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Disclaimers
• The following slides contain material from several 

sources. 
• They are to be used by participants of the summer

school and cannot be distributed without permission from 
the lecturer.

• Copyright of figures remains on the copyright holders 
which may not be solely of the author.  Atttribution has 
been given when possible but has not been exhaustive.

• Material shared maybe more than what we will be 
covered at delivery.

• Material subject to change.
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Our expertise
• Computer vision 

& Image Analysis:
– Extract information from images
– Applications: medicine, plants

• Machine learning & pattern 
recognition
– Shallow or deep 

representation learning
(the process of making sense of data)

• Distributed learning
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z = f (      ) 

An example of ML in UDRC
• Given data can 

I learn their distribution?
• Learn a distribution that 

can generate that data?
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Real images (CIFAR-10) Generated images



What is machine learning?
• What do you think?
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Some applications
• Email spam filtering
• Netflix/Amazon recommendations
• Google suggested queries
• The Google index itself
• Predicting stock prices
• Classifying threats in images 
• etc
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Extreme(…) applications
• MIT flight
• http://www.youtube.com/watch?v=aiNX-vpDhMo
• Robot in the dessert
• http://www.youtube.com/watch?v=OIOtOmyySQo
• Google car
• http://www.youtube.com/watch?v=cdgQpa1pUUE
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What is machine learning?
• Arthur Samuel [1959] (informal definition) Gives 

computers ability to learn without being explicitly 
programmed.
èHe built the very first checker’s program

• Tom Mitchell [98] (more formal):  A well-posed learning 
problem is defined as follows: 
– A computer program is set to learn from an 

experience E with respect to some task T and some 
performance measure P if its performance on T as 
measured by P improves with experience E. 
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Text Books
• Useful texts ...

• Most can be found online or libraries: e.g.

https://www.deeplearningbook.org/
https://github.com/jermwatt/machine_learning_refined

What *we* do with ML…

• We build algorithms to analyze imaging data (2D, 3D, 
2D+t, 3D+t)

• From a variety of domains 
• Use machine learning throughout

• Some examples…
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Counting objects (old school)

11

Counting objects (new school)
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Giuffrida et al. The Plant Journal Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting



Restoring faults in images

• Recover gaps from 
images of plant roots

• A similar problem is 
present in medical 
imaging as well 
èRetina fundus

13

OursInput

Chen et al. “Adversarial Large-scale Root Gap Inpainting ”, CVPRW - CVPPP 2019

Learning to age
• How would I look in 30 years?

• A much harder task is how would my brain look?
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(a)	Trajectories	of	ageing	progression	of	two	subjects (b)	Ablation	study	on	identity	loss		8#((a)	Trajectories	of	ageing	progression	of	two	subjects (b)	Ablation	study	on	identity	loss		8#(
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Doing more with less

• Build systems that learn from few data, few annotations
– Understand the 

world
– Build intuition 

about the 
world

15Chartsias et al. “Factorised Representation Learning in Cardiac Image Analysis”, ArXiv 2019

annotated images 
and masks

non-annotated 
images

segmentation masks

EF LVV …

image1 63% 6.1 8.5

image2 70% 6.8 9

…

images with 
clinical biomarkers

EHR report

Find anomalies in images?
• Find disease and also create an artificial image that 

looks like as if it did not have disease    

16



17

• The major directions of learning are:

– Supervised:  Patterns whose class is known a-priori 

are used for training.

– Unsupervised:  The number of classes/groups is (in 

general) unknown and no training patterns are 

available.

– Semisupervised: A mixed type of patterns is 

available. For some of them, their corresponding class  

is known and for the rest is not. 

Supervised example

CS229 Lecture notes

Andrew Ng

Supervised learning

Lets start by talking about a few examples of supervised learning problems.
Suppose we have a dataset giving the living areas and prices of 47 houses
from Portland, Oregon:

Living area (feet2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540

...
...

We can plot this data:
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Given data like this, how can we learn to predict the prices of other houses
in Portland, as a function of the size of their living areas?

1
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, with was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:
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A classification  example:

Another one

20



Hmm this is harder

21

Hmm this is harder
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Unsupervised clustering

23

Unsupervised clustering
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Semi-supervised learning

25

Semi-supervised learning
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Topics that we will try to cover
• Supervised methods

– Linear regression
– Logistic regression
– Lasso and elastic net regression
– Support vector machines (linear and non linear, and even 

SVR)
– Perceptron Classifier

• Unsupervised (and dimensionality reduction)
– PCA, kernel PCA

• Learning theory (simple view)
• Deep Neural Networks I: Introduction; simple feed forward 

neural network architecture; how to train neural network; 
backpropagation theory; introduction to convolutional neural 
networks.
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A typical formulation
• Input or features:
• Output or target:
• Training example:
• Training set==

List of m examples:

• Space:   

29
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Linear fit
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, with was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:
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Objective  function: 
How do we find the 
solution to this problem?

We are given some data.
We are given a desired 
form of the line but we 
want to find the best line.

We need an objective 
function = training cost
=measure of 
performance
That we can optimize.

32

Optimization

Many ML techniques need optimization, e.g.
• Minimizing error in a neural network/adaptive system
• Maximizing probability in Bayesian inference
From simple “steepest descent” to more advanced 

techniques (conjugate gradient,…)



Solving the linear regression problem
• The LMS algorithm

• Define a cost:

• Optimise for the cost 

33

For a dataset of size 1

Batch vs stochastic
• Batch

• Stochastic

34



Higher model complexity
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Instead, if we had added an extra feature x2, and fit y = θ0 + θ1x + θ2x2,
then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
fitting a 5-th order polynomial y =

∑5
j=0 θjxj. We see that even though the

fitted curve passes through the data perfectly, we would not expect this to
be a very good predictor of, say, housing prices (y) for different living areas
(x). Without formally defining what these terms mean, we’ll say the figure
on the left shows an instance of underfitting—in which the data clearly
shows structure not captured by the model—and the figure on the right is
an example of overfitting. (Later in this class, when we talk about learning
theory we’ll formalize some of these notions, and also define more carefully
just what it means for a hypothesis to be good or bad.)

