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Disclaimers

« The following slides contain material from several
sources.

» They are to be used by participants of the summer
school and cannot be distributed without permission from
the lecturer.

» Copyright of figures remains on the copyright holders
which may not be solely of the author. Atttribution has
been given when possible but has not been exhaustive.

* Material shared maybe more than what we will be
covered at delivery.

« Material subject to change.




Our expertise

Cortex

« Computer vision
& Image Analysis:

Cerebellum

Thalamus
Hypothalamus

— Extract information from images
— Applications: medicine, plants

* Machine learning & pattern
recognition

— Shallow or deep
representation learning
(the process of making sense of data)

 Distributed learning

An example of ML in UDRC

* Given data can e Learn a distribution that

| learn their distribution? can generate that data?
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What is machine learning?

« What do you think?

Some applications

« Email spam filtering

* Netflix’Amazon recommendations
» Google suggested queries

» The Google index itself

* Predicting stock prices

» Classifying threats in images

+ etc




Extreme(...) applications

MIT flight
http://www.youtube.com/watch?v=aiNX-vpDhMo
Robot in the dessert
http://www.youtube.com/watch?v=010tOmyySQo

Google car
http://www.youtube.com/watch?v=cdgQpa1pUUE

What is machine learning?

Arthur Samuel [1959] (informal definition) Gives
computers ability to learn without being explicitly
programmed.

=>He built the very first checker’s program

Tom Mitchell [98] (more formal): A well-posed learning

problem is defined as follows:
— A computer program is set to learn from an

experience E with respect to some task T and some
performance measure P if its performance on T as

measured by P improves with experience E.




Text Books

* Useful texts ...

Neural Networks for
l)atter_l_]_ : Pattern Recognition
Classification

Christopher M. Bishop

LEARNING &

dfellow, Yoshua Bengio, {
ron Courville

« Most can be found online or libraries: e.g.

https://github.com/jermwatt/machine learning refined

https://www.deeplearningbook.orqg/

What *we* do with ML...

« We build algorithms to analyze imaging data (2D, 3D,
2D+t, 3D+t)

* From a variety of domains
» Use machine learning throughout

 Some examples...
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Counting objects (old school)

©© plant Annotation Tool
Dods| kS
Phenotiki - Leaf Annotation Tool
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Feature Learning
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Regression
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Counting objects (new school)

r

(@)

Modality Branch

Modality Branch

Modality Branch

RGB NIR FMP
Fully Connected Layer Fully Connected Layer Fully Connected Layer
H=1024 H=1024 H=1024

Activation Layer
RelLU

Activation Layer
RelLU

Activation Layer
RelLU

|

Fusion Layer

|

Fully Connected Layer
H=512

Activation Layer
RelU

Output Layer
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Giuffrida et al. The Plant Journal Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting




Restoring faults in images

Root Imalmi

Segmentation

lniamted Result

* Recover gaps from
images of plant roots

* A similar problem is
present in medical
imaging as well

=>» Retina fundus Input Ours
—
,,// éHE C ; - -
| |
Chen et al. “Adversarial Large-scale Root Gap Inpainting *, CVPRW - CVPPP 2019 13

Learning to age

* How would | look in 30 years?
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Doing more with less

» Build systems that learn from few data, few annotations
— Understand the

images with

world clinical biomarkers
— Build intuition EHR report
about the annotated images maget |69% 61 85
and masks image2 |70% 6.8 9
world D
features
segmentation masks
non-annotated
images
Chartsias et al. “Factorised Representation Learning in Cardiac Image Analysis”, ArXiv 2019 15

Find anomalies in images?

* Find disease and also create an artificial image that
looks like as if it did not have disease

16




e The major directions of learning are:

— Supervised: Patterns whose class is known a-priori
are used for training.
— Unsupervised: The number of classes/groups is (in

general) unknown and no training patterns are
available.

— Semisupervised: A mixed type of patterns is
available. For some of them, their corresponding class
is known and for the rest is not.
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Supervised example

Living area (feet?) | Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
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800
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500 -

o
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8
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300
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500 1000 1500 2000 2500 3000 8500 4000 4500 5000
square feet
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Another one
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Hmm this is harder
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Unsupervised clustering
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Semi-supervised learning
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Semi-supervised learning
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Topics that we will try to cover

Supervised methods

— Linear regression

— Logistic regression

— Lasso and elastic net regression

— Support vector machines (linear and non linear, and even
SVR)

— Perceptron Classifier

Unsupervised (and dimensionality reduction)
— PCA, kernel PCA

Learning theory (simple view)

Deep Neural Networks I: Introduction; simple feed forward
neural network architecture; how to train neural network;
backpropagation theory; introduction to convolutional neural
networks.
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Supervised learning

Living area (feet?) | Price (1000$s)

2104 400 -
1600 330 " g prices
2400 369 o
1416 239 8007

3000 540 700

600 -

$1000)

500

ce (in

& 4001
300
200
100

ok

Il Il Il Il Il Il Il Il
500 1000 1500 2000 2500 3000 3500 4000 4500
square feet

5000
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A typical formulation

* Input or features:

» Output or target: () (
« Training example: na Training
° ini == 'i set
Trammg se (), )
List of m examples: ‘" - ‘
S _ Learning Ly ;
pace. algorithm | "' -+ ™7 Y
{(zD, yD);i =1,..., m} B
) X —»{_—> redicted
X )/ (living area of i’ gl'edicted price)y
house.) of house)
29

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

30




price (in $1000)

1000

900

800

700

600

500

400

300

200

Linear fit

housing prices

- | | | | | | 1 Objective function:
How do we find the
solution to this problem?

