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Dr. Timothy Hospedales
• Background
• BA Computer Science, Cambridge 2002
• Lecturer/Senior Lecturer, QMUL, 2012-16
• Reader (Assoc. Prof), Edinburgh, 2016-
• Head of Machine Intelligence Group

• Funded by EPSRC, DSTL, EU Horizon 2020 
• Alan Turing Institute Fellow, 2018-
• Principal Scientist, Samsung AI Research Center, 2019-

• Research Area:
• Deep Learning. Meta-Learning. Vision. Vision & Language. 

• Track record:
• Over 50 papers in Tier 1 venues of AI, ML, Vision.
• => CVPR, ICCV, ECCV, ICLR, AAAI, IJCAI, ICML. T-PAMI, IJCV.
• Four best paper prizes.
• Three patents
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Part I: Sparse Data Deep 
Learning



Deep Learning Success

Sketch-a-Net that beats humans Superhuman Pictionary



Mechanism of Deep Learning Era 
Success?
• Gather and annotate bigger datasets.
• Train bigger models.



Success Story of Deep Learning Era

• Gather and annotate bigger datasets.
• Train bigger models.

[ Sun et al, Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, ICCV’17 ]

No saturation so far! 

Performance grows with log of train data.

JFT-300M => MS-COCO                     JFT-300M => PASCAL 



Do we need another paradigm?
Do we need another paradigm?
• Humans have one shot learning 
• Learn 5 objects per day for first 18 years. 

• Annotating the long tail of object categories?
• Emerging categories

• Annotating data in the long tail of domains
• Underwater, Radar, Sonar, LIDAR, Medical, Satellite, etc

• Defense applications often interested in detecting objects with sparse 
training data, or rare events.



Why is Few-Shot Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

EG: 2nd order polynomial.EG: 20th order polynomial. EG: 0th order polynomial.

Train Points Test Points



Why is Few-Shot Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

Question: How to diagnose 
over- vs under-fitting?

Overfitting?
• Low train error
• High test error

Underfitting?
• High train error
• High test error



Why is Few-Shot Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

Classic Solution?
• Try several model 

complexities
• Evaluate validation set 

performance of each
• Pick the model with best 

validation performance

Issue for deep learning?
• Too many complexity 

parameters in DL (depth, 
width, non-linearity, etc)

• Few-Shot: Would pick a 
simple model that doesn’t 
provide deep learning level 
performance. EG: 0th order polynomial.EG: 20th order polynomial.



Common Techniques for Sparse 
Data Applications



Reducing Data Dependence

Common techniques for overfitting reduction: Regularisation
•Weight decay / L2 regularization
• Early Stopping
• Dropout
• Transfer Learning



Reducing Data Dependence

Weight decay. L2 regularisation.
• Other things being equal, prefer weights near zero.

min$ ℒ &;$ + ) $ **
Supervised loss surface

Regulariser loss surface

Linear combination minima



Reducing Data Dependence

Transfer Learning
• Transfer Learning: “The application of skills, knowledge, and/or attitudes 

that were learned in one situation to another learning situation” (Perkins, 
1992).
• Note:
• Transfer Learning ≠ “Fine-Tuning”
• Fine Tuning⊂ Transfer Learning



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Initialise target parameters using source, and continue training

Source: 
Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Target: Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Initialisation

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Application:
• Across Task:
• Change of label-space.

• Across Domain
• Change of data statistics.

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Cross
Task! "# ≠ !("&)

! (#|"# ≠ ! (& "&
(# ≠ (&

RGB => IR



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Why does fine-tuning work?
• Neural network optimisation is non-convex.
• With small learning rate, target task parameters do not change much.
• Transfer  initialization effectively regularizes target weights towards 

source weights, rather than towards zero. 
• Assume source task is relevant to target task.
• => Better chance of good minima.

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

Loss

Weights Weights



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Very similar to explicit source→target regularisation.
• Used in many classic learning methods(*).

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

min$% ℒ '(;$( + + $( − $- ..