As discussed previously, and as shown in the example above, the choice of
features is important to ensuring good performance of a learning algorithm.
(When we talk about model selection, we’ll also see algorithms for automat-
ically choosing a good set of features.) In this section, let us talk briefly talk
about the locally weighted linear regression (LWR) algorithm which, assum-
ing there is sufficient training data, makes the choice of features less critical.
This treatment will be brief, since you’ll get a chance to explore some of the
properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query
point x (i.e., to evaluate h(x)), we would:

1. Fit θ to minimize
∑

i(y
(i) − θT x(i))2.

2. Output θT x.

In contrast, the locally weighted linear regression algorithm does the fol-
lowing:

1. Fit θ to minimize
∑

i w
(i)(y(i) − θT x(i))2.

2. Output θT x.

35

Model choice: 
How do we tell what is the right choice?  
Theoretical background: the bias variance dilemma
The practical solution: cross validation 

Logistic Regression
• Can we solve the classification problem as linear 

regression?

• The logistic function
(sigmoid function) è

36
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Part II

Classification and logistic

regression

Lets now talk about the classification problem. This is just like the regression
problem, except that the values y we now want to predict take on only
a small number of discrete values. For now, we will focus on the binary

classification problem in which y can take on only two values, 0 and 1.
(Most of what we say here will also generalize to the multiple-class case.)
For instance, if we are trying to build a spam classifier for email, then x(i)

may be some features of a piece of email, and y may be 1 if it is a piece
of spam mail, and 0 otherwise. 0 is also called the negative class, and 1
the positive class, and they are sometimes also denoted by the symbols “-”
and “+.” Given x(i), the corresponding y(i) is also called the label for the
training example.

5 Logistic regression

We could approach the classification problem ignoring the fact that y is
discrete-valued, and use our old linear regression algorithm to try to predict
y given x. However, it is easy to construct examples where this method
performs very poorly. Intuitively, it also doesn’t make sense for hθ(x) to take
values larger than 1 or smaller than 0 when we know that y ∈ {0, 1}.

To fix this, lets change the form for our hypotheses hθ(x). We will choose

hθ(x) = g(θT x) =
1

1 + e−θT x
,

where

g(z) =
1

1 + e−z

is called the logistic function or the sigmoid function. Here is a plot
showing g(z):
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Notice that g(z) tends towards 1 as z → ∞, and g(z) tends towards 0 as
z → −∞. Moreover, g(z), and hence also h(x), is always bounded between
0 and 1. As before, we are keeping the convention of letting x0 = 1, so that
θT x = θ0 +

∑n
j=1 θjxj.

For now, lets take the choice of g as given. Other functions that smoothly
increase from 0 to 1 can also be used, but for a couple of reasons that we’ll see
later (when we talk about GLMs, and when we talk about generative learning
algorithms), the choice of the logistic function is a fairly natural one. Before
moving on, here’s a useful property of the derivative of the sigmoid function,
which we write a g′:

g′(z) =
d

dz

1

1 + e−z

=
1

(1 + e−z)2

(

e−z
)

=
1

(1 + e−z)
·
(

1 − 1

(1 + e−z)

)

= g(z)(1 − g(z)).

So, given the logistic regression model, how do we fit θ for it? Follow-
ing how we saw least squares regression could be derived as the maximum
likelihood estimator under a set of assumptions, lets endow our classification
model with a set of probabilistic assumptions, and then fit the parameters
via maximum likelihood.



Why? 
• It has some nice property

37
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So, given the logistic regression model, how do we fit θ for it? Follow-
ing how we saw least squares regression could be derived as the maximum
likelihood estimator under a set of assumptions, lets endow our classification
model with a set of probabilistic assumptions, and then fit the parameters
via maximum likelihood.

How to solve the problem (find the 
theta’s)?

• A maximum likelihood view
• Assume 

• Or…

• Assuming the training 
examples were generated 
independently

38
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Let us assume that

P (y = 1 | x; θ) = hθ(x)

P (y = 0 | x; θ) = 1 − hθ(x)

Note that this can be written more compactly as

p(y | x; θ) = (hθ(x))y (1 − hθ(x))1−y

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

L(θ) = p(y⃗ | X; θ)

=
m
∏

i=1

p(y(i) | x(i); θ)

=
m
∏

i=1

(

hθ(x
(i))
)y(i)

(

1 − hθ(x
(i))
)1−y(i)

As before, it will be easier to maximize the log likelihood:

ℓ(θ) = log L(θ)

=
m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))

How do we maximize the likelihood? Similar to our derivation in the case
of linear regression, we can use gradient ascent. Written in vectorial notation,
our updates will therefore be given by θ := θ + α∇θℓ(θ). (Note the positive
rather than negative sign in the update formula, since we’re maximizing,
rather than minimizing, a function now.) Lets start by working with just
one training example (x, y), and take derivatives to derive the stochastic
gradient ascent rule:

∂

∂θj

ℓ(θ) =

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

∂

∂θj

g(θT x)

=

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

g(θT x)(1 − g(θT x)
∂

∂θj

θT x

=
(

y(1 − g(θT x)) − (1 − y)g(θT x)
)

xj

= (y − hθ(x)) xj
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function



Contd…
• Lets use gradient ascent

39
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ℓ(θ) = log L(θ)

=
m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))

How do we maximize the likelihood? Similar to our derivation in the case
of linear regression, we can use gradient ascent. Written in vectorial notation,
our updates will therefore be given by θ := θ + α∇θℓ(θ). (Note the positive
rather than negative sign in the update formula, since we’re maximizing,
rather than minimizing, a function now.) Lets start by working with just
one training example (x, y), and take derivatives to derive the stochastic
gradient ascent rule:

∂

∂θj

ℓ(θ) =

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

∂

∂θj

g(θT x)

=

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

g(θT x)(1 − g(θT x)
∂

∂θj

θT x

=
(

y(1 − g(θT x)) − (1 − y)g(θT x)
)

xj

= (y − hθ(x)) xj
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Let us assume that

P (y = 1 | x; θ) = hθ(x)

P (y = 0 | x; θ) = 1 − hθ(x)

Note that this can be written more compactly as

p(y | x; θ) = (hθ(x))y (1 − hθ(x))1−y

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

L(θ) = p(y⃗ | X; θ)

=
m
∏

i=1

p(y(i) | x(i); θ)

=
m
∏

i=1

(

hθ(x
(i))
)y(i)