- x 1 We are given some data.
We are given a desired
form of the line but we
want to find the best line.

We need an objective
function = training cost

=measure of
1001 1 performance
ok ] That we can optimize.
500 1 O‘OO 1 5‘00 20‘00 25‘00 3(;00 35‘00 40‘00 45‘00 5000
square feet
31
Optimization

Many ML techniques need optimization, e.qg.
* Minimizing error in a neural network/adaptive system
« Maximizing probability in Bayesian inference

From simple “steepest descent” to more advanced
techniques (conjugate gradient,...)

J J

i N < Topt 4 M= Topt

w * w¥
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Solving the linear regression problem

The LMS algorithm
ho(z) = Oy + 6121 + 0979 h(z) = Z O;z; = 07z,
1=0

Define a cost: ) = %zm:(hg(x(i)) — D)2,

i=1

0

+ Optimise for the cost ¢, := 0, — aa—ej(e).
i
0 01 2
5070 = 555 (hel@) =) , .
9 99; 2 6, =0; +a (y(’) — hg(m(’))) :1:57)

1 0
25 (ho(2) =) - a@(ho(x) )

= (ho(7) —y) - 819] (Z O;z; — ?J)

= (ho(z) —y)z;

For a dataset of size 1
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Batch vs stochastic

Batch| Repeat until convergence {

0;:=0; +ad. ", (y© — hy(z)) xy) (for every )

}
« Stochastic | Loop {
for i=1 to m, {
0; =0, + a (y» — he(z)) xg-i) (for every 7)
}

34




Higher model complexity

Model choice:

How do we tell what is the right choice?
Theoretical background: the bias variance dilemma
The practical solution: cross validation
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Logistic Regression

e Can we solve the classification problem as linear

ion?
regression: .

ho(z) = 9(0"2) = T——5r,

e The logistic function
(sigmoid function) =

ool
08l
o7t
06l

Sost
04l
03l

0.2

0.1

—
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@@
& Why?
& Y:

&
~
52

e It has some nice property

d 1

dz 1l+e 7
1

Tree )

1 1
T Trer) (1 - ﬁ)
= g(2)(1 —g(2)).

g(z) =

37

How to solve the problem (find the

theta’s)?
A maximum likelihood view
Assume Ply=1]xz;0) = hy(x)

Ply=0|xz;0) = 1— hy(x)

Or... p(y | 2:0) = (he())" (1 — hg(x))"™
L) = p(y|X;0) Objective
Assuming the training = TLes® | 2%:0) function
examples were generated =1 | |
independently = T (s N (1~ hofat)
((0) = log L(6) ple

= > yPlogh(z?) + (1 — y?)log(1 — h(z"))
1=1

38




Contd...

Lets use gradient ascent

0 =0+ aVel(0)

P 1 1 0 T
3510 = (v~ 0= V=) a0
1 1 T — (0T
- (yg(eTaz) — vy 9(97’90)) A= 0@)
= (y(1—g(072)) — (1 - y)g(0"2)) x;
= (y—ho(x)) z;

1.2 e —_— —_—

1o}

u.e;
0.6:
0.4t
0zf

nnf

Y] P P T T ]

(2) = 1 ifz>0
IEI=Y 0 ifz<0




The Perceptron:
A Simple Learning Neuron

Rosenblatt (1958) We want
output y
Threshold 6 = -w, to equal
=10 @ target t
o~ O\ V[
| e — Y
Inputs i
| / n
Xn O m V = ZWiXI
o &
Inputs may be from {-1, +1} or {0, +1} y = f(v)

41

The Perceptron:
A Simple Learning Neuron

impulses carried
toward cell body

branches

dendrites

nucleus

N\ impulses carried
away from cell body

axon

terminals

42




The Perceptron:
A Simple Learning Neuron

Rosenblatt (1958) We want
output y
Threshold 6 = -w, to equal
X=10 \WJ target t
o~ O\ V[
| e — Y
Inputs i
| / n
Xn o /—\ V = ZWI_XI_
B i=0
Inputs may be from {-1, +1} or {0, +1} y = f(v)
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Perceptron Learning Algorithm

One example of a learning algorithm (presents samples
one at a time)
For all input vectors in training set:
1) Present input vector x
2) Calculate y=1 if w'x 20, y=0 if wTx < 0
3) Compare y with target output ¢

a) If =1 but y=0, set new w = old w + nx [punish]
b) If =0 but y=1, set new w = old w — nx [punish]
c) Otherwise (If y=t), do nothing [reward]

Repeat until correct for all input vectors.
Factor n is called the learning rate

44




Decision Boundary

X2

(-1,+1 (+1,+1)
°
"Fire" "Don't
y=0 Fire"
X1
(-1,-1) o + ® (+1-1)
45
og@
3 :
& Simple Example
N
\% n H H H 1]
e If summer and not raining, play tennis
Training set. (threshold, x, 1 1 1 1)

Specifies target t | Summer, X; 0011
for different inputs | raining, x; 0101
play tennis,t 0 0 1 O

raining, X l
1 °
=0 =0
=0 =1
0 -¢ e&— summer, X,
0 1

46
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& Simple Example (cont)

Suppose initially l

W = (Wp, Wq, Wp) = (-0.5, +2.5, -1.5) —
Try input x = (1,1,1):

wix = -0.5+2.5-1.5>0

so y=1: Wrong

Using n=0.5, l

subtract nx from w to give us ®
=0 =0

W= (10,+20,-20) — |

Perceptron decision boundary is
now correct for all inputs.