[ Improving SVM Accuracy by Training on Auxiliary Data Sources, ICML’04 ]
[ Cross-domain video concept detection using adaptive svms, ACM MM’07 ] 

Compare:
min$ ℒ̅ = ℒ ';$ + + $ ..
min$ ℒ̅ = ℒ ';$ + + $ − 8 ..



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Assumption:
• Source task relevant to target. 

• Practical Considerations. Questions:
• How to control relevance degree?
• Which layers to transfer?
• What learning rate to use?

• Typical:
• Relearn top while freeze bottom.
• Then LR tune all w/ LR proportional to 

depth

min$ ℒ &';$' + * $' − $, -
-

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

Question: 
Always good practice?

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

NEW	FC	2

Softmax

Loss

Transfer

[How transferable are features in deep neural networks?, NIPS’14 ]



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Assumption:
• Source task relevant to target. 

• Practical Considerations. Questions:
• How to control relevance degree?
• Which layers to transfer?
• What learning rate to use?

• Typical:
• Relearn top while freeze bottom.
• Then LR tune all w/ LR proportional to 

depth

min$ ℒ &';$' + * $' − $, -
-

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

NEW	FC	2

Softmax

Loss

Transfer

Assumption:

• Relevance proportional to depth. [How transferable are features in deep neural networks?, NIPS’14 ]

Only for cross-task. 



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Challenges:
•What if the inputs are heterogeneous 
• (EG: Task 1: RGB, Task 2: Depth)?

• How to know if a given source is relevant?
• How to prevent negative transfer if source is irrelevant? 

• How to select the relevant source among many?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Issues:
•What if the inputs are heterogeneous?
• EG: Perceptual arithmetic network.

“Ten” “Two”

=  5

Perception

Perception

Arithmetic

[ EG: HOUDINI: Lifelong Learning as Program Synthesis, NIPS’18 ]

=  2.33



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Issues:
• How to select the relevant source among many?

• For linear models….
• Optimising target model    , assuming a set of potentially relevant 

sources           :

• …. not so straightforward with deep models

min$ % − $' +min) $ − $)

$)
$

E.g., Evgeniou et al, JMLR, 2005
E.g., Kang et al, ICML, 2011
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Metric Learning



Nearest Neighbor Classifier

• Classic Method in ML
• Given training data !", $" "%&'

• 1-NN:
• Classify a new point !∗. Euclidean nearest neighbor:
• $∗ = $"∗, *∗ = argmin !∗ − !"

• K-NN:  For 1-hot 2.
• Classify a new point !∗ as:
• 3 2∗ !∗ = &

4∑!6∈''(!∗) 2:

Can we measure similarity by a 
better distance than Euclidean?

Find a similarity measure where 
different categories are far, and 
same categories are near.



Classic Metric Learning
• Define a Mahalanobis Metric for NN classification:

• Learn the Metric that separates the training data:

• Reuse the metric to solve 1-shot learning by NN matching:

!" #$, #& = (#$ − #&)+,(#$ − #&)

min" 0 , = 1
$,&∈345

!" #$, #& − 1
$,&∈678

!" #$, #&
min
"

= (#$ − #&)+ 0+0(#$ − #&)
= (0#$ − 0#&)+ (0#$ − 0#&)

,

[ EG: Hirzer, ECCV’12; Mignon, CVPR’12 ]

Factorize M=L’L to view 
as linear transform



Deep Metric Learning
• Linear => Non-linear feature transform

• Common Losses:

!" #$, #& = (#$ − #&)+,(#$ − #&) = (-#$ − -#&)+ (-#$ − -#&)

!. #$, #& = (/.(#$) − /.(#&))+ (/.(#$) − /.(#&))

min
.

min
.
- 3 = 4

$,&∈678
!. #$, #& − 4

$,&∈9:;
!. #$, #&

min. - 3 =4
$∈<

4
&∈678 $ ,=∈9:; $ ,

!.678 #$, #& + ∆ − !.9:; #$, #=
@

min. - 3 = 4
$,&∈678

!. #$, #& − 0 + 4
$,&∈9:;

!. #$, #& − 1

Minimize average positive distance,
Maximize average negative distance

Every negative distance more than 
every positive distance

All positive pair distances = 0
All negative pair distances = 1



Deep Metric Learning: Example: 
Triplet Ranking for Similarity Search

[ CVPR’14, Learning Fine-grained Image Similarity with Deep Ranking ] 

Test
Train

min$ % & =(
)∈+

(
,∈-./ ) ,1∈234 ) ,

5$-./ 6), 6, + ∆ − 5$234 6), 61
:



Deep Metric Learning: Challenges?