(

1 − hθ(x
(i))
)1−y(i)

As before, it will be easier to maximize the log likelihood:

ℓ(θ) = log L(θ)

=
m
∑

i=1

y(i) log h(x(i)) + (1 − y(i)) log(1 − h(x(i)))

How do we maximize the likelihood? Similar to our derivation in the case
of linear regression, we can use gradient ascent. Written in vectorial notation,
our updates will therefore be given by θ := θ + α∇θℓ(θ). (Note the positive
rather than negative sign in the update formula, since we’re maximizing,
rather than minimizing, a function now.) Lets start by working with just
one training example (x, y), and take derivatives to derive the stochastic
gradient ascent rule:

∂

∂θj

ℓ(θ) =

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

∂

∂θj

g(θT x)

=

(

y
1

g(θT x)
− (1 − y)

1

1 − g(θT x)

)

g(θT x)(1 − g(θT x)
∂

∂θj

θT x

=
(

y(1 − g(θT x)) − (1 − y)g(θT x)
)

xj

= (y − hθ(x)) xj
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Above, we used the fact that g′(z) = g(z)(1 − g(z)). This therefore gives us
the stochastic gradient ascent rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x(i)
j

If we compare this to the LMS update rule, we see that it looks identical; but
this is not the same algorithm, because hθ(x(i)) is now defined as a non-linear
function of θT x(i). Nonetheless, it’s a little surprising that we end up with
the same update rule for a rather different algorithm and learning problem.
Is this coincidence, or is there a deeper reason behind this? We’ll answer this
when get get to GLM models. (See also the extra credit problem on Q3 of
problem set 1.)

6 Digression: The perceptron learning algo-

rithm

We now digress to talk briefly about an algorithm that’s of some historical
interest, and that we will also return to later when we talk about learning
theory. Consider modifying the logistic regression method to “force” it to
output values that are either 0 or 1 or exactly. To do so, it seems natural to
change the definition of g to be the threshold function:

g(z) =

{

1 if z ≥ 0
0 if z < 0

If we then let hθ(x) = g(θT x) as before but using this modified definition of
g, and if we use the update rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x(i)
j .

then we have the perceptron learning algorithm.
In the 1960s, this “perceptron” was argued to be a rough model for how

individual neurons in the brain work. Given how simple the algorithm is, it
will also provide a starting point for our analysis when we talk about learning
theory later in this class. Note however that even though the perceptron may
be cosmetically similar to the other algorithms we talked about, it is actually
a very different type of algorithm than logistic regression and least squares
linear regression; in particular, it is difficult to endow the perceptron’s predic-
tions with meaningful probabilistic interpretations, or derive the perceptron
as a maximum likelihood estimation algorithm.

What if we take an extreme sigmoidal

40
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Above, we used the fact that g′(z) = g(z)(1 − g(z)). This therefore gives us
the stochastic gradient ascent rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x(i)
j

If we compare this to the LMS update rule, we see that it looks identical; but
this is not the same algorithm, because hθ(x(i)) is now defined as a non-linear
function of θT x(i). Nonetheless, it’s a little surprising that we end up with
the same update rule for a rather different algorithm and learning problem.
Is this coincidence, or is there a deeper reason behind this? We’ll answer this
when get get to GLM models. (See also the extra credit problem on Q3 of
problem set 1.)

6 Digression: The perceptron learning algo-

rithm

We now digress to talk briefly about an algorithm that’s of some historical
interest, and that we will also return to later when we talk about learning
theory. Consider modifying the logistic regression method to “force” it to
output values that are either 0 or 1 or exactly. To do so, it seems natural to
change the definition of g to be the threshold function:

g(z) =

{

1 if z ≥ 0
0 if z < 0

If we then let hθ(x) = g(θT x) as before but using this modified definition of
g, and if we use the update rule

θj := θj + α
(

y(i) − hθ(x
(i))
)

x(i)
j .

then we have the perceptron learning algorithm.
In the 1960s, this “perceptron” was argued to be a rough model for how

individual neurons in the brain work. Given how simple the algorithm is, it
will also provide a starting point for our analysis when we talk about learning
theory later in this class. Note however that even though the perceptron may
be cosmetically similar to the other algorithms we talked about, it is actually
a very different type of algorithm than logistic regression and least squares
linear regression; in particular, it is difficult to endow the perceptron’s predic-
tions with meaningful probabilistic interpretations, or derive the perceptron
as a maximum likelihood estimation algorithm.
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The Perceptron:
A Simple Learning Neuron
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Threshold θ = -w0
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Inputs

We want
output y
to equal
target t

Rosenblatt (1958)

Inputs may be from {-1, +1} or {0, +1}
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The Perceptron:
A Simple Learning Neuron
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The Perceptron:
A Simple Learning Neuron
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Inputs may be from {-1, +1} or {0, +1}
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Perceptron Learning Algorithm

One example of a learning algorithm (presents samples 

one at a time) 

For all input vectors in training set:

1) Present input vector x

2) Calculate y=1 if wTx ≥0, y=0 if wTx < 0

3) Compare y with target output t
a) If t=1 but y=0, set new w = old w + ηx [punish]

b) If t=0 but y=1, set new w = old w – ηx [punish]

c) Otherwise (If y=t), do nothing        [reward]

Repeat until correct for all input vectors.

Factor η is called the learning rate
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Decision Boundary

(+1,+1)(-1,+1)

(-1,-1) (+1,-1)

x1

x2

y=1
y=0

"Fire" "Don't
Fire"
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Simple Example
"If summer and not raining, play tennis" 

(threshold, x0 1 1 1 1)
summer, x1 0 0 1 1 
raining, x2 0 1 0 1 
play tennis, t 0 0 1 0 

Training set.
Specifies target t
for different inputs

summer, x1

raining, x2

t=0

t=1

t=0

t=0

0 1
0

1
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Simple Example (cont)

t=0

t=1

t=0

t=0

t=0

t=1

t=0

t=0

Suppose initially
w = (w0, w1, w2) = (-0.5, +2.5, -1.5)
Try input x = (1,1,1):
wTx = -0.5+2.5-1.5>0
so y=1: Wrong

Using η=0.5,
subtract ηx from w to give us
w = (-1.0, +2.0, -2.0)

Perceptron decision boundary is 
now correct for all inputs.
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Perceptron Limitations

• Problem must be linearly separable
• Classic non-linearly separable problem: XOR problem

• Minsky & Pappert (1969) - conjectured this limitation 

would not be overcome.