47

Perceptron Limitations

Problem must be linearly separable
Classic non-linearly separable problem: XOR problem

} .

=1 =0

’t=0 t.=1 :

Minsky & Pappert (1969) - conjectured this limitation
would not be overcome.

But it was...

48




From linear discriminants to GLD

49

Linear Discriminant Functions

Suppose we wished to decide whether some data

X =(x,Xp,..0,X,)
belonged to one of two categories

One way to do this is to construct a Discriminant function. Let g(x)
define the categories as:

@, g(X)>0
w(X)=
a)Za g(X) < O
If g(x) is linear we can write:

d
g(X) = W'X+wy = Y wx; + W,
i=1
where w = {w,, ... , w,} are called the weights and w; is called the
bias or threshold weight.

See ch 5.2 Linear Discriminant Functions
Duda Hart
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Simple Linear Classifier

Output emits
g(x) +1if wix+wy >0
—1 otherwise

output unit

bias unit w,

input units

Each unit shows its effective input-output function.
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Decision surface

g(x) = 0 defines a decision surface which separates points into

w4 and w,. If g(x) is linear, this decision surface is a hyperplane.
The hyperplane divides the space into two regions:
R;:g(x)> 0, hence x is in w4 and
R,:g(x) <0, hence x is in w,
Suppose x4 and x, are both on the decision surface. Then:
WX, +w, =W'X, +w, ie wW(x,—x,)=0.

Therefore w is normal (orthogonal) to the hyperplane.

52




&
°§ [ ] L ]
& Hyperplane decision surface
N
&

\‘7 Let us write
&

where x  is normal projection

of x — H and r is distance from H
(r >0 on + ve side, <0 on -ve)
Since g(x ) =0,

gx)=wx+w, = w’(xp +rH—:VVH)-|- W, =
—

X, = r= g(x)/HWH

g(x) measures dist from x to H.

53

o
§

# Generalized Linear Discriminants
»
S

@@ We can generalize g(x) by adding terms x;x; to give a quadratic

(nonlinear) discriminant function:

d d d
Can generalize
x)=wo+ Y wx + Y ,
g(X)=w, = e T to cubic, etc.
i= =l j=

We can view this as a linear discriminant function in a new space.

Let y(x) define a new variable as a (nonlinear) function of x.

d
_ Note we have absorbed
g(x)—Zaiyl.(x) the bias weight in this
i=l1 formulation - A process
called augmentation.

See ch 5.3 Generalized Linear Discriminant Functions
Duda Hart
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Quadratic discriminant: 1-d example

€.9. ) Data remains
gX)=w, +wx+w; x" =a,y, +a,y, +a;y; one-dimensional
with

y=(x,x%), a=(w,, W, w).

0.5 0 @
) £
, , . y, 19 &

Mapping y takes a line and transforms it to a parabola e , -1 é
in 3D. The plane splits the resulting y space into B T \@
regions corresponding to 2 categories. This gives a o g
non-simply connected decision region in the 1D x @
space. Decision in y is convex, but not in x. 9 58

Linearly Separable Case (2 category)

Suppose we have n samples y4,...y,, each labelled either w4 or w, and
we wish to learn a discriminant function g(y) = a'y, that correctly
classifies the data.

Sample y; is correctly classified if
a’y, >0 wheny, islabelled o,
or
a'y. <Owheny, islabelled o,

A data set is called linearly separable if there exists a vector a which
correctly classifies all samples. This is called a separating vector or
solution vector.

[ The case of g(y) = aTy+a, with augmentation: y'=[y,1]",a'=[a,q,]" ]

See Ch 5.4 The Two-Category Linearly-
Separable Case Duda Hart 59




How to find a

» Great now we have understood what the a must satisfy (linear
inequalities) and some properties.

* However, we still do not know how to find a

« We are given some data and their labels and we need a procedure
to find a

» We need to find a criterion that when optimized we have a solution
vector a.

— Lets call this criterion J(a). Observe it is a scalar function of a :
returns a value pending on a

— If we make good choices of J() we can use optimization theory.
[We will talk about this a lot later in the class. ]

— Learning a classifier is then reduced to an optimization problem
— We will consider for now a simple approach: Gradient Descent

60

Gradient Descent

Simple concept: Consider | am at some point in my function J(a,). | need to
move to a new point ay.1. What is a good point?

