3. The exponential sequence is of the form

x[n] = an, −∞ < n < ∞, n ∈ Z

If a = r ejω0 then

= rn cosω0n+ jrn sinω0n



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

•Fourier Series and

transforms
•Complex Fourier series

•Parseval’s Theorem

•Fourier transform

•Parseval’s Theorem

•The DTFT

•Discrete Fourier transform

•The DFT as a Linear

Transformation
•Properties of the DFT

•Discrete-time systems

•Basic discrete-time signals

•The z-transform

•Bilateral z-transform

•LTI systems

•Matrix-vector formulation

•Transform-domain analysis

•Frequency response

•Periodic Inputs

•Rational transfer

- p. 107/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Basic discrete-time signals

1. The unit impulse sequence δ[n] is defined as:

δ[n] =

{

1 n = 0

0 n 6= 0

2. The unit step sequence, u[n] is defined as:

u[n] =

{

1 n ≥ 0

0 n < 0

3. The exponential sequence is of the form

x[n] = an, −∞ < n < ∞, n ∈ Z

If a = r ejω0 then

= rn cosω0n+ jrn sinω0n
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The z-transform

If x[n] is a power signal (having finite power), rather than an
energy signal, the discrete-time Fourier transform (DTFT) does
not exist.

One such signal is the unit step function, u[t], which has DTFT:

U
(
ejωT

)
=

∞∑

n=−∞
u[n] e−jωn =

∞∑

n=0

e−jωn

This is a geometric series which diverges. Therefore, the DTFT
does not exist:

∑

all n

|u[n]| =
∞∑

n=0

1 6< ∞
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Bilateral z-transform

The z-transform is defined by the following pairs of equations:

X (z) , Z [x[n]] =
∞∑

n=−∞
x[n] z−n

x[n] =
1

2πj

∮

C

X (z) zn−1 dz

Example (Two-sided exponential (Laplacian exponential)) . What is the

bilateral z-transform of the sequence x[n] = a|n| for all n and
some real constant a, where |a| < 1?

SOLUTION. The bilateral z-transform of a sequence x[n] = a|n|,
shown in Figure ?? , is given by:

x a[ ]n =
| |n
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Bilateral z-transform

The z-transform is defined by the following pairs of equations:

X (z) , Z [x[n]] =
∞∑

n=−∞
x[n] z−n

x[n] =
1

2πj

∮

C

X (z) zn−1 dz

By evaluating the z-transform on the unit circle of the z-plane,
such that z = ejω, then:

X (z)|z=ejω = X
(
ejωT

)
=

∞∑

n=−∞
x[n] e−jωn

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω

Example (Two-sided exponential (Laplacian exponential)) . What is the
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LTI systems

Systems which are linear time-invariant (LTI) can be
elegantly analysed in both the time and frequency domain:
convolution in time, multiplication in frequency.
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LTI systems

Systems which are LTI can be elegantly analysed in both the
time and frequency domain: convolution in time,
multiplication in frequency.

For signals and sequences, it is common to write {y[n]}∞n=−∞,

or even {y[n]}n∈Z rather than simply y[n]: the latter is
sufficient for these notes.
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LTI systems

Systems which are LTI can be elegantly analysed in both the
time and frequency domain: convolution in time,
multiplication in frequency.

For signals and sequences, it is common to write {y[n]}∞n=−∞,

or even {y[n]}n∈Z rather than simply y[n]: the latter is
sufficient for these notes.

Output, y[n], of a LTI system is the convolution of the input,
x[n], and the impulse response of the system, h[n]:

y[n] = x[n] ∗ h[n] ,
∑

k∈Z

x[k] h[n− k]
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LTI systems

Systems which are LTI can be elegantly analysed in both the
time and frequency domain: convolution in time,
multiplication in frequency.

For signals and sequences, it is common to write {y[n]}∞n=−∞,

or even {y[n]}n∈Z rather than simply y[n]: the latter is
sufficient for these notes.

Output, y[n], of a LTI system is the convolution of the input,
x[n], and the impulse response of the system, h[n]:

y[n] = x[n] ∗ h[n] ,
∑

k∈Z

x[k] h[n− k]

By making the substitution k̂ = n− k, it follows:

y[n] =
∑

k∈Z

h[k] x[n− k] = h[n] ∗ x[n]



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

•Fourier Series and

transforms
•Complex Fourier series

•Parseval’s Theorem

•Fourier transform

•Parseval’s Theorem

•The DTFT

•Discrete Fourier transform

•The DFT as a Linear

Transformation
•Properties of the DFT

•Discrete-time systems

•Basic discrete-time signals

•The z-transform

•Bilateral z-transform

•LTI systems

•Matrix-vector formulation

•Transform-domain analysis

•Frequency response

•Periodic Inputs

•Rational transfer

- p. 111/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Matrix-vector formulation

If x[n] and h[n] are sequences of finite duration, the convolution
operation can be written in matrix-vector form.
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Matrix-vector formulation

Let x[n] , 0 ≤ n ≤ N − 1 and h[n] , 0 ≤ n ≤ M − 1 be
finite-duration sequences, then y[n] , 0 ≤ n ≤ L− 1, where
L = N +M − 1, can be written as:























y[0]

y[1]
...

y[M − 1]
...

y[N − 1]
...

y[L− 2]

y[L− 1]























=
























x[0] 0 · · · 0

x[1] x[0]
. . .

...
...

. . . 0

x[M − 1] · · · · · · x[0]
...

. . .
. . .

...

x[N − 1] · · · · · · x[N −M ]

0
. . .

...
...

. . . x[N − 1] x[N − 2]

0 · · · 0 x[N − 1]
































h[0]

h[1]
...

h[M − 1]
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Matrix-vector formulation

or

y = Xh

Here, y ∈ R
L, X ∈ R

L×M , and h ∈ R
M .

The matrix X is termed an input data matrix, and has the
property that it is toeplitz.
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Matrix-vector formulation

or

y = Xh

Here, y ∈ R
L, X ∈ R

L×M , and h ∈ R
M .

The matrix X is termed an input data matrix, and has the
property that it is toeplitz.

The observation or output vector y can also be written in a
similar way as:

y = Hx

in which H is also toeplitz.
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Matrix-vector formulation

or

y = Xh

Here, y ∈ R
L, X ∈ R

L×M , and h ∈ R
M .

The matrix X is termed an input data matrix, and has the
property that it is toeplitz.

The observation or output vector y can also be written in a
similar way as:

y = Hx

in which H is also toeplitz.

A system is causal if the present output sample depends only
on past and/or present input samples.

Assume system is asymptotically stable.
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Transform-domain analysis

Time-domain convolution:

y[n] =
∑

k∈Z

x[k] h[n− k]

or

y[n] =
∑

k∈Z

h[k] x[n− k]
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Transform-domain analysis

Time-domain convolution:

y[n] =
∑

k∈Z

x[k] h[n− k]

or

y[n] =
∑

k∈Z

h[k] x[n− k]

Taking z-transforms gives:

Y (z) = H (z) X (z)

where X (z), Y (z) and H (z) are the z-transforms of the input,
output, and impulse response sequences respectively.

H (z) = Z [h[n]] is the system function or transfer function.
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Frequency response

The frequency response of the system is found by evaluating
the z-transform on the unit circle, so z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X

(
ejωT

)

|H(ejω)| is the magnitude response of the system, and

argH(ejω) is the phase response.
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Frequency response

The frequency response of the system is found by evaluating
the z-transform on the unit circle, so z = ejω:

Y
(
ejωT

)
= H

(
ejωT

)
X

(
ejωT

)

|H(ejω)| is the magnitude response of the system, and

argH(ejω) is the phase response.

The group delay of the system is a measure of the average
delay of the system as a function of frequency:

τ(ejω) = − d

dω
argH(ejω)
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Periodic Inputs

Let x[n] be a periodic signal with fundamental period N .

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn, n ∈ {0, . . . , N − 1}
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Periodic Inputs

Let x[n] be a periodic signal with fundamental period N .

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn, n ∈ {0, . . . , N − 1}

Hence, it follows that :

y[n] =
∞∑

m=−∞
h[m] x[n−m] =

1

N

∞∑

m=−∞
h[m]

N−1∑

k=0

Xk e
j 2π

N
k(n−m)

which, by interchanging the order of summation , gives;
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Periodic Inputs

Let x[n] be a periodic signal with fundamental period N .

x[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn, n ∈ {0, . . . , N − 1}

Hence, it follows that :

y[n] =
∞∑

m=−∞
h[m] x[n−m] =

1

N

∞∑

m=−∞
h[m]

N−1∑

k=0

Xk e
j 2π

N
k(n−m)

y[n] =
1

N

N−1∑

k=0

Xk e
j 2π

N
kn

∞∑

m=−∞
h[m] e−j 2π

N
km

︸ ︷︷ ︸

H(ej
2π
N

k)

where H(ej
2π
N

k) are samples of H(ejω).
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Periodic Inputs

Hence,

y[n] =
1

N

N−1∑

k=0

{

H(ej
2π
N

k)Xk

}

ej
2π
N

kn
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Periodic Inputs

Hence,

y[n] =
1

N

N−1∑

k=0

{

H(ej
2π
N

k)Xk

}

ej
2π
N

kn

However, this is just the inverse-DFT expansion of y[n], and
therefore:

Yk = H(ej
2π
N

k)Xk k ∈ {0, . . . , N − 1}

Thus, the response of a LTI system to a periodic input is also
periodic with the same period.
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Periodic Inputs

Hence,

y[n] =
1

N

N−1∑

k=0

{

H(ej
2π
N

k)Xk

}

ej
2π
N

kn

However, this is just the inverse-DFT expansion of y[n], and
therefore:

Yk = H(ej
2π
N

k)Xk k ∈ {0, . . . , N − 1}

Thus, the response of a LTI system to a periodic input is also
periodic with the same period.