• But it was…

t=0

t=1

t=1

t=0
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From linear discriminants to GLD

50

Linear Discriminant Functions
Suppose we wished to decide whether some data 

belonged to one of two categories 

One way to do this is to construct a Discriminant function. Let g(x) 
define the categories as:

If g(x) is linear we can write:

where w = {w1, … , wd} are called the weights and w0 is called the 
bias or threshold weight.
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See ch 5.2 Linear Discriminant Functions
Duda Hart
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Simple Linear Classifier

Each unit shows its effective input-output function.

otherwise 1
00 if 1

emitsOutput 

-
>++ wtxw
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Decision surface

.     i.e.      0)( 210201 =-+=+ xxwxwxw ttt ww

g(x) = 0 defines a decision surface which separates points into 

ω1 and ω2. If g(x) is linear, this decision surface is a hyperplane.  

The hyperplane divides the space into two regions:

R1 : g(x) > 0, hence x is in ω1 and

R2 : g(x) ≤ 0, hence x is in ω2

Suppose x1 and x2 are both on the decision surface. Then:

Therefore w is normal (orthogonal) to the hyperplane. 
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Hyperplane decision surface

    

Let us write 

  x = x p + r w
w

where x p  is normal projection

of x  →  H  and  r  is distance from H
(r > 0 on + ve side, r < 0 on -ve)
Since g(x p ) = 0, 

g(x) = wtx + w0 = wt (x p + r w
w

)+ w0 =

= ...= r w

⇒  r = g(x) / w   

g(x) measures dist from x  to H .
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Generalized Linear Discriminants
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to cubic, etc.

We can generalize g(x) by adding terms xixj to give a quadratic 
(nonlinear) discriminant function:

We can view this as a linear discriminant function in a new space.

Let yi(x) define a new variable as a (nonlinear) function of x.
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formulation - A process
called augmentation.

See ch 5.3 Generalized Linear Discriminant Functions
Duda Hart
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Quadratic discriminant: 1-d example
Data remains 
one-dimensional

Ĥ

 332211
2

1110)( yayayaxwxwwg ++=++=x

.  ),,(),,,1( 1110
2 wwwxx == ay

e.g.

with

Mapping y  takes a line and transforms it to a parabola 
in 3D. The plane splits the resulting y space into 
regions corresponding to 2 categories. This gives a 
non-simply connected decision region in the 1D x 
space. Decision in y is convex, but not in x.
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Linearly Separable Case (2 category)
Suppose we have n samples y1,…yn, each labelled either ω1 or ω2 and 
we wish to learn a discriminant function g(y) = aTy, that correctly 
classifies the data.

Sample yi is correctly classified if 

or

A data set is called linearly separable if there exists a vector a which 
correctly classifies all samples. This is called a separating vector or 
solution vector. 

[ The case of g(y) = aTy+a0 with augmentation:                                      ]

10 ωii
T  labelled is    when yya >

20 ωii
T  labelled is   when yya <

TT a ],[',]1,[' 0aayy ºº

See Ch 5.4 The Two-Category Linearly-
Separable Case Duda Hart



How to find a
• Great now we have understood what the a must satisfy (linear 

inequalities) and some properties.
• However, we still do not know how to find a
• We are given some data and their labels and we need a procedure 

to find a 
• We need to find a criterion that when optimized we have a solution 

vector a.
– Lets call this criterion J(a). Observe it is a scalar function of a : 

returns a value pending on a
– If we make good choices of J() we can use optimization theory. 

[We will talk about this a lot later in the class. ]

– Learning a classifier is then reduced to an optimization problem
– We will consider for now a simple approach: Gradient Descent

60
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Gradient Descent

2. from repeat ,| If 4.
 3.
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 Initialize 1.
:algorithm descent gradientBasic 

 vector Gradient
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 :Update
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Simple concept: Consider I am at some point in my function J(ak). I need to 
move to a new point ak+1. What is a good point?

Gradient: Gradient points in the direction of the greatest rate of increase of 
the function. (Generalization of derivative in multivariate functions)



62

Perceptron Revisited
Could J = number of samples misclassified?
No – the function is piecewise constant. 
Why is this bad? The cost function has 0 
gradient at most points and wherever non-zero 
has discontinuities. We need a better cost.

The Perceptron    

where Ym is the set of samples misclassified by a.

When is Jp(a)=0?  

Is Jp(a) always positive?

å
Î

-=
mY

T
pJ

y
yaa )()( 

warning: Data are 
assumed normalized
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Perceptron Algorithm
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Multilayer Neural Networks
Linear discriminants are good for many problems but not general
enough for demanding applications. 
We can get more complex decision surfaces with nonlinear pre-
processing, 

Where φi(.), is, for example, a polynomial expansion to some order k.

But too many free parameters, so we may not have enough data 
points to fix them. è learn which nonlinearities to use.

The best-known method is based on gradient descent: the so-called 
backpropagation algorithm.

)(xii φy =
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Three-Layer Network
Network has:

• Input layer
• Hidden layer
• Output layer

with adjustable weights
between layers

Also:
• Bias unit

with weights to all hidden
and output units.

Biological terms sometimes used:
“neuron” = unit;   “synapses” = connection;  “synaptic weight” = weight.

kjw~
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Operation
Step 1: each d-dimensional input vector (x1,…,xd) is presented 
to input layer of the network and augmented with a bias term 
x0 = 1 to give x = (x0, x1,…,xd) 

Step 2: at each hidden layer we calculate the weighted sum of 
inputs to give the net activation:

where wji is the weight from the input unit i to the hidden unit j

Step 3: The hidden unit emits the output: 

where f(.) is some nonlinear activation function
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Operation (cont)
Step 4: At each output unit we calculate the weighted sum of the 
hidden layer units it is connected to giving:

where      is the weight from the hidden unit j to the output unit k

Step 5: each output unit emits 

where f(.) is again the nonlinear activation function

We can therefore think of the network as calculating c discriminant 
functions:
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Example: XOR Problem
Using f(net)=Sgn(net):
zk = (x1 OR x2) AND NOT (x1 AND x2)

= x1 XOR x2.
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General Feedfoward Operation
General form of output discriminant functions:

Question: can every decision be implemented with a 3-layer network?