• Challenges? Training: Scalibility.
• Num triplets: O(N3). 
• Sampling useful ones 
• => Hard negative mining, learning sampling policy. 

• Annotating them.
• Challenges? Testing: Scalability. 
• Binary embedding for fast lookup/hashing

• => Gradient descent on discrete gradient operation

min$

% & = (
)∈+,-∈./0 ) ,1∈234 )

5$6 7), 7- + ∆ − 5$; 7), 71
6

5$ 7), 7- = (=$(7)) − =$(7-))? (=$(7)) − =$(7-))

=$ 7 = sign(&ℎ + C)

[ Wang, PAMI’18, A Survey on Learning to Hash ] 



Metric Learning for Few-Shot



Few-Shot Learning: Setup

•Meta-train on Auxiliary Set. 
• EG: Vehicles.

• Train on Support Set
• EG: 1-example per animal

• Test on Query Set.
• EG: New animal images to classify. 

CNN !"
[ 1, 0, 0, 0, 0 ]

CNN !"

NN match: 
Neg Exp
Euclidean 
Distance

min
&

'

Support
Set

Query 
Set

()*+ = -)*+, /)*+ = 01, 21 1345678

(9*: = 01, 21 1344

(;9; = 01, 21 1345

Disjoint labels: <)*+ ≠ <9*:

<9*: = <;9;



Few-Shot Learning: Prototypical Nets 
(NIPS’17)
• Calculate a ”Prototype” per class:

• Classify with

CNN !"

[ 1, 0, 0, 0, 0 ]CNN !"

#$ =
1
'$ (

(*+,-.)∈12
!"(*3)

4 5 = 6 7 ∝ exp(− !" *3 − #$ =)

exp(− !" *3 − #$ =)

#$ $>?
@

[ Snell et al, NIPS’17, Prototypical Networks for Few Shot Learning ]



Few-Shot Deep Learning: Relation Net
• Relation Net:  Similar to Prototypical, but:
• Architecture: Concatenate branch feature maps and convolve more.
• Loss: Regress to 0/1.

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]

CNN

CNN

CNN

!"

!"

#$Concatenate
Regress

[ 0, 0, 0, 1, 0 ]

Support
Set

Query Set

Mean
Pool



Few-Shot Deep Learning: Architectures
CNN !"

[ 1, 0, 0, 0, 0 ]

CNN !"

Neg Exp
Euclidean 
Distance to NN

CNN !"

[ 1, 0, 0, 0, 0 ]CNN !" exp(− !" () − *+ ,)

*+ +./0

CNN

CNN

CNN

!"

!"

12Concatenate
Regress

[ 0, 0, 0, 1, 0 ]

Deep Metric Learning

Prototypical Nets

Relation Net

Neg Exp Euclidean 
Distance to 
Prototype



Few-Shot Deep Learning: Relation Net
• Relation Net: Episodic Training

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]

argmin',)Ε +,, ∈./01 2
34∈+,,5⊆,

7' [9) :; ,
1
=>

2
3?∈,5

9)(:A)] − E(F; = H)

Objective

CNN

CNN

CNN

9)

9)

7'Concatenate

Regress
[ 0, 0, 0, 1, 0 ]

Support
Set

Query 
Set

Auxiliary 
Class 

Training 
Set

Sample

Episodic Training. Each mini-batch is a K-way N-shot “episode”
=> Trains features to support few-shot recognition

Mean
Pool



Relation Net: Analysis
• PrototypeNet/RelationNet: Pros & Cons?
• Pros:
• Train+test cardinality don’t have to match.
• Training is super fast if K-way/N-shot is small. 