Gradient: Gradient points in the direction of the greatest rate of increase of
the function. (Generalization of derivative in multivariate functions)

Update :a(k +1) =a(k)-n(k)VJ(a(k))
Learningrate n(k)
Gradient vector VJ(-)

Basic gradient descent algorithm:
1. Initialize £ < 0, a(1), &, n(.)

2. k<« k+1

3.a<a-n(k)VJ(a)

4.1f | n(k)VJ(a) |> 0, repeat from 2.

61




Perceptron Revisited

J(a)

Could J = number of samples misclassified?
No — the function is piecewise constant.

Why is this bad? The cost function has 0
gradient at most points and wherever non-zero
has discontinuities. We need a better cost.

The Perceptron

J,@)=) (-a'y)

warning: Data are yey,
assumed normalized

where Y, is the set of samples misclassified by a. |
When is J,(a)=07?

Is Jo(a) always positive?

62

Perceptron Algorithm

_ o _,,) | warning: Data are
[VJp(a)]i 8Jp(a)/8al Z( Vi) assumed normalized

yev,
l.e. VJ, (a)= Z(—y) so gradient descent ruleis:
yey,
a(k+1)=a(k)-n(k) Y (-y)
yey,

where Y, is set of samples misclassified by a(k).

Batch Perceptron Algorithm

1. Inmitialize a, 77(+), stopping criterion 8, k <— 0

n(k) is the
2.k« k+1 learning rate
Jacat n(k)zyeym y or step size

4.1f | n(k)zyey y |> 0, repeat from 2.
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Multilayer Neural Networks

Linear discriminants are good for many problems but not general
enough for demanding applications.

We can get more complex decision surfaces with nonlinear pre-
processing,

Vi =@:(X)
Where ¢(.), is, for example, a polynomial expansion to some order k.

But too many free parameters, so we may not have enough data
points to fix them. = learn which nonlinearities to use.

The best-known method is based on gradient descent: the so-called
backpropagation algorithm.

64

Three-Layer Network

Tk

Network has:

* Input layer

* Hidden layer

» Output layer
with adjustable weights
between layers

output k

Also:

* Bias unit
with weights to all hidden
and output units.

Biological terms sometimes used:
“‘neuron” = unit; “synapses” = connection; “synaptic weight” = weight.

65




Operation

Step 1: each d-dimensional input vector (x4,...,Xq) is presented
to input layer of the network and augmented with a bias term
Xo = 1 to give X = (Xg, X1,..-,Xq)

Step 2: at each hidden layer we calculate the weighted sum of
inputs to give the net activation:

d d
netj = inwﬁ + Wig = le.wﬁ = WJT.X
i=1 i=0
where w; is the weight from the input unit / to the hidden unit j
Step 3: The hidden unit emits the output: ) ; =f(netj)
where f(.) is some nonlinear activation function

66

Operation (cont)

Step 4: At each output unit we calculate the weighted sum of the
hidden layer units it is connected to giving:

where Vvkjis the weight from the hidden unit j to the output unit k

Step 5: each output unit emits z, = f(net,)

where f(.) is again the nonlinear activation function

We can therefore think of the network as calculating ¢ discriminant

functions:
z; = g4 (X)

67




Example: XOR Problem

Using f(net)=Sgn(net):
Zk= (.xl OR .XZ) AND NOT (xl AND xZ)

X,

68

General Feedfoward Operation

General form of output discriminant functions:
ny d
g(X)=z, =f Zwlgf ijixi T Wio | T Wro
j=1 i=1

[Note that the w,;s are different from the w ;s ]

Question: can every decision be implemented with a 3-layer network?
Answer [Kolmogorov + others]: (in theory) Yes.

Typically needs very nasty functions at each layer.

cost history

Y q(w") )

See 6.2 and onwards -~
Duda Hart ? 69




Backpropagation

We have seen that we can approximate any function but how do we

learn functions?

Perceptrons (single layer network): each input affects the output via its

weight: so we know which weight to change to reduce errors.

Multilayer networks (a.k.a multilayer perceptron, MLP): hidden units
have no “teacher” — so how reduce the error?

This is known as the credit assignment problem.

Backpropagation solves the credit assignment problem using a smooth

activation function f(.) and gradient descent.
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Some known non-linearities

Equation

Hane

Identity

Binary step

Logistic (a.k a
Soft step)

TarH

ArcTan

Rectified
Linear Unit
(Rel)
Parameteric
Rectified
Linear Unit
(PReLD) 2]

Exponential
Linear Unit
(8L B

SoftPlus

f(f):{ z for

0 for
f“)_{ 1 for
1
1+e*

flz)=
f(z) = tanh(z) =

@)= teufl(.rb

0 for

x for

flz) = { ax  for

r<0
>0

2

1+r,—21' -1

<0
x>0

<0
x>0

f(z) = { afe*—1) for <0

f(z) =log,(1+ ¢

xz for >0

)

Derivative
fllx)=1

sy J 0 for x#0
fla )té_‘ { ?7 for =0

f'(z) = f(x)(1- f(z))

a4 1

0 for <0
1 for x>0

1 for >0

f(z)+a for <0
1 for x>0

{ a for <0

f'(x)
f'(x)
f'(x)

1
l+e=

flz) =

7




Backpropagation Network

target t y 1> Ty ° I
output z

output

hidden

input

l‘/l[)Irlf X Xy Xs K X; e oo Xy

72

Backpropagation Outline

Step 1: start with untrained network (random weights)
Step 2: present training data to network and calculate outputs: z(n) = g(x(n))
This generates a training error:
C
2 2
JW) =13 (t,()—z,(n)* =1 [ t(m)—z(n) |
n k=l n

Where w represents the set of all weights in the network and t(n) are the
target outputs

Step 3: change the weights in the direction of the negative gradient:

AW:—na—J Aw,, :—716—]
oW or oW,y

where n is the learning rate (step size).