Answer [Kolmogorov + others]: (in theory) Yes.

Typically needs very nasty functions at each layer. 
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Duda Hart
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Backpropagation
We have seen that we can approximate any function but how do we 
learn functions?

Perceptrons (single layer network): each input affects the output via its 
weight: so we know which weight to change to reduce errors.

Multilayer networks (a.k.a multilayer perceptron, MLP): hidden units 
have no “teacher” – so how reduce the error?

This is known as the credit assignment problem.

Backpropagation solves the credit assignment problem using a smooth 
activation function f(.) and gradient descent.

Some known non-linearities

71
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Backpropagation Network

kjw~
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Backpropagation Outline
Step 1: start with untrained network (random weights)

Step 2: present training data to network and calculate outputs: z(n) = g(x(n))

This generates a training error:

Where w represents the set of all weights in the network and t(n) are the 
target outputs

Step 3: change the weights in the direction of the negative gradient:

or

where η is the learning rate (step size).

Step 4: iterate until convergence
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Backpropagation of Errors
Let us calculate the gradient for a 3-layer network. We work backwards, 
starting at the hidden-to-output weights.

The chain rule gives:

where                                is termed the sensitivity of J to the net activation 
of k. Applying the chain rule again:

where f’(.) is the derivative of f(.). Noting that:

Hence:
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Backpropagation to Hidden Units
Again using the chain rule for input-to-hidden units we have

Note that                  involves all outputs k

since
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Hidden Units (cont)
We also have                                             so we can define

as the hidden unit sensitivities. Note that the output sensitivities are 
propagated back to the hidden unit sensitivites – hence “back-
propagation of errors”

Finally we have:

So the update rule for the input-to-hidden weights is:
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Backwards propagation

The backpropagation algorithm can be easily generalized to any 
network with feed-forward connections, e.g. more layers, different 
nonlinearities in different layers, etc.
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Criticisms of MLPs
MLPs provide one way to achieve the required expressive power 
needed to build general classifiers. However they do have their 
weaknesses:

– Possibility of multiple (local) minima
– g(x) is nonlinear in terms of the weights: this makes training slow.
– ad hoc solution (how many units, hidden layers, etc?)

Other popular discriminant learning structures:

– Support Vector Machines (SVMs)
– Convolutional Networks (CNNs)

TensorFlow Demo

• Start with the bottom left (linear activation) 
– Observations: linearly separable 
– Start with a very simple net 1 layer 1 node (linear 

activations)
• Move to upper right still separable but not linear in input 

space
– Options to fix: change layer size, add layers, change 

activation, change inputs?

79



Support Vector Machines
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Support Vector Machines
• SVMs solve a problem in linear or non-linear space by 

projecting the input space into a new (possibly infinite) 
space. 

81
Ch 5.11 Duda
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Support Vector Machines
SVMs aim to solve the linearly separable problem. First map feature 
space into high (possibly ∞−) dimensional space.

Then find separating hyperplane with maximal margin. Recall, 
intuitively we are more confident in classifying point far away from 
the decision boundary.

Learning takes the form of a constrained optimization scheme.

Ch 5.11 Duda

Why max margin

• For example these possible hyperplanes.  Which one 
you will choose?

• “Direction 1” has
a narrow margin
thus on unseen
(test) data it has
higher likelihood
of error.

• Clearly 
‘direction 2’ is 
preferred

83
Ch 5.11 Duda
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SVMs: Maximizing the Margin

Adv. Concepts in Sig. Proc.

36

Advanced Concepts in Signal 
Processing

71

Support Vector Machines
SVMs aim to solve the linearly separable problem. First map feature 
space into high (possibly ∞−)	dimensional space.

Then find separating hyperplane with maximal margin. Recall, 
intuitively we are more confident in classifying point far away from 
the decision boundary.

Learning takes the form of a constrained optimization scheme.

Advanced Concepts in Signal 
Processing
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SVMs: Maximizing the Margin
Suppose that we have a margin %, such that &(())*+( ≥ % for all 
points, - = 1, 2, … , 3. We therefore want to solve the following:

max	%, such	that:&(())*+( ≥ %
	and:	 ) = 1

This is a messy optimization problem. However, equivalently we can 
solve:

min	 )  , such	that:&(())*+( ≥ 1
That is, we search for the minimum size weight vector that is able to 
separate the data with a margin of % = 1.

This form of the problem is a constrained quadratic optimization 
problem. It is convex and (relatively) easy to solve.

Ch 5.11 Duda

Interestingly the Max margin solution only depends on a subset of 
the training data – those that lie exactly on the margin (why?). These 
are called the support vectors (SVs).

Also

• the support vectors
also define the equation of the 
optimal hyperplane: 
a ~ weighted sum of ω(i)yi

• The hyperplane is unique
the SVs are not unique. Why?

SVMs can be shown to generalize well in terms of cross validation 
error
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The Support Vectors

Support vectors
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SVM Generalization Error

• Cross Validation (CV) – Break the data into a training 
set and a testing set. Use the training data to learn the 
classifier then evaluate on the test data 

• Leave-one-out CV: choose one data point at random as 
the testing set. 

{x1, x2,…, xp, xp+1,…xn}
• Note the LOOCV error will be unaffected unless xp is a 

support vector. Therefore we have: 

• Therefore the number of SVs tells us how confident we 
are in the SVM. 

		
errorLOOCV ≤

#	of	SVs
n
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Principal Component Analysis
MLP can learn “functions” of data but with high dimensional inputs they need 
some help!

This topic concerns decomposing signals into useful low dimensional subsets:
– For feature space selection in classification
– For redundancy reduction
– To avoid overfitting
– For signal separation

The key aim is to find a linear transform of the data that better represents the 
underlying information
e.g. Fourier transform of an image concentrates information into low 
frequencies
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PCA – Graphical Intuition
Suppose I want to characterize fish population.
Measure length/breadth and plot.

Subtract mean from each axis (center) 
Note relationship between 
data matters only. 

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm
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PCA – Graphical Intuition
Suppose I want to characterize fish population.
Measure length/breadth and plot.

Subtract mean from each axis (center) 
Note relationship between 
data matters only. 