• Cons: 
• Testing is slow if K-way is large.
• (RelationNet) Can’t cache features for fast binary/approx NN lookup

• Neutral
• Can do old+new classes together. (But cost + accuracy….)

CNN !"
[ 0, 0, 0, 1, 0 ]

CNN !"

Inner Product

CNN#$ [ 0, 0, 0, 1, 0 ]

CNN !"

CNN !"
[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]



Relation Net

• Summary:
• State of the art on miniImageNet and tieredImageNet
• Simple to implement and fast
• Also supports zero-shot learning

Model (SENet) 5-way 1-shot Acc

MAML 55.9%

Prototypical 51.6%

RelationNet 57.4%

RelationNet 2.0 62.8%

[ Zhang, arXiv’18, “Relation Columns for Few Shot Learning” ]
[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]

CNN!" [ 0, 0, 0, 1, 0 ]

CNN #$

Text(‘dog’)
Text(‘cat’)
Text(‘fish’)
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Tensor-Based Models
Multi-task Learning



Deep Multi-Task Learning
• Typically: 
• Share feature extraction layers. 
• Multiple predictions & losses. 

Layer 1

Input

Conv

Out 1

FC

Layer 2

Out 2 Out 3

Age GenderExpression

[ TPAMI 2017, HyperFace: A Deep Multi-task Learning Framework for Face Detection… ; 

CVPR’17, UberNet: Training a `Universal' Convolutional Neural Network ]

!", $"%, . . , $"'Given Data: 

Solve:

min+,,-.
"
.
/
ℒ($"/, 2,- (3+ 4" )



Deep Multi-Task Learning
• Typically: 
• Share feature extraction layers. 
• Multiple predictions & losses. 

Layer 1

Input

Conv

Out 1

FC

Layer 2

Out 2 Out 3

Age GenderExpression

[ TPAMI 2017, HyperFace: A Deep Multi-task Learning Framework for Face Detection… ; 

CVPR’17, UberNet: Training a `Universal' Convolutional Neural Network ]

!", $"%, . . , $"'Given Data: 

Solve:

min+,,-.
"
.
/
ℒ($"/, 2,- (3+ 4" )

• Why/When to use MTL?

• Care about performance on 
all tasks (else use TL)

• Share compute & memory 
of feature extraction.





Tensor-Based Models
Transfer Learning



Multi-Source Knowledge Transfer Scenarios
Male 28 Yrs

Hit Push Throw

Interest Points



Source

Te
st

Target

Multi-Source Knowledge Transfer Scenarios



Tensor Composition vs Decomposition

• You may have heard of matrix factorisation.
•We also have tensor factorisation .

W

S
V

U

≅
PCA,  SVD, etc

≅
Tucker

U
V

x

x
x

x

min%,' ( − *+ ,

Dim ( = /×1
Dim * = /×2
Dim + = 2×1

min
%3,%4,%5

(6,7,8 − 9×:*:×,*,×;*;
,

Dim ( = <×=×/
Dim 9 = 2:×2,×2;
Dim *: = <×2:
Dim *, = =×2,
Dim *; = /×2;

X

X



Tensor-based Transfer: Background

≅

Task Specific

Task Agnostic

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks

Day/Night/Summer

Expression/Gender

Push/Hit

Tucker Decomposition

FC1 Specific

Input Specific



Tensor-based Transfer: Background

≅

Task SpecificTask Agnostic

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks

Day/Night/Summer

Expression/Gender

Push/Hit

Original Tensor " is size: #×%×&.
Approximate it as product of low-rank factors:
" ≈ (×)*+×,*-×.*/

dim((): 5×5×5 (Agnostic)
dim(*+): 5×# (Task	specific)
dim(*-): 5×% (Input specific)
dim(*/): 5×& (Hidden unit specific)

Compress params from  #%& to 5. + 5# + 5% + 5&

W S UT

UD

UH



Note: Tensor Composition vs Decomposition

• You may have heard of matrix/tensor decomposition.
• Note that we are doing matrix/tensor composition.