Step 4: iterate until convergence

Duda Hart 73




o
§

& Backpropagation of Errors
6§7\Let us calculate the gradient for a 3-layer network. We work backwards,

@ starting at the hidden-to-output weights.

The chain rule gives:

oJ =Z aoJ anetk(n) 25 (n )anetk(n)

ow, S onet (n) Owy oW,
where gk (n)=—0J /onet, (n) is termed the sens:t/wty of J to the net activation
of k. Applying the chain rule again:
= o
onet, (n) 0z,(n) Onet, (n)

=(t,(n)—z,(n)) f" (net, (n))
%f_/
error
where f’(.) is the derivative of f(.). Noting that:
oOnet, (n)
oW,

g

net,(n)= Zj W,y (n) =

=yj(n)

Hence:

AWy =—10J 6%, =1 0, (m)y;(n) =Y (t, (n) — 2z, (W) (&1, (m))y , ()

74

&
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@@%@ Backpropagation to Hidden Units
S
@%’*’Again using the chain rule for input-to-hidden units we have

aJ ‘Z oJ  0y;(n) Onet;(n)
ow, 0y ;(n) Onet ;(n) ow,(n)

Ji n

Note that a//dy;(n) involves all outputs k

oJ
oy, (n) ay()

y 0
{ Z( ()= Zwm} ~2 () =2, () @EZ;

Oz (n) Onet,(n) _ —i(tk (n) =z, (m)f" (net, (n))w,

=—;(tk (n)— z,(n)) S

== 5, ()i (n)
k=1

since &, (n) = (t,(n)— z,(n)) 1" (n&t, (n))
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og@
& Hidden Units (cont)

»
@@%&We also have dy;(n)/Onet ;(n) = f"(net ;(n))so we can define
aJ oJ  oyi(m) S
0;(m)=—— = = f (et (1) )0 ()
net; (n) éyj (n) net; (n) o
as the hidden unit sensitivities. Note that the output sensitivities are
propagated back to the hidden unit sensitivites — hence “back-
propagation of errors”

Finally we have:
Onet ;(n)/ ow; = x;(n)

So the update rule for the input-to-hidden weights is:

Aw,; =~ n% =n)_x,(m)d;(n) = nZ[Z W0 (n)}f'(netj (m))x, (n)

Ji n
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Backwards propagation

hidden

input

The backpropagation algorithm can be easily generalized to any
network with feed-forward connections, e.g. more layers, different
nonlinearities in different layers, etc.
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Criticisms of MLPs

MLPs provide one way to achieve the required expressive power
needed to build general classifiers. However they do have their
weaknesses:

— Possibility of multiple (local) minima
— g(x) is nonlinear in terms of the weights: this makes training slow.
— ad hoc solution (how many units, hidden layers, etc?)

Other popular discriminant learning structures:

— Support Vector Machines (SVMs)
— Convolutional Networks (CNNSs)
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TensorFlow Demo

 Start with the bottom left (linear activation)
— Observations: linearly separable

— Start with a very simple net 1 layer 1 node (linear
activations)

* Move to upper right still separable but not linear in input
space

— Options to fix: change layer size, add layers, change
activation, change inputs?
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Support Vector Machines

80

Support Vector Machines

» SVMs solve a problem in linear or non-linear space by
projecting the input space into a new (possibly infinite)

space.
p Principle of Support Vector Machines
(SVM)
¢ N I
° 0
®\ e
| N 0
. ®

Input Space Feature Space

Ch 5.11 Duda 81




Support Vector Machines

SVMs aim to solve the linearly separable problem. First map feature
space into high (possibly co—) dimensional space.

Then find separating hyperplane with maximal margin. Recall,
intuitively we are more confident in classifying point far away from

the decision boundary. v

Learning takes the form of a constrained optimization scheme.

Ch 5.11 Duda
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Why max margin

* For example these possible hyperplanes. Which one
you will choose? =4

» “Direction 1” has
a narrow margin
thus on unseen
(test) data it has
higher likelihood
of error.

* Clearly
‘direction 2’ is
preferred

direction 2

Ch 5.11 Duda
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SVMs: Maximizing the Margin

Suppose that we have a margin y, such that w®a”y; > y for all
points, i = 1, 2, ..., n. We therefore want to solve the following:

max ¥, such that: wPaTy; >y
and: ||a]| =1

This is a messy optimization problem. However, equivalently we can
solve:
min ||a||?, such that: 0P aTy; > 1

That is, we search for the minimum size weight vector that is able to
separate the data with a margin of y = 1.

This form of the problem is a constrained quadratic optimization
problem. It is convex and (relatively) easy to solve.