I can move
the axis!  But how to chose 
them? I can rotate them.

What is my objective: position one axis in such a way that it accounts for the 
largest proportion of the data's variance. 
Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm
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PCA – Graphical Intuition
Suppose I want to characterize fish population.
Measure length/breadth and plot.

Subtract mean from each axis (center) 
Note relationship between 
data matters only. 

I can move
the axis!  But how to chose 
them? I can rotate them.

What is my objective: position one axis in such a way that it accounts for the 
largest proportion of the data's variance. 
Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm
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PCA – Graphical Intuition
What might you call this new axis?  size = length + breadth
However, we could make one of the variables more important. 

size = 0.75 x length + 0.25 x breadth
[these are weights and are important! They tell us the “significance” of each of 
the original variables. 
What about the second axis of the ellipse?
Objective: account for as much of the remaining variation as possible but must 
also be uncorrelated (orthogonal) with the first. [trivial in 2D]
Apart from size, how else do the above fish differ? 
Not much, minor differences in shape. If we ignore 2nd axis (after rotation) we 
would lose information about the different shapes, but since they are all very 
similar in shape we wouldn't lose much information at all. 
Thus, in the above example we can reduce the data's dimensionality from two 
(length and breadth) to one (size), with little information loss. 
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PCA & Subspace Projections

Introduced by Pearson in 1901 “On lines and planes of 
closest fit to a system of points in space.” (a.k.a. Karhunen-
Loéve transform (KLT), or the Hotelling transform,…).

Suppose our data consists of d-dimensional vectors
and we want a low-dimensional approximation for the data.

Let ui be an orthonormal basis for      (i.e. UTU = I) then 
we can approximate x by:

let 

dRÎ(n)x

dR

			 
!x = (uiTx)ui +

i=1

M

∑ bju j
j=M+1

d

∑

xui
T

iz =

Each bj is a 
constant
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Subspace Projections

x has d degrees of freedom while    has M deg. of freedom.

Principal Component Analysis – choose ui and bj to best 
approximate x in the LSE sense, ie., minimize EM:

Taking the derivative with respect to bj gives:
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Subspace Projections (cont.)
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So we can write:

where Rx is the sample covariance matrix for {x(n)}

Minimizing EM with respect to uj is satisfied by:

i.e. the M basis vectors are the principal eigenvectors of the 
sample covariance matrix.

M1,...,jfor  , == jj uuRx l
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PCA example: eigenfaces
In face recognition a common practice is to first project 
data (after alignment) onto a low dimensional PCA space, 

e.g. images from images AT&T Laboratories Cambridge. 

Eigenfaces capture appearance and lighting conditions quite well. 

      u                   u                   u                   u 4321
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PCA Algorithm Summary and 
Projection on Principal Directions

The PCA algorithm is summarized as follows:
1. subtract mean    from data
2. Calculate sample covariance matrix, Rx for
3. Perform eigenvalue decomposition:
4. Approximate data by the first  M components that have 

the largest eigenvalue:

Recall by design eigenvectors are ORTHOGONAL with 
each other ui

Tuj=0 (i # j) and have length 1 (ui
Tui=1).

T
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An interactive demo
• http://setosa.io/ev/principal-component-analysis/
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(linear) PCA method is built upon the eigenanalysis of (n
number of data points)

There is an equivalent built upon the eigenanalysis of 

known as the Gram matrix.
The kernel PCA method is the kernelized version of this,
where inner products are replaced by kernel operations.

ú
ú
ú

û

ù

ê
ê
ê

ë

é

==

n
T
n

T
n

n
TT

T

xxxx

xxxx
XXK

!
"#"

!

1

111

å
=

==
n

i

T
ii

T
X xx

n
XX

n
R

1

11

Kernel PCA



100

ØThe kernel PCA algorithm
• Compute the Gram matrix.

• Compute the m dominant eigenvalues / eigenvectors.

• Perform normalization to unity.

• Given a vector   , perform the following �nonlinear 
mapping�.

mkaan k
T
kk ,...,2,1  , 1 == l

K(i, j) = K(xi, x j ) ,   i, j =1, 2,...,n

x

mkxxKiaky
n

i
ik ,...,2,1  , ),()()(

1

==å
=

mkakk ,...,2,1  ,  , =l
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ØRemark
• The kernel PCA is equivalent with performing a (linear) 

PCA in a Reproducing kernel Hilbert space (RKHS) H, 
after a mapping

• It can be shown that the dominant eigenvectors of

are given in terms of the dominant eigenvectors of the 
Gram matrix, i.e.,

Hence the projection of          on     is given by: 

using the properties of the RKHS.
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WHY CARE ABOUT FEATURES 
AND HOW MANY

102

5-103

Overfitting in ML
Given a limited data set maximising the likelihood L(w) may lead to overfitting.
If the model order (dimensions of w) is large enough we can ‘exactly’ fit model 
to data. 
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Ch 9.3.1 Duda



Ex

�
(F (x)� g(x))2

 
= Ex

n
( F (x)� Ex{g(x)}+ Ex{g(x)}� g(x) )2

o

= Ex

n
(F (x)� Ex{g(x)})2

o

| {z }
bias2

+Ex

n
(Ex{g(x)}� g(x))2

o

| {z }
variance

+ 2 Ex {(F (x)� Ex{g(x)}) (Ex{g(x)}� g(x))}| {z }
=0

<latexit sha1_base64="DyXyyZY4ICeokim7ce//Yx13p7o="></latexit>

Overfitting relates to Model Order Selection. As with estimating power spectra 
the problem comes from a bias -variance trade-off. Consider the expected error 
between an optimal estimator F(x) (ie. the true function) and an empirical 
estimator g(x).                                        [We use the augmentation trick.]

5-104

Overfitting in ML

The expectation over 
all possible different 
training sets (also 
known as the 
ensemble average). 
It is not the E we used 
to denote as the cost 
function thus far. 

To show why this is 0 do the multiplication 
and then recall properties of the 
Expectation of constants!

5-105Source: http://scott.fortmann-roe.com/docs/BiasVariance.html
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Example

0 0.5 1

g1 (x)g(x)

f(x)

x

y

Complex model results in 
low-bias but a high 
variance, as one changes 
from one training set to 
another. 

Simple model results in 
high bias but low variance.