The magnitude of the input components is modified by

|H(ej
2π
N

k)|, and the phase is modified by argH(ej
2π
N

k).
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Rational transfer functions

Many systems can be expressed in the z-domain by a rational
transfer function. They are described in the time domain by:

y[n] = −
P∑

k=1

ak y[n− k] +

Q
∑

k=0

dk x[n− k]
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Rational transfer functions

Many systems can be expressed in the z-domain by a rational
transfer function. They are described in the time domain by:

y[n] = −
P∑

k=1

ak y[n− k] +

Q
∑

k=0

dk x[n− k]

Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

,
D (z)

A (z)
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Rational transfer functions

Many systems can be expressed in the z-domain by a rational
transfer function. They are described in the time domain by:

y[n] = −
P∑

k=1

ak y[n− k] +

Q
∑

k=0

dk x[n− k]

Taking z-transforms gives:

H (z) =
Y (z)

X (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k

,
D (z)

A (z)

This can be described in the complex z-plane as:

H (z) =
D (z)

A (z)
= G

∏Q
k=1(1− zk z

−1)
∏P

k=1(1− pk z−1)
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Handout 2
Stochastic Processes
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.
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Interpretation of Sequences

A graphical representation of a random process.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic
process, and a single realisation. Use the terms random process
and stochastic process interchangeably throughout this course.
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Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.
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Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples of
a particular realisation up to a particular point, n, all future
values can be predicted exactly from the past ones.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

- p. 119/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples of
a particular realisation up to a particular point, n, all future
values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called
predictable, otherwise it is said to be unpredictable or a
regular process.
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Predictable Processes

As an example of a predictable process, consider the signal:

x[n, ζ] = A sin (ω n+ φ)

where A is a known amplitude, ω is a known normalised angular
frequency, and φ is a random phase, where φ ∼ fΦ (φ) is its pdf.
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cdf and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cdf and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk

In exactly the same way as with random variables and random
vectors, it is:

difficult to estimate these probability functions without
considerable additional information or assumptions;

possible to frequently characterise stochastic processes
usefully with much less information.
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Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2

Both µx[n] and σ2
x[n] are deterministic sequences.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of Calculating

Autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

- p. 121/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[
|x[n]− µx[n] |2

]
= E

[
|x[n] |2

]
− |µx[n] |2

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2]
provides a measure of the dependence between values of the
process at two different times; it can provide information
about the time variation of the process:

rxx[n1, n2] = E [x[n1] x
∗[n2]]
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]

To show how these deterministic sequences of a stochastic
process can be calculated, several examples are considered in
detail below.
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process
x[n] is defined by:

x[n] =
M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are
pairwise independent random variables uniformly distributed in
the interval [0, 2π].

1. Determine the mean of x[n].

2. Show the autocorrelation sequence is given by

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞ ⋊⋉
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. The
expected value of the process is straightforwardly given by:

E [x[n]] = E

[
M∑

k=1

Ak cos(ωkn+ φk)

]

=

M∑

k=1

Ak E [cos(ωkn+ φk)]

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫

cos(ωkn+ φk) p (φ) dφk

=

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0

Hence, it follows:

E [x[n]] = 0, ∀n �
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1.

rxx[n1, n2] = E





M∑

k=1

Ak cos(ωkn1 + φk)
M∑

j=1

A∗
j cos(ωjn2 + φj)





=
M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]
︸ ︷︷ ︸

r(φk,φj)

�
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1.

rxx[n1, n2] = E





M∑

k=1

Ak cos(ωkn1 + φk)
M∑

j=1

A∗
j cos(ωjn2 + φj)





=
M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]
︸ ︷︷ ︸

r(φk,φj)

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2 cosωk(n1 − n2) k = j

0 otherwise

�
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Example of Calculating Autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. After
some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{
1
2 cosωk(n1 − n2) k = j

0 otherwise

Substituting this expression into

rxx[n1, n2] =

M∑

k=1

M∑

j=1

Ak A
∗
j E [cos(ωkn1 + φk) cos(ωjn2 + φj)]

�

thus leads to the desired result.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.

An i. i. d. process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x[n] will be called
an i. i. d. random process.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x[n] is a sequence of
independent random variables.

An i. i. d. process is one where all the random variables
{x[nk, ζ] , nk ∈ Z} have the same pdf, and x[n] will be called
an i. i. d. random process.

An uncorrelated processes is a sequence of uncorrelated random
variables:

γxx[n1, n2] = σ2
x[n1] δ[n1 − n2]
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Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2]

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx[n1, n2] = rxx[n1, n2].
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Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx[n1, n2] = E
[
|x[n1] |2

]
δ[n1 − n2]

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx[n1, n2] = rxx[n1, n2].

A stationary process is a random process where its statistical
properties do not vary with time. Processes whose statistical
properties do change with time are referred to as
nonstationary.
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Stationary Processes

A random process x[n] has been called stationary if its statistics
determined for x[n] are equal to those for x[n+ k], for every k.
There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

Order-N and strict-sense stationarity

Wide-sense stationarity

Wide-sense periodicity and cyclo-stationarity

Local- or quasi-stationary processes

After this, some examples of various stationary processes will be
given.
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Order-N and strict-sense stationarity

Definition (Stationary of order- N ). A stochastic process x[n] is called
stationary of order-N if:

fX (x1, . . . , xN | n1, . . . , nN ) = fX (x1, . . . , xN | n1 + k, . . . , nN + k)
♦

for any value of k. If x[n] is stationary for all orders N ∈ Z
+, it is

said to be strict-sense stationary (SSS).
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Order-N and strict-sense stationarity

Definition (Stationary of order- N ). A stochastic process x[n] is called
stationary of order-N if:

fX (x1, . . . , xN | n1, . . . , nN ) = fX (x1, . . . , xN | n1 + k, . . . , nN + k)
♦

for any value of k. If x[n] is stationary for all orders N ∈ Z
+, it is

said to be SSS.

An independent and identically distributed process is SSS since,
in this case, fXk

(xk | nk) = fX (xk) is independent of n, and
therefore also of n+ k.

However, SSS is more restrictive than necessary in practical
applications, and is a rarely required property.
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Wide-sense stationarity

A more relaxed form of stationarity, which is sufficient for
practical problems, occurs when a random process is stationary
order-2; such a process is wide-sense stationary (WSS).
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Wide-sense stationarity

Definition (Wide-sense stationarity). A random signal x[n] is called
wide-sense stationary if:

the mean and variance is constant and independent of n:

E [x[n]] = µx

var [x[n]] = σ2
x

the autocorrelation depends only on the time difference
ℓ = n1 − n2, called the lag:

rxx[n1, n2] = r∗xx[n2, n1] = E [x[n1] x
∗[n2]]

= rxx[ℓ] = rxx[n1 − n2] = E [x[n1] x
∗[n1 − ℓ]]

= E [x[n2 + ℓ] x∗[n2]]

♦
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Wide-sense stationarity

The autocovariance sequence is given by:

γxx[ℓ] = rxx[ℓ]− |µx|2

Since 2nd-order moments are defined in terms of 2nd-order
pdf, then strict-sense stationary are always WSS, but not
necessarily vice-versa, except if the signal is Gaussian.

In practice, however, it is very rare to encounter a signal that
is stationary in the wide-sense, but not stationary in the strict
sense.
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Wide-sense cyclo-stationarity

Two classes of nonstationary process which, in part, have
properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process is classified as signals whose
mean is periodic, and whose autocorrelation sequence (ACS)
is periodic in both dimensions:

µx(n) = µx(n+N)

rxx(n1, n2) = rxx(n1 +N,n2) = rxx(n1, n2 +N)

= rxx(n1 +N,n2 +N)

for all n, n1 and n2. These are quite tight constraints for real
signals.
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Wide-sense cyclo-stationarity

2. A wide-sense cyclo-stationary process has similar but less
restrictive properties than a WSP process, in that the mean is
periodic, but the autocorrelation function is now just
invariant to a shift by N in both of its arguments:

µx(n) = µx(n+N)

rxx(n1, n2) = rxx(n1 +N,n2 +N)

for all n, n1 and n2.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change
slowly over short periods of time.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change
slowly over short periods of time.

They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are
stationary over a short segment of time.
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WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2

rxx[0] ≥ rxx[ℓ] , for all ℓ
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WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2

rxx[0] ≥ rxx[ℓ] , for all ℓ

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx[0]

Total average power = Average DC power+Average AC power
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WSS Properties

The average power of a WSS process x[n] satisfies:

rxx[0] = σ2
x + |µx|2

rxx[0] ≥ rxx[ℓ] , for all ℓ

The expression for power can be broken down as follows:

Average DC Power: |µx|2

Average AC Power: σ2
x

Total average power: rxx[0]

Total average power = Average DC power+Average AC power

Moreover, it follows that γxx[0] ≥ γxx[ℓ].
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WSS Properties

The autocorrelation sequence rxx[ℓ] is:

a conjugate symmetric function of the lag ℓ:

r∗xx[−ℓ] = rxx[ℓ]

a nonnegative-definite or positive semi-definite function,
such that for any sequence α[n]:

M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m] ≥ 0
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WSS Properties

The autocorrelation sequence rxx[ℓ] is:

a conjugate symmetric function of the lag ℓ:

r∗xx[−ℓ] = rxx[ℓ]

a nonnegative-definite or positive semi-definite function,
such that for any sequence α[n]:

M∑

n=1

M∑

m=1

α∗[n] rxx[n−m] α[m] ≥ 0

Note that, more generally, even a correlation function for a
nonstationary random process is positive semi-definite:

M∑

n=1

M∑

m=1

α∗[n] rxx[n,m]α[m] ≥ 0 for any sequence α[n]
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;

nonstationary processes where additional structure about
the autocorrelation function is known (beyond the scope of
this course).
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x[n])〉 , lim
N→∞

1

2N + 1

N∑

n=−N

g(x[n])

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(x[n])].
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x[n])〉 , lim
N→∞

1

2N + 1

N∑

n=−N

g(x[n])

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(x[n])].