Ch 5.11 Duda

The Support Vectors

Interestingly the Max margin solution only depends on a subset of
the training data — those that lie exactly on the margin (why?). These
are called the support vectors (SVs).

Support vectors

Also

» the support vectors
also define the equation of the
optimal hyperplane:
a ~ weighted sum of wly;

* The hyperplane is unique
the SVs are not unique. Why?

SVMs can be shown to generalize well in terms of cross validation
error

Ch 5.11 Duda




SVM Generalization Error

Cross Validation (CV) — Break the data into a fraining
set and a testing set. Use the training data to learn the
classifier then evaluate on the test data

Leave-one-out CV: choose one data point at random as
the testing set.

{X1, X2,..; Xpgy Xp415-+-Xp}
Note the LOOCYV error will be unaffected unless x; is a
support vector. Therefore we have:

# of SVs
error, ., <

n

Therefore the number of SVs tells us how confident we
are in the SVM.

Ch 5.11 Duda

FEATURE ENGINEERING
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Principal Component Analysis

MLP can learn “functions” of data but with high dimensional inputs they need
some help!

This topic concerns decomposing signals into useful low dimensional subsets:
— For feature space selection in classification
— For redundancy reduction
— To avoid overfitting
— For signal separation

The key aim is to find a linear transform of the data that better represents the
underlying information

e.g. Fourier transform of an image concentrates information into low
frequencies
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PCA — Graphical Intuition

Suppose | want to characterize fish population.
Measure Ienqth/breadth and plot. <

130 - o o ° & i
10+ o 3 * %% Subtract mean from e’gch axis (center)
@] . ".": .o"o Note relationship between .
0] B> data matters only. _ AR T
EEL____itj:}_______

50 ; ' - ] ese®® *

60 80 100 120 140 * . .&: s

. £

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm




PCA — Graphical Intuition

Suppose | want to characterize fish populatlon
Measure Ienqth/breadth and plot.

130 4 . .7
2R - 5
101 ° * ¢ Subtract mean from each axis (center)
- ....": sl Note relationship between _ cw®
e .:‘: data matters only. ] o g | % -,
° length F d 2
50 . _ _ 1. eoet? [¢°°
60 80 100 120 140 I can move | . ..‘: %
* the axis! But how to chose i

them? | can rotate them.

What is my objective: position one axis in such a way that it accounts for the

largest proportion of the data's variance.

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm 90

PCA — Graphical Intuition

Suppose | want to characterize fish populatlon
Measure Ienqth/breadth and plot. -

130 4 o o0 ¢ & it :
10+ o 3 * %% Subtract mean from e’gch axis (center)
- ....": .0"0 Note relationship between _ cw
nl e B> data matters only. _ AR T
° length s d 2
50 " T T ] o eoe®® [o°°
g0 80 100 120 0 | can move | . '.'g: %
* the axis! But how to chose =

them? | can rotate them.

What is my objective: position one axis in such a way that it accounts for the
largest proportion of the data's variance.

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm 91




PCA — Graphical Intuition

What might you call this new axis? size = length + breadth
However, we could make one of the variables more important.
size = 0.75 x length + 0.25 x breadth
[these are weights and are important! They tell us the “significance” of each of
the original variables.
What about the second axis of the ellipse?
Objective: account for as much of the remaining variation as possible but must
also be uncorrelated (orthogonal) with the first. [trivial in 2D]

Apart from size, how else do the above fish differ?

Not much, minor differences in shape. If we ignore 2"d axis (after rotation) we
would lose information about the different shapes, but since they are all very
similar in shape we wouldn't lose much information at all.

Thus, in the above example we can reduce the data's dimensionality from two
(length and breadth) to one (size), with little information loss.
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PCA & Subspace Projections

Introduced by Pearson in 1901 “On lines and planes of
closest fit to a system of points in space.” (a.k.a. Karhunen-
Loéve transform (KLT), or the Hotelling transform,...).

Suppose our data consists of d-dimensional vectors x™ e R4
and we want a low-dimensional approximation for the data.

Let u; be an orthonormal basis for R (i.e. UTU = 1) then
we can approximate x by:

M d
X= Z(uiTx)ui + 2 ;
i=1

JEMANA—

Each bj is a
constant
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Subspace Projections

x has d degrees of freedom while X has M deg. of freedom.

Principal Component Analysis — choose u; and b; to best
approximate x in the LSE sense, ie., minimize Ey;:

Y - o v

n=1 n=1 j=M+1

() N(n)

Taking the derivative with respect to b; gives:

N

(L L (M) _\T=
Z(ZJ ) 0 = b, —NZZJ = Z x™ =ulx

n=l1 n=l1 =1

23 SEr-n)
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Subspace Projections (cont.)

So we can write:

33 Sl —xf

=1 j=M+1
1 IRy () (n)
n = n = T
gzzu 5w =L Swr
j=M+1 n=1 ]M+1

where R, is the sample covariance matrix for {x(}

Minimizing Ey, with respect to u; is satisfied by:
R ou, =Au , forj=1,.,M

i.e. the M basis vectors are the principal eigenvectors of the
sample covariance matrix.
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PCA example: eigenfaces