Which one of g(x) or g1(x) has high variance? 

• Identify high bias / variance cases:

Ignore the data è Use all data è
*    Big approximation errors                               *  No approximation errors

(high bias)                                                      (zero bias)
*    No variation between data sets                       *  Variation between data sets

(no variance)                                                    (high variance) 

14
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Instead, if we had added an extra feature x2, and fit y = θ0 + θ1x + θ2x2,
then we obtain a slightly better fit to the data. (See middle figure) Naively, it
might seem that the more features we add, the better. However, there is also
a danger in adding too many features: The rightmost figure is the result of
fitting a 5-th order polynomial y =

∑5
j=0 θjxj. We see that even though the

fitted curve passes through the data perfectly, we would not expect this to
be a very good predictor of, say, housing prices (y) for different living areas
(x). Without formally defining what these terms mean, we’ll say the figure
on the left shows an instance of underfitting—in which the data clearly
shows structure not captured by the model—and the figure on the right is
an example of overfitting. (Later in this class, when we talk about learning
theory we’ll formalize some of these notions, and also define more carefully
just what it means for a hypothesis to be good or bad.)

As discussed previously, and as shown in the example above, the choice of
features is important to ensuring good performance of a learning algorithm.
(When we talk about model selection, we’ll also see algorithms for automat-
ically choosing a good set of features.) In this section, let us talk briefly talk
about the locally weighted linear regression (LWR) algorithm which, assum-
ing there is sufficient training data, makes the choice of features less critical.
This treatment will be brief, since you’ll get a chance to explore some of the
properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query
point x (i.e., to evaluate h(x)), we would:

1. Fit θ to minimize
∑

i(y
(i) − θT x(i))2.

2. Output θT x.

In contrast, the locally weighted linear regression algorithm does the fol-
lowing:

1. Fit θ to minimize
∑

i w
(i)(y(i) − θT x(i))2.

2. Output θT x.
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Example in regression



These examples tell us:
• Too complex a model → high variance. 
• Too simple a model    → high bias (the simplest model is the fixed value).

Possible solution on diagnosis for models and data (size)
Cross-validation: Break the data into 3 pieces: training, validation and 
testing sets. Set the testing set apart, do not touch it, till the end.

Use the training data to learn the model parameters. 
But identify the best model order (and other parameters such as step size, 
regularizers, type of activation function etc) using the validation (“out-of-
sample”) set. 

If you are happy with the performance on the validation set, then you can now 
take the testing set and run the algorithm on the testing set. 
Then report results on the training and testing sets.
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Overfitting in ML

Diagnosing bias/variance: the practical 
picture

• Finding a good model size

5-109

Validation 
(or testing) 
error

Training 
error



Bias vs variance: on data size

• Typical curve with high variance

• Test error decreases as m increases è larger training 
set may help

• There is a gap between training & test error
Andrew Y. Ng 

More on bias vs. variance

Typical learning curve for high variance:

m (training set size)

er
ro

r Test error

Training error

• Test error still decreasing as m increases.  Suggests larger training set 
will help.
• Large gap between training and test error. 

Desired performance
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Bias vs. variance: on data size

• Typical curve with high bias

• We are in trouble: training error is high too
• Small gap between the two errors

Andrew Y. Ng 

More on bias vs. variance

Typical learning curve for high bias:

m (training set size)

er
ro

r Test error

Training error

• Even training error is unacceptably high. 
• Small gap between training and test error. 

Desired performance
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DEEP LEARNING
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From “hand-designed” feature spaces 
to data-driven ones…

113

Extract 
features

Agisilaos Chartsias et al. /Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,
LV and RV respectively.

cavity, then multiply this sum with the pixel resolution to get the
corresponding area and then multiply the result with the slice
thickness to get the volume occupied by each slice. The final
volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a
similar process to the one used to calculate the ground truth
values. We design a small neural network consisting of two
convolutional layers (each having a 3⇥3⇥16 kernel followed by
a ReLU activation), and two fully connected layers of 16 and 1
neurons respectively, both followed by a ReLU activation. This
network regresses the sum of the pixels of the left ventricle,
taking as input the spatial representation. The predicted sum
can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding
to one subject (last row in Table 2 with 6% labels), we fine-
tune the whole model whilst training the area regressor using
ground truth values from 17 subjects. We find that the aver-
age LVV over the test volumes (over both ED and ES frames)
is 59.37mL with a standard deviation of 3.7, which is in the
normal range as reported in (Bai et al., 2018a). The multi-task
objective used to fine-tune the whole model also benefits test
segmentation accuracy, which is raised from 0.756 to 0.832.3
While this is for a single split, observe that using LVV as an
auxiliary task e↵ectively brought us closer to the range of hav-
ing 50% annotated masks (second row in Table 2). Thus, aux-
iliary tasks, such as LVV prediction, which are related to the
endocardial border segmentation can be used to train models in
a multi-task setting and leverage supervision present in typical
clinical settings.

3The multi-task objective in fact benefits the Dice score for both labels indi-
vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
0.819 to 0.899.

5.3. Multimodal learning
By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using
multimodal data, with the spatial factor capturing the common
anatomical information and the non-spatial factor capturing the
intensity information unique to each image’s particular modal-
ity. Here we evaluate our model using a multimodal MR and
CT input to achieve segmentation (Section 5.3.1) and modality
transformation (Section 5.3.2).

5.3.1. Multimodal segmentation
We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor
from both MR and CT segmentation masks. In fact, we show
below that when mixing data from MR and CT images, we im-
prove segmentation compared to when using each modality sep-
arately. Since the aim is to specifically evaluate the e↵ect of
multimodal training in segmentation accuracy, unlabelled im-
ages are not considered here as part of the training process, and
the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and
CT test sets, obtained when training a model with di↵ering
amounts of MR and CT data. Results for 12.5% of data cor-
respond to images obtained from one subject. Training with
multimodal data leads to improvements in both individual MR
and CT performances. This is the case even when we add 12.5%
of CT to the full MR dataset, and vice versa; this does not only
improve the MR (increasing from 0.74 to 0.76), but also the CT
performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation
Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
multimodal data as input. Only the image modality factor z

decision

Decision 
function

Human 
engineering

(e.g. input x and x2)

Agisilaos Chartsias et al. /Medical Image Analysis (2018) 9

Fig. 5. Segmentation example for di↵erent numbers of labelled images from the ACDC dataset. Blue, green and red show the models prediction for MYO,
LV and RV respectively.

cavity, then multiply this sum with the pixel resolution to get the
corresponding area and then multiply the result with the slice
thickness to get the volume occupied by each slice. The final
volume is the sum of all individual slice volumes.