Time-averages are random variables since they implicitly depend
on the particular realisation, given by ζ. Averages of
deterministic signals are fixed numbers or sequences, even
though they are given by the same expression.
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Ergodicity

A stochastic process, x[n], is ergodic if its ensemble
averages can be estimated from a single realisation of a
process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical
expected values and sample-means:

〈x[n]〉 = E [x[n]]

Covariance-Ergodic Processes (or ergodic in correlation) have the
property that:

〈x[n] x∗[n− l]〉 = E [x[n] x∗[n− l]]
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Ergodicity

It should be intuitiveness obvious that ergodic processes must
be stationary and, moreover, that a process which is ergodic
both in the mean and correlation is WSS.

WSS processes are not necessarily ergodic.

Ergodic is often used to mean both ergodic in the mean and
correlation.

In practice, only finite records of data are available, and
therefore an estimate of the time-average will be given by

〈g(x[n])〉 = 1

N

∑

n∈N
g(x[n])

where N is the number of data-points available.
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy[n1, n2] = E [x[n1] y
∗[n2]]

γxy[n1, n2] = rxy[n1, n2]− µx[n1] µ
∗
y[n2]
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy[n1, n2] = E [x[n1] y
∗[n2]]

γxy[n1, n2] = rxy[n1, n2]− µx[n1] µ
∗
y[n2]

Normalised cross-correlation (or cross-covariance) The
cross-covariance provides a measure of similarity of the
deviation from the respective means of two processes. It
makes sense to consider this deviation relative to their
standard deviations; thus, normalised cross-correlations:

ρxy[n1, n2] =
γxy[n1, n2]

σx[n1] σy[n2]
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy[nx, ny] = 0

rxy[nx, ny] = µx[nx] µy[ny]
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy[nx, ny] = 0

rxy[nx, ny] = µx[nx] µy[ny]

Joint stochastic processes that are statistically independent are
uncorrelated, but not necessarily vice-versa, except for Gaussian
processes.
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Types of Joint Stochastic Processes

Orthogonal joint processes have, for every n1 and n2 6= n1:

rxy[n1, n2] = 0

Joint WSS is a similar to WSS for a single stochastic process, and
is useful since it facilitates a spectral description, as discussed
later in this course:

rxy[ℓ] = rxy[n1 − n2] = r∗yx[−ℓ] = E [x[n] y∗[n− l]]

γxy[ℓ] = γxy[n1 − n2] = γ∗
yx[−ℓ] = rxy[ℓ]− µx µ

∗
y

Joint-Ergodicity applies to two ergodic processes, x[n] and y[n],
whose ensemble cross-correlation can be estimated from a
time-average:

〈x[n] y∗[n− l]〉 = E [x[n] y∗[n− l]]
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T

Then its mean is given by an M -vector

µX(n) ,
[

µx(n) µx(n− 1) · · · µx(n−M + 1)
]T
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T

Then its mean is given by an M -vector

µX(n) ,
[

µx(n) µx(n− 1) · · · µx(n−M + 1)
]T

and the M ×M correlation matrix is given by:

RX(n) ,







rxx(n, n) · · · rxx(n, n−M + 1)
...

. . .
...

rxx(n−M + 1, n) · · · rxx(n−M + 1, n−M + 1)
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Correlation Matrices

For stationary processes, the correlation matrix has an interesting
additional structure. Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).
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Correlation Matrices

For stationary processes, the correlation matrix has an interesting
additional structure. Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).

Hence, the matrix Rxx is given by:

RX ,











rxx(0) rxx(1) rxx(2) · · · rxx(M − 1)

r∗xx(1) rxx(0) rxx(1) · · · rxx(M − 2)

r∗xx(2) r∗xx(1) rxx(0) · · · rxx(M − 3)
...

...
...

. . .
...

r∗xx(M − 1) r∗xx(M − 2) r∗xx(M − 3) · · · rxx(0)
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability
of any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability
of any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.

This simple process is a surprisingly good model for a number
of practical signal processing, communications and control
problems.
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x[n] = −a x[n− 1] + w[n]

where a is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance σ2
W

density:

fW (w[n]) =
1

√

2πσ2
W

exp

{

−w2[n]

2σ2
W

}
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x[n] = −a x[n− 1] + w[n]

where a is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance σ2
W

density:

fW (w[n]) =
1

√

2πσ2
W

exp

{

−w2[n]

2σ2
W

}

The conditional density of x[n] given x[n− 1] is also Gaussian,

fX (x(n) | x(n− 1)) =
1

√

2πσ2
W

exp

{

− (x(n) + ax(n− 1))2

2σ2
W

}
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x[n], given the infinite past,
depends only on the previous P samples
{x[n− 1] , . . . , x[n− P ]}; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . ) = fX (x[n] | x[n− 1] , . . . , x[n− P ])
♦
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x[n], given the infinite past,
depends only on the previous P samples
{x[n− 1] , . . . , x[n− P ]}; that is, if:

fX (x[n] | x[n− 1] , x[n− 2] , . . . ) = fX (x[n] | x[n− 1] , . . . , x[n− P ])
♦

Finally, it is noted that if x[n] takes on a countable (discrete) set
of values, a Markov random process is called a Markov chain.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.

Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the DTFT corresponds to.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACS.

Since the ACS for a stationary process is a function of a
single-discrete time process, then the question arises as to
what the DTFT corresponds to.

It turns out to be known as the power spectral density (PSD)
of a stationary random process, and the PSD is an extremely
powerful and conceptually appealing tool in statistical signal
processing.
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Introduction

n

n

n

n

Abstract
sample space, S

x n( , )z1

x n( , )z2

x n( , )z3

x n( , )zp

Real space
Ensemble of realisations

of random processes

k

k

Xk( )z1

Xk( )z2

k

Xk( )z3

k

Xk( )zp

Fourier
Transform

Fourier
Transform

Fourier
Transform

Fourier
Transform

Complex space
Ensemble of realisations

of random spectra

A graphical respresentation of random spectra.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.

Stochastic decomposition The second interpretation represents a
stochastic process as a superposition of exponentials, where
the coefficients are themselves random variables. Hence, x[n]
can be represented as:

x[n] =
1

2π

∫ π

−π

X
(
ejωT

)
ejωn dω, n ∈ R

where X(ejω) is a random variable for a given value of ω.
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
sequence of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.

The autocorrelation sequence, rxx[ℓ], can be recovered from the
PSD by using the inverse-DTFT:

rxx[ℓ] =
1

2π

∫ π

−π

Pxx(e
jω) ejωℓ dω, ℓ ∈ Z
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.

The area under Pxx(e
jω) is nonnegative and is equal to the

average power of x[n]. Hence:

1

2π

∫ π

−π

Pxx(e
jω) dω = rxx[0] = E

[
|x[n] |2

]
≥ 0
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General form of the PSD

A process, x[n], and rxx[ℓ], can be decomposed into a zero-mean

aperiodic component, r
(a)
xx [ℓ], and a non-zero-mean periodic

component, r
(p)
xx [ℓ]:

rxx[ℓ] = r(a)xx [ℓ] + r(p)xx [ℓ]



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

• Introduction

•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

Linear Systems Theory

Linear Signal Models - p. 141/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

General form of the PSD

A process, x[n], and rxx[ℓ], can be decomposed into a zero-mean

aperiodic component, r
(a)
xx [ℓ], and a non-zero-mean periodic

component, r
(p)
xx [ℓ]:

rxx[ℓ] = r(a)xx [ℓ] + r(p)xx [ℓ]

Theorem (PSD of a non-zero-mean process with periodic compo nent).
The most general definition of the PSD for a non-zero-mean
stochastic process with a periodic component is

Pxx(e
jω) = P (a)

xx (ejω) +
2π

K

∑

k∈K
P (p)
xx (k) δ (ω − ωk) ♦

P
(a)
xx (ejω) is the DTFT of r

(a)
xx [ℓ], while P

(p)
xx (k) are the DFT

coefficients for r
(p)
xx [ℓ] .
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

⋊⋉
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. x[n] is a stationary process with zero-mean, and
autocorrelation sequence (ACS):

rxx[ℓ] =
1

2

M∑

k=1

|Ak|2 cosωkℓ, −∞ < ℓ < ∞

�
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. Hence, the ACS can be written as:

rxx[ℓ] =
M∑

k=−M

|Ak|2
4

ejωkℓ, −∞ < ℓ < ∞ �

where the following are defined: A0 = 0, Ak = A−k, and
ω−k = −ωk.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

• Introduction

•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

Linear Systems Theory

Linear Signal Models - p. 141/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. Hence, the ACS can be written as:

rxx[ℓ] =
M∑

k=−M

|Ak|2
4

ejωkℓ, −∞ < ℓ < ∞

where the following are defined: A0 = 0, Ak = A−k, and
ω−k = −ωk.