In face recognition a common practice is to first project
data (after alignment) onto a low dimensional PCA space,

e.g. images from images AT&T Laboratories Cambridge.

u, u, U, u,

Eigenfaces capture appearance and lighting conditions quite well.
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PCA Algorithm Summary and
Projection on Principal Directions

The PCA algorithm is summarized as follows:

1. subtract mean X from data

2. Calculate sample covariance matrix, R, for {X, —X}
3. Perform eigenvalue decomposition: R, = UAU"
4.

Approximate data by the first M components that have
the largest eigenvalue:

m
Xn ~ i + Z (uzT (Xn - i))ui
i=1

Recall by design eigenvectors are ORTHOGONAL with
each other u;Tu;=0 (i # j) and have length 1 (u;Tu;=1).
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An interactive demo

» http://setosa.io/ev/principal-component-analysis/
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Kernel PCA

(linear) PCA method is built upon the eigenanalysis of (n
number of data points)

1

1 & T
R . =—X"X==) x.x
X n niZ:l:_l_l

There is an equivalent built upon the eigenanalysis of

T T
XXy ... X X,
T
K=XX" =
T T
X, X ... )_Cnﬁn_

known as the Gram matrix.

The kernel PCA method is the kernelized version of this,
where inner products are replaced by kernel operations.
99




» The kernel PCA algorithm
e Compute the Gram matrix.

K(@i,j)=K(x;,x;), i,j=12,..,n
e Compute the m dominant eigenvalues / eigenvectors.

Ao,a,, k=12,.,m

e Perform normalization to unity.
l=nia,a,, k=12..,m

e Given a vector X, perform the following “nonlinear
mapping”.

W) = a, (VK (x,,x), k=12,.om

i=l1

100

)
@@ Remark

N
gé@ e The kernel PCA is equivalent with performing a (linear)
S PCA in a Reproducing kernel Hilbert space (RKHS) H,

@
@ after a mapping
x—>dx)eH

e It can be shown that the dominant eigenvectors of

—Zcﬁ( D9 (x,)

are given in terms of the dominant eigenvectors of the
Gram matrix, i.e.,

l}k = Zak(1)¢(3_5,) ’ k = 1729"-9m
i=1
Hence the projection of @(x) on V,is given by:

<vk,¢<x>>—iak<z‘><¢< ), (x)) = Zaka(_,,x),

using the propertles of the RKHS. 101




WHY CARE ABOUT FEATURES
AND HOW MANY

102
Given a limited data set maximising the likelihood L(w) may lead to overfitting.
If the model order (dimensions of w) is large enough we can ‘exactly’ fit model
to data.
3.5 r r T T T T 3.5 T
@] o
sl 07 (@] ] 3 o) © (@]
// /~” . \\ I~ /,.» i ~ .
25} O//o S \OO ] 25| o/,//o S o \‘39
/// P Q o o s 2 Q\\ o
2y, 2 AN
o o o o\ o} [ % o o
15| ° ®Q o © 0 15 ° ) o °© po
O "\ o // P O N\ @) (]
Q % foXe)
1 ® o Q\Oﬁ /,/ ] L @ O\Q\u_/
o o o O o
0.5 L L L L 0Q . 0.5 L L : : °Q .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3 order polynomial fit 10t order polynomial fit
Ch 9.3.1 Duda
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&
§

$
& | | | ] | ]
& Overfitting in ML
g
&
@' Qverfitting relates to Model Order Selection. As with estimating power spectra
@ . i .
the problem comes from a bias -variance trade-off. Consider the expected error
between an optimal estimator F(x) (ie. the true function) and an empirical
estimator g(x). [We use the augmentation trick.]

E, {(F(2) - 9(2))?} = E. { ( F(x) — E{g(a)} + Eu{g(2)} - 9(2) )*}
= E, {(F(z) - Eo{g(@)})* } + B, { (Bo{g(2)} - 9(2))° }

NV NV
bias2 variance

+ 2 E; {(F(z) — Ex{g(2)}) (Ez{g(z)} — g(2))}

g

The expectation over ) ;?)
all possible different
training sets (also

known as the To show why this is 0 do the multiplication
ensemble average). and then recall properties of the
Itis not the E we used Expectation of constants!

to denote as the cost

antion thus far. J
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Low Variance High Variance
o
n
3
3
2 °
o
—
o
@,
o, d
L)
n
3
3
i
o

Fig. 1 Graphical illustration of bias and variance.
Source: http://scott.fortmann-roe.com/docs/BiasVariance.html 5-105




<

Example

Which one of g(x) or g;(x) has high variance?

Complex model results in
low-bias but a high
variance, as one changes
from one training set to
another.

model results in
but

1 1 1 1 1 1
0.5 1 x

5-106
Example in regression
» |dentify high bias / variance cases:
o1t
T~ u—\ s /
Ignore the data =& Use all data =
*  Big approximation errors * No approximation errors
(high bias) (zero bias)
* No variation between data sets * Variation between data sets
(no variance) (high variance)
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Overfitting in ML

These examples tell us:
« Too complex a model — high variance.
« Too simple a model — high bias (the simplest model is the fixed value).

Possible solution on diagnosis for models and data (size)
Cross-validation: Break the data into 3 pieces: training, validation and
testing sets. Set the testing set apart, do not touch it, till the end.