Decompose

≅

≅

PCA,  SVD, etc

CP, Tucker, TT, etc

x

x
x

x

Compose

Implementation:
Every weight tensor is replaced with a set of factors.
Multiple the factors out into the tensor for forward pass.
Update individual factors in back pass (no problem, 
multiplication is differentiable) 



Tensor-based Transfer: Multi-Task 
Source Training

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks

Day/Night/Summer

Expression/Gender

Push/Hit

Original Tensor ! is size: "×$×%.
Approximate it as product of low-rank factors:
! ≈ '×()*×+),×-).

Where: / < ",$,%
dim('): /×/×/ (Agnostic)
dim()*): /×" (Task	specific)
dim(),): /×$ (Input specific)
dim().): /×% (Hidden unit specific)

Compress params from  "$% to /- + /" + /$ + /%

≅

Task SpecificTask Agnostic

S UT

UD

UH

min..D..E
F

E
G

ℒ(IFG, JKL (MD NF )

min..O,PQ,PR,PS,..E
F

E
G

ℒ(IFG, JKL (MD NF )



Tensor-based Transfer: Idea

≅
Task SpecificTask Agnostic

1. Find the low-rank subspace spanned by the source tasks.
2. Train only the task-specific parameters for new task.

Source Tasks

Day/Night/Summer

Expression/Gender

Push/Hit

Target Tasks

Winter

Age

Throw

• Few parameters to train.
• => Fast and overfitting 

resistant



[ Yang & Hospedales, ICLR’15; Yang & Hospedales ICLR’17 ]

≅

Task SpecificTask Agnostic

w1

w2

L2 Regularisation

w1

w2

Source Target

Transfer Learning

w1

w2

Multi-Task Learning

w1

w2

w3

Tensor-Rank

Tensor-based Transfer: Context



Tensor-based Transfer: 

≅

Question: What is the difference between these two strategies?

≅ xTa
sk

Input x FC1. 
Vec(Wtask)

≅



Tensor-Based Transfer Learning: 
Some Examples
Robot Control



Robot Control Task
• Consider robot with an arm.
•Model: !" = $% ('")
• '": Angle of each joint, time, (ball 

position, target position)
• !": Force to apply at each joint at 

time ).
• $%: Neural network controller

• Train with reinforcement learning

• * '" = ++1 if ball hits target−0.1 otherwise
• Train:  % = argmax%∑" * '"



Robot Control Task
• Consider robot with an arm.
•Model: !" = $% ('")
• '": Angle of each joint, time, (ball 

position, target position)
• !": Force to apply at each joint at 

time ).
• $%: Neural network controller

• Train with reinforcement learning

• * '" = ++1 if ball hits target
−0.1 otherwise

• Train:  % = argmax%∑" * '"

• Issue:
• Requires lots of data: 

aA, xA, R xA ADE
F

GDE
H

• Each is trial slow and expensive.

• Redo for each new task.



Robot Control Task
• Given some known tasks, use knowledge transfer to learn new 

task quicker.

Hit Push Throw



Robot Control Task
• Given some known tasks, use knowledge transfer to learn new 

task quicker.

Throw Cast Ball-In-Cup



Tensor Transfer for Robot Control

• In this case vectorize entire neural network….

[ Yang et al, ICLR’17. Zhao et al, Tensor Based Knowledge Transfer Across Skill Categories for Robot Control, IJCAI, 2017 ]



Tensor Transfer for Robot Control
• Dramatic Improvement in Learning Efficiency for Target Task:
• Now possible to learn BIC with RL. 

[ Yang et al, ICLR’17. Zhao et al, Tensor Based Knowledge Transfer Across Skill Categories for Robot Control, IJCAI, 2017 ]



Tensor-Based Transfer Learning: 
Some Examples
Multiple Visual Domains



Visual Decathlon Challenge
• A small sub-challenge of Artificial General Intelligence (AGI):
• A general visual feature extractor.
• Current best results: train one deep feature per dataset. 
• But for general visual intelligence, prefer a single deep network.