Hence, it directly follows

Pxx(e
jω) = 2π

M∑

k M

|Ak|2
4

δ(ω−ωk) =
π

2

M∑

k M

|Ak|2δ(ω−ωk) �
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ

The cross-correlation rxy[ℓ] can be recovered by using the

inverse-DTFT:

rxy[ℓ] =
1

2π

∫ π

−π

Pxy

(
ejωT

)
ejωℓ dω, ℓ ∈ R
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x[n] and y[n], provides a description of their
statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy[ℓ] , E [x[n] y∗[n− ℓ]]:

Pxy

(
ejωT

)
= F{rxy[ℓ]} =

∑

ℓ∈Z

rxy[ℓ] e
−jωℓ

The cross-correlation rxy[ℓ] can be recovered by using the

inverse-DTFT:

rxy[ℓ] =
1

2π

∫ π

−π

Pxy

(
ejωT

)
ejωℓ dω, ℓ ∈ R

The cross-spectrum Pxy

(
ejωT

)
is, in general, a complex function

of ω.
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The cross-power spectral density

Some properties of the CPSD and related definitions include:

1. Pxy

(
ejωT

)
is periodic in ω with period 2π.

2. Since rxy[ℓ] = r∗yx[−ℓ], then it follows:

Pxy

(
ejωT

)
= P ∗

yx

(
ejωT

)

3. If the process x[n] is real, then rxy[ℓ] is real, and:

Pxy(e
jω) = P ∗

xy(e
−jω)

4. The coherence function, is given by:

Γxy(e
jω) ,

Pxy(e
jω)

√

Pxx(ejω)
√

Pyy(ejω)
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx[ℓ]
z
⇋ Pxx(z) and rxy[ℓ]

z
⇋ Pxy(z), where:

Pxx (z) =
∑

ℓ∈Z

rxx[ℓ] z
−ℓ

Pxy (z) =
∑

ℓ∈Z

rxy[ℓ] z
−ℓ
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the z-transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx[ℓ]
z
⇋ Pxx(z) and rxy[ℓ]

z
⇋ Pxy(z), where:

Pxx (z) =
∑

ℓ∈Z

rxx[ℓ] z
−ℓ

Pxy (z) =
∑

ℓ∈Z

rxy[ℓ] z
−ℓ

If the unit circle, defined by z = ejω is within the region of
convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω

Pxy(e
jω) = Pxy(z)|z=ejω
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx[ℓ] =
1

2πj

∮

C

Pxx(z) z
ℓ−1 dz

rxy[ℓ] =
1

2πj

∮

C

Pxy(z) z
ℓ−1 dz
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx[ℓ] =
1

2πj

∮

C

Pxx(z) z
ℓ−1 dz

rxy[ℓ] =
1

2πj

∮

C

Pxy(z) z
ℓ−1 dz

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗
xx(1/z

∗) and Pxy(z) = P ∗
xy(1/z

∗)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1)
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Systems with Stochastic Inputs

A graphical representation of a random process at the
output of a system in relation to a random process at the

input of the system.

What does it mean to apply a stochastic signal to the input of a
system?
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Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be
expressed in terms of the statistics of the input. However, in
general this is a complicated problem except in special cases.
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Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be
expressed in terms of the statistics of the input. However, in
general this is a complicated problem except in special cases.

A special case is that of linear systems, and this is considered
next.
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y(n, ζ) =
∞∑

k=−∞
h(k)x(n− k, ζ)
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y(n, ζ) =
∞∑

k=−∞
h(k)x(n− k, ζ)

A complete description of y[n, ζ] requires the computation of
an infinite number of convolutions, corresponding to each
value of ζ.

Thus, a better description would be to consider the statistical
properties of y[n, ζ] in terms of the statistical properties of the
input and the characteristics of the system.
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x[n]]] = L[E [x[n]]]

In other words, the mean µy(n) of the output y(n) equals the
response of the system to the mean µx(n) of the input:

µy(n) = L[µx(n)] ♦
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H(ejω), then the:

Output mean value is given by:

µy = µx

∞∑

k=−∞
h[k] = µx H(ej0)
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H(ejω), then the:

Output mean value is given by:

µy = µx

∞∑

k=−∞
h[k] = µx H(ej0)

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞∑

k=−∞
h∗[−k] rxx[ℓ− k]

Similarly, it follows that ryx(l) = h(l) ∗ rxx(l).
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Input-output Statistics of a LTI System

Output autocorrelation is obtained by pre-multiplying the
system-output by y∗(n− l) and taking expectations:

ryy(l) =
∞∑

k=−∞
h(k)E [x(n− k) y∗(n− l)] = h(l) ∗ rxy(l)

Substituting the expression for rxy(l) gives:

ryy(l) = h(l) ∗ h∗(−l) ∗ rxx(l) = rhh(l) ∗ rxx(l)

An equivalent LTI system for autocorrelation filtration.
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Input-output Statistics of a LTI System

Output-power of the process y(n) is given by ryy(0) = E
[
|y(n)|2

]
,

and therefore since ryy(l) = rhh(l) ∗ rxx(l),

Noting power, Pyy, is real, then taking complex-conjugates using
r∗xx(−l) = rxx(l):

Pyy =
∑∞

k=−∞ r∗hh(k) rxx(k) =∑∞
n=−∞ h∗(n)

∑∞
k=−∞ rxx(n+ k)h(k)

Output pdf In general, it is very difficult to calculate the pdf of the
output of a LTI system, except in special cases, namely
Gaussian processes.
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System identification

System identification by cross-correlation.

The system is excited with a WGN input with autocorrelation
function:

rxx(l) = δ(l)

Since the output-input cross-correlation can be written as:

ryx(l) = h(l) ∗ rxx(l)

then, with rxx(l) = δ(l), it follows:

ryx(l) = h(l) ∗ δ(l) = h(l)
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =
∞∑

k=−∞
h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =
∞∑

k=−∞
h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.

The mean, autocorrelation and autocovariance sequences of
the output, y(n), as well as the cross-correlation and
cross-covariance functions between the input and the output,
can be calculated in a similar way as for LTI systems with
stationary inputs.
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Difference Equation

Consider a LTI system that can be represented by a difference
equation:

P∑

p=0

ap y[n− p] =

Q
∑

q=0

bq x[n− q]

where a0 , 1.
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Difference Equation

Consider a LTI system that can be represented by a difference
equation:

P∑

p=0

ap y[n− p] =

Q
∑

q=0

bq x[n− q]

where a0 , 1.

Assuming that both x(n) and y(n) are stationary processes,
then taking expectations of both sides gives,

µy =

∑Q
q=0 bq

1 +
∑P

p=1 ap
µx
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Difference Equation

Next, multiplying the system equation throughout by y∗(m) and
taking expectations gives:

P∑

p=0

ap ryy(n− p,m) =

Q
∑

q=0

bq rxy(n− q,m)
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Difference Equation

Next, multiplying the system equation throughout by y∗(m) and
taking expectations gives:

P∑

p=0

ap ryy(n− p,m) =

Q
∑

q=0

bq rxy(n− q,m)

Similarly, instead multiply though by x∗(m) to give:

P∑

p=0

ap ryx(n− p,m) =

Q
∑

q=0

bq rxx(n− q,m)

These two difference equations may be used to solve for
ryy(n1, n2) and rxy(n1, n2). Similar expressions can be obtained
for the covariance functions.
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Difference Equation

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x(n) be a
random process generated by the first order difference equation
given by:

x(n) = αx(n− 1) + w(n), |α| ≤ 1, n ∈ Z ⋊⋉

where w(n) ∼ N
(
µw, σ

2
w

)
is an i. i. d. WGN process.

Demonstrate that the process x(n) is stationary, and
determine the mean µx.

Determine the autocovariance and autocorrelation function,
γxx(l) and rxx(l).
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Frequency-Domain Analysis of LTI systems

The PSD at the input and output of a LTI system with
stationary input.

Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

Pyx(e
jω) = H(ejω)Pxx(e

jω)

Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)
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Frequency-Domain Analysis of LTI systems

The PSD at the input and output of a LTI system with
stationary input.

Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

Pyx(e
jω) = H(ejω)Pxx(e

jω)

Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)

If the input and output autocorrelations or autospectral
densities are known, the magnitude response of a system
|H(ejω)| can be determined, but not the phase response.
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;

and pole-zero systems and autoregressive moving
average (ARMA) processes.
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;

and pole-zero systems and autoregressive moving
average (ARMA) processes.

Pole-zero models are widely used for modelling stationary
signals with short memory; the concepts will be extended, in
overview at least, to nonstationary processes.
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Abstract

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on rational system functions.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;

and pole-zero systems and autoregressive moving
average (ARMA) processes.

Pole-zero models are widely used for modelling stationary
signals with short memory; the concepts will be extended, in
overview at least, to nonstationary processes.
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The Ubiquitous WGN Sequence

The simplest random signal model is the WSS WGN sequence:

w[n] ∼ N
(
0, σ2

w

)

The sequence is i. i. d., and Pww

(
ejωT

)
= σ2

w, −π < ω ≤ π. It is

also easy to generate samples using simple algorithms.

Pww(e )
jw

sw

2

-p +p w

W
h
it

e
n
o
is

e

0

White noise PSD.
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Filtration of WGN

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary
aperiodic correlation function or continuous PSD.
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Filtration of WGN

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary
aperiodic correlation function or continuous PSD.