Use the training data to learn the model parameters.

But identify the best model order (and other parameters such as step size,
regularizers, type of activation function etc) using the validation (“out-of-
sample”) set.

If you are happy with the performance on the validation set, then you can now

take the testing set and run the algorithm on the testing set.
Then report results on the training and testing sets.

5-108

Diagnosing bias/variance: the practical

picture
« Finding a good model size

Validation
S (or testing)
J error
Training
error

degree of polynomial d
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Bias vs variance: on data size

» Typical curve with high variance

Test error

error

Desired performance
//gning error

m (training set size)

* Test error decreases as m increases =@ larger training
set may help

* There is a gap between training & test error

5-110
Bias vs. variance: on data size
« Typical curve with high bias
o Test error
° Training error
/ Desired performance

m (training set size)

« We are in trouble: training error is high too
« Small gap between the two errors
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DEEP LEARNING

112

From “hand-designed” feature spaces
to data-driven ones...

Computer sees

7 81 18 57 60 87 17 40
79 14 29 93 71 40 67
60 11 42 €9 24 68 56
67 63 89 41 92 36 54
03 45 02 44 75 33 53
98 81 28 64 23 67 10 26 38 40 67
26 20 68 02 62 12 20 95 63 94 38
55 58 05 66 73 99 26 97 17 78 78

75 00 76 44 20 45 35

88 30 03 49 13 36

32 56 71 37 02 36 9.
40 40 28 66 33 13 8¢

Extract Human

features engineering
(e.g. input x and x?)
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e.g. SVM, GLD,
MLP
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What if we could “extract”
automatically good
features....

10% WOLF 90% DOG

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/

TRAINING
During the
training phase, a
neural network is
fed thousands of
labeled images of
various animals,
learning to
classify them.

INPUT

An unlabeled
image is shown
to the pretrained
network.

FIRST LAYER
The neurons
respond to
different simple
shapes, like edges.

HIGHER LAYER
Neurons respond
to more complex
structures.

TOP LAYER
Neurons respond
to highly complex,
abstract concepts
that we would
identify as differ-
ent animals.

OUTPUT

The network
predicts what the
ohject most likely
is, based on its
training.
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Convolutional Networks (CNNSs)

Consider the problem of building a classifier that is insensitive to

translation (or scale, rotation, etc.). A Convolutional Network encodes

the invariance within the MLP structure [LeCun 1998].

) C3: 1. maps 168 10x10
INPUT 2}.2':.38" maps 54:1. maps 16855
3232 s2:1

6@ 14x14

|
Full conr‘owon | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [ LeNet ]

Ch 6.10.4 Duda and Inspired by Goodfellow et al Deep learning book
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Convolutional Networks (CNNSs)

Consider the problem of building a classifier that is insensitive to
translation (or scale, rotation, etc.). A Convolutional Network encodes
the invariance within the MLP structure [LeCun 1998].

Input

a b c d

Let us first review 2D —

e f g h

convolution =

j k 1

Can | write w conv | as a Y Output

matrix multiplication?

aw + bz +

Next layer O = W*|

dr +
hz

cr + cw
9z 9y

++
++

W must have a correct
shape and

I: a vector (input layer)!

ew + fx +
W+ jz

gr + gw + hx +
kz ky + Iz

++

Inspired by Goodfellow et al Deep learning book
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Convolutional Networks (CNNSs)

Sparse

. ti
e Connections are connections

restricted: hidden units

due to small

ONONORONO,
ORONONORO

i ) convolution
are connected identically Kernel
to neighbours to encode
shift/delays

Dense
« Training using back prop. connections

but with ties weights
across shifted units

Convolution

X/
¢'0
%

»
Tk
BEN

O
/"’ég

(WElght Sharlng) shares the same
parameters
* The resulting MLP has across all spatial
much fewer weights to locations
train than a traditional Traditional
MLP matrix
multiplication

does not share

any parameters

©
©
O
o

ofo
o¥o
080
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Convolutional Networks (CNNSs)

» Growing “influence” with
depth =

(the top layer is influenced

by a large span of inputs a G G
despite only connected to 3

previous units)

/ é\/é\/é
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* Max pooling helps with
invariance and down
sampling reduces numbel
of parameters

N - O O
N = O N
A O 00 W

CNNs & Deep Learning

» CNNs are often considered the ancestors of Deep Learning.

» The idea is to use MLP with many (= 3) hidden layers. This involves
lots of ‘tricks’ to make training work: convolution, subsampling,
pooling of outputs,..., pretraining (helps to start the weights with
good initial values)

64x64 60x=60=10 30=30=10 26x26x 16 13x13%16 1x1x=180 1x1%7

S5%3

D\

H _

CO-layer SO-layer Cl-layer S1-layer C2-layer: F-layer
10 kernels (2x2) 64 kernels (@x2) 2880 kernels {fully
(3%3) (3%5) (13x13)  connected)

oot =

Application to face detection and

but exhibit state-of-the-art performance... o
pose estimation

e.g. see - http://www.cs.nyu.edu/~yann/research
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More Demos

» http://cs.stanford.edu/people/karpathy/convnetjs/
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