• Visual Decathlon Challenge [ Rebuffi, NIPS’17, Learning multiple visual domains with residual adapters ] 

• 10 datasets: Aircraft, Handwriting, Flowers, Pedestrians, Traffic Signs…
• Goal is to learn them incrementally, without forgetting, and with minimal 

parameter growth.



Visual Decathlon: Tensor Solution

• Train Deep networks for the 
first K domains
• Extract and fix the core tensor
• (no forgetting)

• For each new domain, train 
only task specific factor
• (small growth pert task)

≅
Task SpecificTask Agnostic



Tensor-based Transfer: Results

• Visual Decathlon [ Bulat et al, arXiv’19 ]



Tensor-Based Transfer Learning: 
Some Examples
Fact Induction



Knowledgebase Completion
• Induce Missing Facts:
• Completion model induces missing tuples: 
• <Cambridge, locatedIn, England>

• Task := Relation
• → Independent tasks.

[ Balazevic et al, arXiv’18; arXiv’19 ] 

Typical Solution: Train Embeddings θ:
• vecθ(“Cambs.”)+vecθ(“locatedIn”)≅vecθ(“England”)
• vecθ(“Cambs.”)*matrixθ(“locatedIn”)≅vecθ(“England”)
• vecθ(“Cambs.”)*matrixθ(“locatedIn”)*vecθ(“England”) ≅ 1

Regression Problem. One per relation.



Knowledgebase Completion
• Induce Missing Facts:

[ Balazevic et al, arXiv’18; arXiv’19 ] 

Typical Solution: Train Embeddings θ:
• vecθ(“Cambs.”)*matrixθ(“locatedIn”)≅vecθ(“England”)
• vecθ(“Cambs.”)*matrixθ(“locatedIn”)*vecθ(“England”) ≅ 1

• CoreTensor x1 vecθ(“locatedIn”) x2 vecθ(“Cambs.”)  x3 vecθ(“England”) ≅ 1
• CoreTensor x1 vecθ(“locatedIn”) x2 vecθ(“Cambs.”) ≅ vecθ(“England”)

Subject

Object

Relation

Share across regressions (and entities)

Generates a DxD matrix

Þ View as a weight generation net.

To learn one  relation:
Before: D2 parameters.
Now: R<D parameters.



Knowledgebase Completion
• Induce Missing Facts:
• Completion model induces missing tuples: 
• <Cambridge, locatedIn, England>

• Task := Relation
• → Independent tasks.

[ Balazevic et al, arXiv’18; arXiv’19 ] 

Subject

Object

Relation

Share across regressions (and entities)



Tensor Knowledge Transfer

Summary:

• Pros:
• Fast 
• Sample-efficient
• Parameter-efficient
• Relatedness is not crucial if enough ranks.

• Cons:
• Need many source tasks (cf: Few-Shot vs ”Fine-tuning”)
• Tasks need same “shape”

≅
Task SpecificTask Agnostic



Tensor vs Metric Based Few-Shot

• Tensor-based
• Suitable for any task 

(classification, regression, 
detection)
•Weak assumption on 

known source task 
relevance (vs fine-tune).
• Requires (-) and exploits 

(+) multiple sources-.

•Metric-based
• Suitable for classification.
• Suitable to extend an

existing label-space.
• No requirement (+), and  

limited exploitation (-) of 
multi-source. 



Tensors: Bonus Topics
Tensor-Based Network Compression



Tensor-Factorisation for Model Compression

• Aside: These tensor methods also widely used for model 
compression & acceleration.
• Fully Connected Compression: !"×!$ → !"×& + !$×&

• Convolution Compression:

≅
Factorise

U
V

xW

U3

S
U2

U 1

≅
Tucker

x
x

x

Dim , =,×.×/01×/234
Dim 5 = 6"×6$×67×68

Dim 9" = ,×6"
Dim 9$ = .×6$
Dim 97 = /01×67
Dim 98 = /234×67

W

[ Lebedev, ICLR’15, Speeding-up Convolutional Neural 
Networks Using Fine-tuned CP-Decomposition ]

Example Pipeline:
1. Train full network.
2. Decompose
3. Fine-tune



Tensors: Bonus Topics
Tensor-Based Modality Fusion



How to fuse multi-modal data?