Pww(e )
jw

s
2

w

-p +p w

w

P kww( )

-p +pW
h

it
e 

h
ar
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o

n
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p
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ce
ss

W
h
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n
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is
e

Input
excitation

w( ) ( , )n w n= z

0

0

H(e )
jw

-p +p w0

LTI System

H z D z A z A z( ) or ( )/ ( ) or 1/ ( )

Desired
signal

x( ) ( , )n x n= z

-p +p w0

Pxx(e )
jw

-p +p w0

P kxx( )

Signal models with continuous and discrete (line) power
spectrum densities.
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Filtration of WGN

The speech synthesis model.
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Nonparametric and parametric models

Nonparametric models have no restriction on its form, or the
number of parameters characterising the model. For example,
specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, describe a system with a finite number of
parameters. For example, if a LTI filter is specified by a
finite-order rational system function, it is a parametric
model.
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Nonparametric and parametric models

Nonparametric models have no restriction on its form, or the
number of parameters characterising the model. For example,
specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, describe a system with a finite number of
parameters. For example, if a LTI filter is specified by a
finite-order rational system function, it is a parametric
model.

Two important analysis tools present themselves for
parametric modelling:

1. given the model parameters, analyse the characteristics of
that model (in terms of moments etc.);

2. design of a parametric system model to produce a random
signal with a specified autocorrelation function or PSD.
This is signal modelling.
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Parametric Pole-Zero Signal Models

Consider a system described by the following linear
constant-coefficient difference equation:

x[n] = −
P∑

k=1

ak x[n− k] +

Q
∑

k=0

dk w[n− k]
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Parametric Pole-Zero Signal Models

Consider a system described by the following linear
constant-coefficient difference equation:

x[n] = −
P∑

k=1

ak x[n− k] +

Q
∑

k=0

dk w[n− k]

z
-1

z
-1

z
-1

z
-1

b1 b2 bQ

+
+

+

w[ ]n
w[ ]n-1 w[ ]n-2 w Q[ ]n-

z
-1

aP

z
-1

z
-1

z
-1

a2 a1

-

-
-

x[ ]n

x[ ]n-1x[ ]n-2x P[ ]n-

+

b0

Delay Delay Delay Delay

Delay Delay Delay Delay

a1

Delay

S

Feed
Forward

Taps

Feedback
Taps

Filter block diagram for ARMA model.
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Types of pole-zero models

All-pole model when Q = 0. The input-output difference equation
is given by:

x[n] = −
P∑

k=1

ak x[n− k] + d0w[n]

All-zero model when P = 0. The input-output relation is given by:

x[n] =

Q
∑

k=0

dk w[n− k]

Pole-zero model when P > 0 and Q > 0.
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Types of pole-zero models

Different types of linear model
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Types of pole-zero models

If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters
of the model.
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Types of pole-zero models

If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters
of the model.

These stochastic processes have special names in the
literature, and are known as:

a moving average (MA) process when it is the output of an all-zero
model;

an autoregressive (AR) process when it is the output of an all-pole
model;

an autoregressive moving average (ARMA) process when it is the
output of an pole-zero model;

each subject to a WGN process at the input.
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All-pole Models

All-pole models are frequently used in signal processing
applications since they are:

mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

they widely parsimoniously approximate rational transfer
functions, especially resonant systems.
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All-pole Models

All-pole models are frequently used in signal processing
applications since they are:

mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

they widely parsimoniously approximate rational transfer
functions, especially resonant systems.

There are various model properties of the all-pole model that are
useful; these include:

1. the systems impulse response;

2. the autocorrelation of the impulse response;

3. and minimum-phase conditions.
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Frequency Response of an All-Pole Filter

The all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0

∏P
k=1(1− pk z−1)

Therefore, its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0

∏P
k=1(1− pk e−jω)
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Frequency Response of an All-Pole Filter

The all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0

∏P
k=1(1− pk z−1)

Therefore, its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0

∏P
k=1(1− pk e−jω)

When the poles are written in the form pk = rke
jωk , the

frequency response can be written as:

H(ejω) =
d0

∏P
k=1(1− rk e−j(ω−ωk))

Hence, it can be deduced that resonances occur near the
frequencies corresponding to the phase position of the poles.
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Frequency Response of an All-Pole Filter

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣
∣H(ejω)

∣
∣
2
=

G2

∏P
k=1

∣
∣1− rk e−j(ω−ωk)

∣
∣
2

where G = σw d0 is the overall gain of the system.
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Frequency Response of an All-Pole Filter

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣
∣H(ejω)

∣
∣
2
=

G2

∏P
k=1

∣
∣1− rk e−j(ω−ωk)

∣
∣
2

where G = σw d0 is the overall gain of the system.

Consider the all-pole model with poles at positions:

{pk} = {rk ejωk} where

{

{rk} = {0.985, 0.951, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;
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Frequency Response of an All-Pole Filter
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system.
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Frequency Response of an All-Pole Filter
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Impulse Response of an All-Pole Filter

The impulse response of the all-pole filter satisfies the equation:

h[n] = −
P∑

k=1

ak h[n− k] + d0 δ[n]

If H (z) has its poles inside the unit circle, then h[n] is a causal,
stable sequence, and the system is minimum-phase.
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Impulse Response of an All-Pole Filter

The impulse response of the all-pole filter satisfies the equation:

h[n] = −
P∑

k=1

ak h[n− k] + d0 δ[n]

If H (z) has its poles inside the unit circle, then h[n] is a causal,
stable sequence, and the system is minimum-phase.

Assuming causality, such that h[n] = 0, n < 0 then it follows
h[−k] = 0, k > 0, and therefore:

h[n] =







0 if n < 0

d0 if n = 0

−∑P
k=1 ak h[n− k] if n > 0
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All-Pole Modelling and Linear Prediction

A linear predictor forms an estimate, or prediction, x̂[n], of the
present value of a stochastic process x[n] from a linear
combination of the past P samples; that is:

x̂[n] = −
P∑

k=1

ak x[n− k]
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All-Pole Modelling and Linear Prediction

A linear predictor forms an estimate, or prediction, x̂[n], of the
present value of a stochastic process x[n] from a linear
combination of the past P samples; that is:

x̂[n] = −
P∑

k=1

ak x[n− k]

The coefficients {ak} of the linear predictor are determined by
attempting to minimise some function of the prediction error
given by:

e(n) = x(n)− x̂(n)

Usually the objective function is equivalent to MSE, given by
E =

∑

n e2(n).
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑

k=1

ak x(n− k)
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑

k=1

ak x(n− k)

Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, finite impulse
response (FIR) linear prediction and all-pole modelling are
closely related.

Many of the properties and algorithms developed for either
linear prediction or all-pole modelling can be applied to the
other.
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P∑

k=1

ak x(n− k)

Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, FIR linear prediction
and all-pole modelling are closely related.

Many of the properties and algorithms developed for either
linear prediction or all-pole modelling can be applied to the
other.

To all intents and purposes, linear prediction, all-pole
modelling, and AR processes (discussed next) are equivalent
terms for the same concept.
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still
apply.

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still
apply.

Thus:

x[n] = −
P∑

k=1

ak x[n− k] + w[n] , w[n] ∼ N
(
0, σ2

w

)

The autoregressive output, x[n], is a stationary sequence with a

mean value of zero, µx = 0.

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

Thus:

x[n] = −
P∑

k=1

ak x[n− k] + w[n] , w[n] ∼ N
(
0, σ2

w

)

The autoregressive output, x[n], is a stationary sequence with a

mean value of zero, µx = 0.

The autocorrelation sequence (ACS) can be calculated in a
similar approach to finding the output autocorrelation and
cross-correlation for linear systems.

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +

P∑

k=1

ak rxx(l − k) = rwx(l)

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the

parameters {ak} are real) as:
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +

P∑

k=1

ak rxx(l − k) = rwx(l)

Observing that x[n] cannot depend on future values of w[n] since
the system is causal, then rwx[ℓ] = E [w[n] x∗[n− ℓ]] is zero if

l > 0, and σ2
w if ℓ = 0.

matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +

P∑

k=1

ak rxx(l − k) = rwx(l)

Thus, for l = {0, 1, . . . , P}
matrix-vector form (noting that rxx[ℓ] = r∗xx[−ℓ] and that the
parameters {ak} are real) as:









rxx[0] r∗xx[1] · · · r∗xx[P ]

rxx[1] rxx[0] · · · r∗xx[P − 1]
...

...
. . .

...

rxx[P ] rxx[P − 1] · · · r∗xx[0]

















1

a1
...

aP









=









σ2
w

0
...

0
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All-Zero models

Whereas all-pole models can capture resonant features of a
particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.
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All-Zero models

Whereas all-pole models can capture resonant features of a
particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of
delayed versions of the input signal. Thus, assume an all-zero
model of the form:

x[n] =

Q
∑

k=0

dk w[n− k]

where Q is the order of the model, and the corresponding system
function is given by:

H (z) = D (z) =

Q
∑

k=0

dk z
−k
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Frequency Response of an All-Zero Filter

The all-zero model has form:

H(z) = D(z) =

Q
∑

k=0

dk z
−k = d0

Q
∏

k=1

(
1− zk z

−1
)

Therefore, its frequency response is given by:

H(ejω) =

Q
∑

k=0

dk e
−jkω = d0

Q
∏

k=1

(
1− zk e

−jω
)
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Frequency Response of an All-Zero Filter

The all-zero model has form:

H(z) = D(z) =

Q
∑

k=0

dk z
−k = d0

Q
∏

k=1

(
1− zk z

−1
)

Therefore, its frequency response is given by:

H(ejω) =

Q
∑

k=0

dk e
−jkω = d0

Q
∏

k=1

(
1− zk e

−jω
)

When the zeros are written in the form zk = rke
jωk , then the

frequency response can be written as:

H(ejω) = d0

Q
∏

k=1

(

1− rk e
−j(ω−ωk)

)

Hence, it can be deduced that troughs or nulls occur near
frequencies corresponding to the phase position of the zeros.
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Frequency Response of an All-Zero Filter

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣
∣H(ejω)

∣
∣
2
= G2

Q
∏

k=1

∣
∣
∣1− rk e

−j(ω−ωk)
∣
∣
∣

2

where G = σw d0 is the overall gain of the system.
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Frequency Response of an All-Zero Filter

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣
∣H(ejω)

∣
∣
2
= G2

Q
∏

k=1

∣
∣
∣1− rk e

−j(ω−ωk)
∣
∣
∣

2

where G = σw d0 is the overall gain of the system.