Predicting the LVV as another output of SDNet follows a
similar process to the one used to calculate the ground truth
values. We design a small neural network consisting of two
convolutional layers (each having a 3⇥3⇥16 kernel followed by
a ReLU activation), and two fully connected layers of 16 and 1
neurons respectively, both followed by a ReLU activation. This
network regresses the sum of the pixels of the left ventricle,
taking as input the spatial representation. The predicted sum
can then be used to calculate the LVV o✏ine.

Using a pre-trained model of labelled images corresponding
to one subject (last row in Table 2 with 6% labels), we fine-
tune the whole model whilst training the area regressor using
ground truth values from 17 subjects. We find that the aver-
age LVV over the test volumes (over both ED and ES frames)
is 59.37mL with a standard deviation of 3.7, which is in the
normal range as reported in (Bai et al., 2018a). The multi-task
objective used to fine-tune the whole model also benefits test
segmentation accuracy, which is raised from 0.756 to 0.832.3
While this is for a single split, observe that using LVV as an
auxiliary task e↵ectively brought us closer to the range of hav-
ing 50% annotated masks (second row in Table 2). Thus, aux-
iliary tasks, such as LVV prediction, which are related to the
endocardial border segmentation can be used to train models in
a multi-task setting and leverage supervision present in typical
clinical settings.

3The multi-task objective in fact benefits the Dice score for both labels indi-
vidually: MYO accuracy rises from 0.633 to 0.706 and LV accuracy rises from
0.819 to 0.899.

5.3. Multimodal learning
By design, our model separates the anatomical factor from

the image modality factor. As a result, it can be trained using
multimodal data, with the spatial factor capturing the common
anatomical information and the non-spatial factor capturing the
intensity information unique to each image’s particular modal-
ity. Here we evaluate our model using a multimodal MR and
CT input to achieve segmentation (Section 5.3.1) and modality
transformation (Section 5.3.2).

5.3.1. Multimodal segmentation
We train SDNet using a multimodal input of MR and CT

data with the aim to improve learning of the anatomical factor
from both MR and CT segmentation masks. In fact, we show
below that when mixing data from MR and CT images, we im-
prove segmentation compared to when using each modality sep-
arately. Since the aim is to specifically evaluate the e↵ect of
multimodal training in segmentation accuracy, unlabelled im-
ages are not considered here as part of the training process, and
the models are trained with full supervision only.

In Table 3 we present the Dice score, over held out MR and
CT test sets, obtained when training a model with di↵ering
amounts of MR and CT data. Results for 12.5% of data cor-
respond to images obtained from one subject. Training with
multimodal data leads to improvements in both individual MR
and CT performances. This is the case even when we add 12.5%
of CT to the full MR dataset, and vice versa; this does not only
improve the MR (increasing from 0.74 to 0.76), but also the CT
performance (increasing from 0.23 to 0.56).

5.3.2. Modality transformation
Although our method is not specifically designed for modal-

ity transformations, it can be used as such, when trained with
multimodal data as input. Only the image modality factor z

We see

Computer sees

e.g. SVM, GLD, 
MLP



What if we could “extract” 
automatically good 
features….

114http://fortune.com/ai-artificial-intelligence-deep-machine-learning/

Convolutional Networks (CNNs)
Consider the problem of building a classifier that is insensitive to 
translation (or scale, rotation, etc.). A Convolutional Network encodes 
the invariance within the MLP structure [LeCun 1998].

115Ch 6.10.4 Duda and Inspired by Goodfellow et al Deep learning book



Convolutional Networks (CNNs)
Consider the problem of building a classifier that is insensitive to 
translation (or scale, rotation, etc.). A Convolutional Network encodes 
the invariance within the MLP structure [LeCun 1998].

Let us first review 2D 
convolution è

Can I write w conv I as a 
matrix multiplication?

Next layer O = W*I 
W must have a correct 
shape and 
I: a vector (input layer)!

116
(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +

ey + fz
aw + bx +

ey + fz
bw + cx +

fy + gz
bw + cx +

fy + gz
cw + dx +

gy + hz
cw + dx +

gy + hz

ew + fx +

iy + jz
ew + fx +

iy + jz
fw + gx +

jy + kz
fw + gx +

jy + kz
gw + hx +

ky + lz
gw + hx +

ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Figure 9.1Inspired by Goodfellow et al Deep learning book

Convolutional Networks (CNNs)

117

• Connections are 
restricted: hidden units 
are connected identically 
to neighbours to encode 
shift/delays

• Training using back prop. 
but with ties weights 
across shifted units 
(weight sharing)

• The resulting MLP has 
much fewer weights to 
train than a traditional 
MLP

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Sparse Connectivity
Sparse 

connections 
due to small 
convolution 

kernel

Dense 
connections

Figure 9.3

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
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shares the same 

parameters 
across all spatial 
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matrix 
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Figure 9.5



Convolutional Networks (CNNs)
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• Growing “influence” with 
depth è
(the top layer is influenced 
by a large span of inputs 
despite only connected to 3 
previous units)

• Max pooling helps with 
invariance and down 
sampling reduces number 
of parameters (Goodfellow 2016)

Growing Receptive Fields
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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Figure 9.4

(Goodfellow 2016)

Pooling with Downsampling
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Large response
in pooling unit

Large response
in pooling unit

Large
response

in detector
unit 1

Large
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in detector
unit 3

Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.
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Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.
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Figure 9.10

CNNs & Deep Learning

• CNNs are often considered the ancestors of Deep Learning. 

• The idea is to use MLP with many (≥ 3) hidden layers. This involves 

lots of ‘tricks’ to make training work:  convolution, subsampling, 

pooling of outputs,…, pretraining (helps to start the weights with 

good initial values)

but exhibit state-of-the-art performance… 

e.g. see - http://www.cs.nyu.edu/~yann/research
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Application to face detection and 

pose estimation



More Demos
• http://cs.stanford.edu/people/karpathy/convnetjs/
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