Consider the all-zero model with zeros at positions:

{zk} = {rk ejωk} where

{

{rk} = {0.985, 1, 0.942, 0.933}
{ωk} = 2π × {270, 550, 844, 1131}/2450;
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Frequency Response of an All-Zero Filter
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The frequency response and position of the zeros in an
all-zero system.
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Frequency Response of an All-Zero Filter

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

ω / π
10

 lo
g 10

 |P
xx

(e
jω

)|

All−Zero Model Power Spectrum

Power spectral response of an all-zero model.
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1.

x[n] = w[n] +

Q
∑

k=1

dk w[n− k] , w[n] ∼ N
(
0, σ2

w

)
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1.

x[n] = w[n] +

Q
∑

k=1

dk w[n− k] , w[n] ∼ N
(
0, σ2

w

)

The output x[n] has zero-mean, and variance of

σ2
x = σ2

w

[

1 +

Q
∑

k=1

|dk|2
]

The autocorrelation sequence is given by:

rxx[ℓ] = σ2
wrhh[ℓ] = σ2

w

Q−ℓ
∑

k=0

dk+l d
∗
k, for 0 ≤ ℓ ≤ Q
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Pole-Zero Models

The output of a causal pole-zero model is given by the recursive
input-output relationship:

x[n] = −
P∑

k=1

ak x[n− k] +

Q
∑

k=0

dk w[n− k]

The corresponding system function is given by:

H (z) =
D (z)

A (z)
=

∑Q
k=0 dk z

−k

1 +
∑P

k=1 ak z
−k
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Pole-Zero Frequency Response

The pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q
k=1

(
1− zk z

−1
)

∏P
k=1 (1− pk z−1)

Therefore, its frequency response is:

H(ejω) = d0

∏Q
k=1

(
1− zk e

−jω
)

∏P
k=1 (1− pk e−jω)
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Pole-Zero Frequency Response

The pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q
k=1

(
1− zk z

−1
)

∏P
k=1 (1− pk z−1)

Therefore, its frequency response is:

H(ejω) = d0

∏Q
k=1

(
1− zk e

−jω
)

∏P
k=1 (1− pk e−jω)

The PSD of the output of a pole-zero filter is given by:

Pxx(e
jω) = σ2

w

∣
∣H(ejω)

∣
∣
2
= G2

∏Q
k=1

∣
∣1− zk e

−jω
∣
∣
2

∏P
k=1 |1− pk e−jω|2

where G = σw d0 is the overall gain of the system.
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Pole-Zero Frequency Response
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The frequency response and position of the poles and zeros
in an pole-zero system.
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Pole-Zero Frequency Response
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Pole−Zero Model Power Spectrum

Power spectral response of an pole-zero model.
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Introduction

� ✁ ✂ ✁ ✄ ☎ ✁ ✆✝ ✞ ✄ ✂ ✟ ✆ ✆ ✠ ✡ ☛
☞ ✌ ✄ ✍ ✁

✎ ✏ ✑ ✒ ✓ ✔ ✕ ✖ ✔ ✗ ✘ ✙ ✚ ✛ ✜ ✙ ✘ ✚ ✛ ✢ ✣ ✤ ✥ ✚

✦ ✧ ★ ✩ ✧ ✪ ✫ ✬ ✭ ✮ ✯

☞ ✌ ✄ ✍ ✁

Source localisation and BSS.
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Introduction

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce interference from other directions; joint detection,

localisation, and enhancement.
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Introduction

This research tutorial is intended to cover a wide range of
aspects which link acoustic source localisation (ASL) and
blind source separation (BSS).

This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

The latest version of this document can be found online and
downloaded at:

http://mod-udrc.org/events/2016-summer-school

Thanks to Xionghu Zhong and Ashley Hughes for borrowing
some of their diagrams from their dissertations.

http://mod-udrc.org/events/2016-summer-school
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Structure of the Tutorial

Recommended Texts

Conceptual link between ASL and BSS.

Geometry of source localisation.

Spherical and hyperboloidal localisation.

Estimating TDOAs.

Steered beamformer response function.

Multiple target localisation using BSS.

Conclusions.
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Recommended Texts

Recommended book chapters and the references therein.

Huang Y., J. Benesty, and J. Chen, “Time Delay Estimation and
Source Localization,” in Springer Handbook of Speech
Processing by J. Benesty, M. M. Sondhi, and Y. Huang, pp.
1043–1063, , Springer, 2008.
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Recommended Texts

Recommended book chapters and the references therein.

Chapter 8: DiBiase J. H., H. F. Silverman, and
M. S. Brandstein, “Robust Localization in Reverberant
Rooms,” in Microphone Arrays by M. Brandstein and D. Ward,
pp. 157–180, , Springer Berlin Heidelberg, 2001.
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Recommended Texts

Recommended book chapters and the references therein.

Chapter 10 of Wolfel M. and J. McDonough, Distant Speech
Recognition, Wiley, 2009.

IDENTIFIERS – Hardback, ISBN13: 978-0-470-51704-8
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Recommended Texts

Some recent PhD thesis on the topic include:

Zhong X., “Bayesian framework for multiple acoustic source
tracking,” Ph.D. thesis, University of Edinburgh, 2010.

Pertila P., “Acoustic Source Localization in a Room Environment
and at Moderate Distances,” Ph.D. thesis, Tampere University
of Technology, 2009.

Fallon M., “Acoustic Source Tracking using Sequential Monte
Carlo,” Ph.D. thesis, University of Cambridge, 2008.
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Why Source Localisation?

A number of blind source separation (BSS) techniques rely on
knowledge of the desired source position:

1. Look-direction in beamforming techniques.

2. Camera steering for audio-visual BSS (including Robot
Audition).

3. Parametric modelling of the mixing matrix.

Equally, a number of multi-target acoustic source
localisation (ASL) techniques rely on BSS.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.
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ASL Methodology

Sensors
(microphones)

Sound

Source

s n[ ]

m1

m2
m3

m4

x n3[ ] x n4[ ]x n2[ ]x n1[ ]

Direct

paths

Ideal free-field model.

Most ASL techniques rely on the fact that an impinging
wavefront reaches one sensor before it reaches another.

Most ASL algorithms are designed assuming there is no
reverberation present, the free-field assumption.
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ASL Methodology

An uniform linear array (ULA) of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.
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ASL Methodology

An ULA of microphones.

Typically, this acoustic sensor is a microphone; will primarily
consider omni-directional pressure sensors, and rely on the
TDOA between the signals at different microphones.

Other measurement types include:

range difference measurements;

interaural level difference;

joint TDOA and vision techniques.
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ASL Methodology

Another sensor modality might include acoustic vector
sensors (AVSs) which measure both air pressure and air
velocity. Useful for applications such as sniper localisation.

An acoustic vector sensor.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.
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Source Localization Strategies

Existing source localisation methods can loosely be divided into
three generic strategies:

1. those based on maximising the SRP of a beamformer;

location estimate derived directly from a filtered, weighted,
and sum version of the signal data.

2. techniques adopting high-resolution spectral estimation
concepts (see Stephan Weiss’s talk);

any localisation scheme relying upon an application of the
signal correlation matrix.

3. approaches employing TDOA information.

source locations calculated from a set of TDOA estimates
measured across various combinations of microphones.
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Source Localization Strategies

Spectral-estimation approaches See Stephan Weiss’s talk :-)

TDOA-based estimators Computationally cheap, but suffers in the
presence of noise and reverberation.

SBF approaches Computationally intensive, superior performance
to TDOA-based methods. However, possible to dramatically
reduce computational load.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

Suppose there is a:

sensor array consisting of N microphones located at positions
mi ∈ R

3, for i ∈ {0, . . . , N − 1},

M talkers (or targets) at positions xk ∈ R
3, for

k ∈ {0, . . . ,M − 1}.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The TDOA between the microphones at position mi and mj due
to a source at xk can be expressed as:

T (mi, mj , xk) , Tij (xk) =
|xk −mi| − |xk −mj |

c

where c is the speed of sound, which is approximately 344 m/s.
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Geometric Layout

Targets
(sound sources)

s n1[ ] @ x1 s n2[ ] @ x2

x n1[ ] @ m1

x n2[ ] @ m2 x n3[ ] @ m3

x n4[ ] @ m4

Sensors
(microphones)

D11

D12

D13

D14

D21

D24

D23

D22

Geometry assuming a free-field model.

The distance from the target at xk to the sensor located at mi

will be defined by Dik, and is called the range.

Tij (xk) =
1

c
(Dik −Djk)
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.
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Ideal Free-field Model

In an anechoic free-field acoustic environment, the signal
from source k, denoted by sk(t), propagates to the i-th sensor
at time t according to the expression:

xik(t) = αik sk(t− τik) + bik(t)

where bik(t) denotes additive noise. Note that, in the
frequency domain, this expression is given by:

Xik (ω) = αik Sk (ω) e
−jω τik +Bik (ω)

The additive noise source is assumed to be uncorrelated with
the source signal, as well as the noise signals at the other
microphones.

The TDOA between the i-th and j-th microphone is given by:

τijk = τik − τjk = T (mi, mj , xk)
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1
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TDOA and Hyperboloids

It is important to be aware of the geometrical properties that
arise from the TDOA relationship

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

This defines one half of a hyperboloid of two sheets, centered

on the midpoint of the microphones, vij =
mi+mj

2 .

(xk − vij)
T
Vij (xk − vij) = 1

For source with a large source-range to
microphone-separation ratio, the hyperboloid may be
well-approximated by a cone with a constant direction angle
relative to the axis of symmetry.

φij = cos−1

(
c T (mi, mj , xk)

|mi −mj |

)
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid of two sheets

x2

a2
+

y2

b2
+

z2

c2
= −1
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TDOA and Hyperboloids

T (mi, mj , xk) =
|xk −mi| − |xk −mj |

c

Hyperboloid, for a microphone separation of d = 0.1, and a

time-delay of τij =
d
4c .
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.
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Indirect TDOA-based Methods

This is typically a two-step procedure in which:

Typically, TDOAs are extracted using the GCC function, or an
AED algorithm.

A hypothesised spatial position of the target can be used to
predict the expected TDOAs (or corresponding range) at the
microphone.

The error between the measured and hypothesised TDOAs is
then minimised.

Accurate and robust TDOA estimation is the key to the
effectiveness of this class of ASL methods.

An alternative way of viewing these solutions is to consider
what spatial positions of the target could lead to the
estimated TDOA.
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Spherical Least Squares Error Function

Suppose the first microphone is located at the origin of the

coordinate system, such that m0 =
[

0 0 0
]T

.

The range from target k to sensor i can be expressed as :

Dik = D0k +Dik −D0k

= Rs + c Ti0 (xk)

where Rsk = |xk| is the range to the first microphone which is
at the origin.
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Spherical Least Squares Error Function

In practice, the observations are the TDOAs and, given Rsk,
these ranges can be considered the measurement ranges.

Of course, knowing Rsk is half the solution, but it is just one
unknown at this stage.

D1

D2

D c1 2 12-D �=� t

Range and TDOA relationship.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Ri = |mi| is the distance of the i-th microphone to the origin.
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}
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Spherical Least Squares Error Function

The source-sensor geometry states that the target lies on a
sphere centered on the corresponding sensor. Hence,

D2
ik = |xk −mi|2

= xT
k xk − 2mT

i xk +mT
i mi

= R2
s − 2mT

i xk +R2
i

Define the spherical error function as:

ǫik ,
1

2

(

D̂2
ik −D2

ik

)

=
1

2

{(

Rs + c T̂i0

)2

−
(
R2

s − 2mT
i xk +R2

i

)
}

= mT
i xk + cRs T̂i0 +

1

2

(

c2T̂ 2
i0 −R2

i

)
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Spherical Least Squares Error Function

Concatenating the error functions for each microphone gives
the expression:

ǫik = Axk − (bk −Rskdk)
︸ ︷︷ ︸

vk

≡
[

A dk

]

︸ ︷︷ ︸

Sk

[

xk

Rsk

]

︸ ︷︷ ︸

θk

−bk

where

A =







mT
0

...

mT
N−1






, d = c







T̂00

...

T̂(N−1)0






, bk =

1

2







c2T̂ 2
00 −R2

0

...

c2T̂ 2
(N−1)0 −R2

N−1
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Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk − Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 181/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Spherical Least Squares Error Function

The LSE can then be obtained by using J = ǫTi ǫi :

J(xk) = (Axk − (bk − Rsk dk))
T (Axk − (bk −Rsk dk))

J (xk, θk) = (Skθk − bk)
T
(Skθk − bk)

Note that as Rsk = |xk|, these parameters aren’t independent.
Therefore, the problem can either be formulated as:

a nonlinear least-squares problem in xk;

a linear minimisation subject to quadratic constraints:

θ̂k = argmin
θk

(Skθk − bk)
T (Skθk − bk)

subject to the constraint

θk ∆θk = 0 where ∆ = diag [1, 1, 1, −1]
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Spherical Least Squares Error Function
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.
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Two-step Spherical LSE Approaches

To avoid solving either a nonlinear or a constrained least-squares
problem, it is possible to solve the problem in two steps, namely:

1. solving a LLS problem in xk assuming the range to the target,
Rsk, is known;

2. and then solving for Rsk given an estimate of xk i. t. o. Rsk.

Assuming an estimate of Rsk this can be solved as

x̂k = A† vk = A†
(

bk − R̂skdk

)

where A† =
[

ATA
]−1

AT

Note that A† is the pseudo-inverse of A.
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0
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Spherical Intersection Estimator

This method uses the physical constraint that the range Rsk is
the Euclidean distance to the target.

Writing R̂2
sk = x̂T

k x̂k, it follows that:

R̂2
sk =

(

bk − R̂skdk

)T

A†TA†
(

bk − R̂skdk

)

which can be written as the quadratic:

a R̂2
sk + b R̂sk + c = 0

The unique, real, positive root is taken as the spherical
intersection (SX) estimator of the source range. Hence, the
estimator will fail when:

1. there is no real, positive root, or:

2. if there are two positive real roots.
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Spherical Interpolation Estimator

The spherical interpolation (SI) estimator again uses the
spherical least squares error (LSE) function, but this time the
range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting the LSE gives:

ǫik = A
[

ATA
]−1

AT
(

bk − R̂skdk

)

− (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Defining the projection matrix as PA = IN −A
[

ATA
]−1

AT ,

ǫik = Rsk PAdk −PAbk

Minimising the LSE using the normal equations gives:

Rsk =
dT
kPAbk

dT
k PAdk
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Spherical Interpolation Estimator

The SI estimator again uses the spherical LSE function, but this
time the range Rsk is estimated in the least-squares sense.

Consider again the spherical error function:

ǫik = Axk − (bk −Rsk dk)

Substituting back into the LSE for the target position gives the
final estimator:

x̂k = A†
(

IN − dk
dT
kPA

dT
k PAdk

)

bk

This approach is said to perform better, but is computationally
slightly more complex than the SX estimator.
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Other Approaches

There are several other approaches to minimising the spherical
LSE function .

In particular, the linear-correction LSE solves the constrained
minimization problem using Lagrange multipliers in a two
stage process.

For further information, see: Huang Y., J. Benesty, and
J. Chen, “Time Delay Estimation and Source Localization,” in
Springer Handbook of Speech Processing by J. Benesty,
M. M. Sondhi, and Y. Huang, pp. 1043–1063, , Springer, 2008.
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Hyperbolic Least Squares Error Function

If a TDOA is estimated between two microphones i and j,
then the error between this and modelled TDOA is:

ǫij(xk) = τijk − T (mi, mj , xk)

The total error as a function of target position

J(xk) =
N∑

i=1

N∑

j 6=i=1

(τijk − T (mi, mj , xk))
2

Unfortunately, since T (mi, mj , xk) is a nonlinear function of
xk, the minimum LSE does not possess a closed-form solution.
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Linear Intersection Method

The linear intersection (LI) algorithm works by utilising a sensor
quadruple with a common midpoint, which allows a bearing line
to be deduced from the intersection of two cones.

mj1 mj2

mj4

mj3

yj

xj

zj

aj

bj

gj

I’j

Quadruple sensor arrangement and local Cartesian
coordinate system.
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Linear Intersection Method

Given the bearing lines, it is possible to calculate the points sij
and sji on two bearing lines which give the closest
intersection. This is basic gemoentry.

The trick is to note that given these points sij and sji, the
theoretical TDOA, T (m1i, m2i, sij), can be compared with
the observed TDOA.

mi

x (m)mj

Ii

Ij

sij

sji

dij

Calculating the points of closest intersection.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

GCC algorithm most popular approach assuming an ideal
free-field movel

computationally efficient, and hence short decision delays;

perform fairly well in moderately noisy and reverberant
environments.

However, GCC-based methods

fail when room reverberation is high;

focus of current research is on combating the effect of
room reverberation.
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TDOA estimation methods

Two key methods for TDOA estimation are using the GCC
function and the AED algorithm.

AED Algorithm Approaches the TDOA estimation approach from a
different point of view from the traditional GCC method.

adopts a reverberant rather than free-field model;

computationally more expensive than GCC;

can fail when there are common-zeros in the room impulse
response (RIR).



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 189/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

GCC TDOA estimation

The GCC algorithm proposed by Knapp and Carter is the most
widely used approach to TDOA estimation.

The TDOA estimate between two microphones i and j

τ̂ij = argmax
ℓ

rxi xj
[ℓ]

The cross-correlation function is given by

rxi xj
[ℓ] = F−1

(
Φ
(
ejωTs

)
Px1x2

(
ejωTs

))

=

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

where the CPSD is given by

Px1x2

(
ejωTs

)
= E

[
X1

(
ejωTs

)
X2

(
ejωTs

)]



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 190/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik +Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.
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CPSD for Free-Field Model

For the free-field model , it follows that for i 6= j:

Pxixj
(ω) = E [Xj (ω)Xj (ω)]

= E
[(
αik Sk (ω) e

−jω τik +Bik (ω)
) (

αjk Sk (ω) e
−jω τkk +Bjk (ω)

)]

= αikαjke
−jω T (mi,mj ,xk)E

[

|Sk (ω)|2
]

where E [Bik (ω)Bjk (ω)] = 0 and E [Bik (ω)Sk (ω)] = 0.

In particular, note that it follows:

∠Pxixj
(ω) = −jω T (mi, mj , xk)

In otherwords, all the TDOA information is conveyed in the
phrase rather than the amplitude of the CPSD. This therefore
suggests that the weighting function can be chosen to remove
the amplitude information.
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GCC Processors

Processor Name Frequency Function

Cross Correlation 1

PHAT
1

|Px1x2 (e
jωTs)|

Roth Impulse Response
1

Px1x1 (e
jωTs)

or
1

Px2x2 (e
jωTs)

SCOT
1

√

Px1x1 (e
jωTs)Px2x2 (e

jωTs)

Eckart
Ps1s1

(
ejωTs

)

Pn1n1 (e
jωTs)Pn2n2 (e

jωTs)

Hannon-Thomson or ML

∣
∣γx1x2

(
ejωTs

)∣
∣
2

|Px1x2 (e
jωTs)|

(

1− |γx1x2 (e
jωTs)|2

)

where γx1x2

(
ejωTs

)
is the normalised CPSD or coherence

function
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GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))
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GCC Processors

The PHAT-GCC approach can be written as:

rxi xj
[ℓ] =

∫ π
Ts

− π
Ts

Φ
(
ejωTs

)
Px1x2

(
ejωTs

)
ejℓωT dω

=

∫ π
Ts

− π
Ts

1

|Px1x2 (e
jωTs)| |Px1x2

(
ejωTs

)
|ej∠Px1x2(e

jωTs) ejℓωT dω

=

∫ π
Ts

− π
Ts

ej(ℓωT+∠Px1x2(e
jωTs)) dω

= δ
(
ℓ Ts + ∠Px1x2

(
ejωTs

))

= δ(ℓ Ts − T (mi, mj , xk))

In the absence of reverberation, the GCC-PHAT algorithm
gives an impulse at a lag given by the TDOA divided by the
sampling period.
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GCC Processors

−1 0 1

x 10
−3

−2

−1

0

1

2
x 10

−4

TDOA/sec.

C
C

 fu
nc

tio
n

−1 0 1

x 10
−3

−0.5

0

0.5

1

TDOA/sec.

P
H

A
T

−
G

C
C

 fu
nc

tio
n

Normal cross-correlation and GCC-PHAT functions for a
frame of speech.
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GCC Processors

−1 0 1

x 10
−3

−0.2

−0.1

0

0.1

0.2

TDOA/sec.

P
H

A
T

−
G

C
C

 fu
nc

tio
n actual delay

−1 0 1

x 10
−3

−0.2

−0.1

0

0.1

0.2

TDOA/sec.

P
H

A
T

−
G

C
C

 fu
nc

tio
n actual delay

The effect of reverberation and noise on the GCC-PHAT can
lead to poor TDOA estimates.
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Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 192/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Adaptive Eigenvalue Decomposition

The AED algorithm actually amounts to a blind channel
identification problem, which then seeks to identify the channel
coefficients corresponding to the direct path elements.

Suppose that the acoustic impulse response (AIR) between
source k and i is given by hik[n] such that

xik[n] =

∞∑

m=−∞
hik[n−m] sk[m] + bik[n]

then the TDOA between microphones i and j is:

τijk =

{

argmax
ℓ

|hik[ℓ]|
}

−
{

argmax
ℓ

|hjk[ℓ]|
}

This assumes a minimum-phase system, but can easily be
made robust to a non-minimum-phase system.
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Adaptive Eigenvalue Decomposition
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0.2

0.4

0.6

0.8

1
Acoustic Impulse Response (AIR)
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R
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e

A typical room acoustic impulse response.

Reverberation plays a major role in ASL and BSS.

Consider reverberation as the sum total of all sound
reflections arriving at a certain point in a room after room has
been excited by impulse.



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 192/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Adaptive Eigenvalue Decomposition

Early and late reflections in an AIR.

Trivia: Perceive early reflections to reinforce direct sound, and
can help with speech intelligibility. It can be easier to hold a
conversation in a closed room than outdoors
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Adaptive Eigenvalue Decomposition

Room transfer functions are often nonminimum-phase since
there is more energy in the reverberant component of the RIR
than in the component corresponding to direct path.

Sound
Source

Reflected Paths

Direct Path

Received
Sound

θk

Demonstrating nonminimum-phase properties

Therefore AED will need to consider multiple peaks in the
estimated AIR.
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Direct Localisation Methods

Direct localisation methods have the advantage that the
relationship between the measurement and the state is linear.

However, extracting the position measurement requires a
multi-dimensional search over the state space and is usually
computationally expensive.
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Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω



Aims and Objectives

Signal Processing

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

Linear Systems Review

Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

Passive Target Localisation

• Introduction

•Structure of the Tutorial

•Recommended Texts

•Why Source Localisation?

•ASL Methodology

•Source Localization

Strategies

•Geometric Layout

• Ideal Free-field Model

- p. 194/199

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Steered Response Power Function

The SBF or SRP function is a measure of correlation across all
pairs of microphone signals for a set of relative delays that arise
from a hypothesised source location.

The frequency domain delay-and-sum beamformer steered to a
spatial position x̂k such that τ̂pk = |x̂−mp|:

S (x̂) =

∫

Ω

∣
∣
∣
∣
∣

N∑

p=1

Wp

(
ejωTs

)
Xp

(
ejωTs

)
ejω τ̂pk

∣
∣
∣
∣
∣

2

dω

Taking expectations, Φpq

(
ejωTs

)
= Wp

(
ejωTs

)
W ∗

q

(
ejωTs

)

E [S (x̂)] =
N∑

p=1

N∑

q=1

∫

Ω

Φpq

(
ejωTs

)
Pxpxq

(
ejωTs

)
ejωτ̂pqk dω

=
N∑

p=1

N∑

q=1

rxi xj
[τ̂pqk] ≡

N∑

p=1

N∑

q=1

rxi xj

[ |xk −mi| − |xk −mj |
c

]
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Steered Response Power Function
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SBF response from a frame of speech signal. The integration
frequency range is 300 to 3500 Hz. The true source position is

at [2.0, 2.5]m. The grid density is set to 40 mm.
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Steered Response Power Function

An example video showing the SBF changing as the source
location moves.

Show video!
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Conceptual Intepretation

t0

rx1x2(t)

True TDOA

Incorrect TDOA

t0

t0

rx1x3(t)

rx2x3(t)

GCC-PHAT for different microphone pairs.

T (mi, mj , x̂k) =
|x̂k −mi| − |x̂k −mj |

c
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DUET Algorithm

The degenerate unmixing estimation technique (DUET)
algorithm is an approach to BSS that ties in neatly to ASL. Under
certain assumptions and circumstances, it is possible to separate
more than two sources using only two microphones.
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DUET Algorithm

The DUET algorithm is an approach to BSS that ties in neatly to
ASL. Under certain assumptions and circumstances, it is possible
to separate more than two sources using only two microphones.

DUET is based on the assumption that for a set of signals
xk[t], their time-frequency representations (TFRs) are
predominately non-overlapping. This condition is referred to
as W-disjoint orthogonality (WDO):

Sp (ω, t) Sq (ω, t) = 0 ∀p 6= q, ∀t, ω
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DUET Algorithm
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W-disjoint orthogonality of two speech signals. Original
speech signal (a) s1[t] and (b) s2[t]; corresponding STFTs (c)
|S1 (ω, t)| and (d) |S2 (ω, t)|; (e) product |S1 (ω, t)S2 (ω, t)|.
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DUET Algorithm

Consider taking a particular time-frequency (TF)-bin, (ω, t),
where source p is known to be active. The two received signals in
that TF-bin can be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)
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DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp
e−jωτijp
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DUET Algorithm

Consider taking a particular TF-bin, (ω, t), where source p is
known to be active. The two received signals in that TF-bin can
be written as:

Xip (ω, t) = αip e
−jω τip Sp (ω, t) +Bi (ω, t)

Xjp (ω, t) = αjp e
−jω τjp Sp (ω, t) +Bj (ω, t)

Taking the ratio and ignoring the noise terms gives:

Hikp (ω, t) ,
Xip (ω, t)

Xjp (ω, t)
=

αip

αjp
e−jωτijp

Hence,

τijp = − 1

ω
argHikp (ω, t) , and

αip

αjp
= |Hikp (ω, t)|
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DUET Algorithm
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Illustration of the underlying idea in DUET.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

1. Construct the TF representation of both mixtures.

2. Take the ratio of the two mixtures and extract local mixing
parameter estimates.

3. Combine the set of local mixing parameter estimates into N
pairings corresponding to the true mixing parameter pairings.

4. Generate one binary mask for each determined mixing
parameter pair corresponding to the TF-bins which yield that
particular mixing parameter pair.

5. Demix the sources by multiplying each mask with one of the
mixtures.

6. Return each demixed TFR to the time domain.
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DUET Algorithm

This leads to the essentials of the DUET method which are:

DUET for multiple sources.
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Effect of Reverberation and Noise
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The TFR is very clear in the anechoic environment but
smeared around by the reverberation and noise.
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Estimating multiple targets

received
signal

STFT
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ˆ( , )Z k PHAT-

GCC
TDOA

estimates
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Flow diagram of the DUET-GCC approach. Basically, the
speech mixtures are separated by using the DUET in the TF

domain, and the PHAT-GCC is then employed for the
spectrogram of each source to estimate the TDOAs.
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GCC function from DUET approach and traditional PHAT
weighting. Two sources are located at (1.4, 1.2)m and
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Further Topics

Reduction in complexity of calculating SRP. This includes
stochastic region contraction (SRC) and hierarchical searches.

Multiple-target tracking (see Daniel Clark’s Notes)

Simultaneous (self-)localisation and tracking; estimating
sensor and target positions from a moving source.
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Acoustic source tracking and localisation.
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Further Topics

Joint ASL and BSS.

Explicit signal and channel modelling! (None of the material
so forth cares whether the signal is speech or music!)

Application areas such as gunshot localisation; other sensor
modalities; diarisation.
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