• Often: One prediction, Two signals: Audio, video. Still, Motion.
• Typical answer:
• Shallow model: concatenate (implies linear combination)
• Deep model: concatenate and pass through MLP.

• Also: Tensor-based data fusion
• Tensor fusion layer:
• Question: What’s the problem with this?
• Too many O(N3) parameters:

• Low-rank tensor fusion layer:

! = #$ %&, %( = #&$%) + #(
$%+

, = -.(0 %&, %( )

! = 0×3%&×4%(

! = 5×3(6%&)×4(7%()

[ Hu et al, Neural Tensor Fusion Networks, ICCV’17 ]
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Part II: Learning with Multiple 
Domains



What is the difference between transfer 
learning and domain adaptation?
• Confusion caused by vagueness of term ”transfer learning”
• If “TL” means any knowledge transfer: DA is a subset of TL.
• IF “TL” means “supervised” or more specifically ”fine-tune”: 
• (Unsupervised) Domain adaptation is disjoint to TL.

• Problem: Domain-Shift vs Task Shift
• Data: ! "# ≠ ! "% ! &#|"# ≠ ! &%|"%

"#, &# → "%, &%

"#, &# → "%

"#, &# →

Supervised Domain Adaptation. 
(Incl: Fine-tuning, Tensor).

Supervised Task Adaptation. 
(Incl Fine-tuning. Tensor).

Unsupervised DA. Impossible. Unless ZSL.

Domain Generalization Impossible. Unless ZSL.

Confusing:
Some methods, 
e.g., FT, Tensor, 
can apply to 
both.



Learning with Multiple Domains

Solving Domain-Shift:
•Model still works, even 

when data statistics change:
• Different domains are a 

nuisance variable:

Cross Domain Matching:
• Your goal is to match across 

domains.

?

Train

Test

Model	Generation	Network

?

Train

Test

Model	Generation	NetworkCross
Domain

Viewed sketch� Forensic sketch� Forensic composite!
 sketch�

Caricature sketch�

Photograph�



Cross-Domain Matching



Cross Domain Matching: Examples

• Text->Image Retrieval

Test



Cross Domain Matching: Examples

• Image->Caption Retrieval

Test



Cross Domain Matching: Examples

• Graph -> Image Retrieval



Cross Domain Matching: Examples

• Bilingual Dictionary Induction

Dog

Tiger

Perro

Tigre

Cat

Wolf

Gato

Lobo

[ Mikolov, arXiv’13, Exploiting similarities among languages for machine translation ] 



Cross Domain Matching: Examples

• Sketch-based Image Retrieval: Online Shopping

[ Yu et al, CVPR 2016, Sketch me that shoe ]



Cross Domain Matching: Examples

• Person Re-Identification



Cross Domain Matching: Examples

• Person Re-Identification





Cross Domain Matching: Examples

• Description-Based Person Search

Description-based person search:
• E.g., “Suspect had blue jeans, 

brown jacket, and blonde hair”
CCTV Video
Database



Cross Domain Matching: Examples

•Mind Reading

Happy

Angry

Sad

Afraid

[ Mitchell, Science’08, Predicting Human Brain Activity Associated with the Meanings of Nouns ] 
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Regression and Energy Function 
Methods



Matching Approaches: Regression

Linear
• Train:

• Test: Nearest Neighbour

Deep
• Train:

• Test: Nearest Neighbour

min$%
&

'& −$)&

argmin'-∈/011234 '5 −$)∗

min$%
&

'& − 7$()&)

argmin'-∈/011234 '5 − 7$()∗)



Matching Approaches: Energy Functions

• Bilinear Train:

• Bilinear Test:

min$ %
&,( ∈*+,,(&,.)∈012

−4&5$6& − ∆ + 4&5$6.
9

argmax6>∈?@AA1BC 6(5$4∗

• Low-Rank

minE,F %
&,( ∈*+,,(&,.)∈012

−4&EF6& − ∆ + 4&EF6. 9



Matching Approaches: Energy Functions

• Deep Train:

min$,& '
(,) ∈+,-,((,/)∈123

4$ 5( 64&(7() − 4$ 5( 64&(7)) − ∆
: max=>∈?@A4$ 5∗ 64&(7))

• Deep Test

Connection to Metric Learning:
• “Siamese”
•Max energy/min distance

minC '
(,) ∈+,-
((,/)∈123

D: 4C 5(), 4C (7) − DE 4C 5(), 4C (5/ + ∆
:

min$,& '
(,) ∈+,-
((,/)∈123

DE 4$ 5(), 4& (5/ − D: 4$ 5(), 4& (7) − ∆
:



Discussion
•Multiple losses
• Sometimes good to use classification, 

matching, and ranking. 
• Siamese. Homo. vs Hetero. Branches.
• Depends on modality heterogeneity.

• Non-CNN encoders:

CNN

RNN

Loss



Discussion
•Multiple losses
• Sometimes good to use classification, 

matching, and ranking. 
• Siamese. Homo. vs Hetero. Branches.
• Depends on modality heterogeneity.

• Non-CNN encoders:

CNN

GCN

Loss
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Cross-Domain Regression
Examples



Sketch-to-Image: Sketch-based Image Retrieval

[ CVPR’16 – Sketch me that shoe, ICCV’17, CVPR’18 ]



Image-to-Sketch: Learning to Draw

[ Song, CVPR’18, Learning to Sketch with Shortcut Cycle Consistency ]



Zero-Shot Learning



What is Zero-Shot Learning?

• Audience Task: Recognise the Wampimuk.
• Impossible?

• Solution: Semantic Transfer
• Domain Ontology:

• Wampimuk := small, horns, furry, cute
• Wikipedia Page: 

Zero-Shot:
1. Pattern recognition with no training examples
2. Solved by semantic transfer

Live Demonstration!



DogCatMonkey

From Supervised to Zero-Shot Pattern 
Recognition

Output Labels:
Dog
Cat
Monkey

Wampimuk Unicorn
x1

x2Input Data



From Supervised to Zero-Shot Pattern 
Recognition

x1

x2Input Data

Output Labels:
Dog
Cat
Monkey

Category Vectors

v1

v2

z

Feature-Category Vector 
Mapping:

v=f(x)
Wampimuk

Key is to embed categories as vectors

Data-category vector map can generalize to new categories.

Map: Transferred from past 
experience

Task: Transferred from external source

A
pp

lyTrain



Where to get Category Vectors?
• “Supervised” sources:
•Manual annotation of class properties
• Vector encoding of a taxonomic class hierarchy

• “Unsupervised” sources: Existing unstructured data
•Word (token) co-occurrence.
• OR: word2vec: Representation of word prediction 

neural net.
• => Automatic+Free word vector for any “nameable” 

category.

Category Vectors

v1

v2

Vocab

Vo
ca

b

Word
Co-occurence

K

Vo
ca

b

SVD

K-Vector for any 
token!



Regression/Classification Approach

• A simple category vector: class-level attribute description.
• Wampimuk := small, cute, furry, horns.

• Train: 
• Given some known class-category vectors v and data x:
• Learn image-attribute classifiers/regressors v=f(x). 
• E.g., SVM/SVR. Deep Neural Nets.

• Test:
• Specify vec v* for new class
• Map new data f(x*)
• NN matching of v* vs f(x*)

• Pros:
• Easy and fast!

• Cons
• Category separability

x1

x2Input Data

Category Vectors

v1

v2



Why Does Zero-Shot Recognition Work? 
• Very little theory.
• Intuition: 
• IF training category vectors and image vectors lie in the 

same relative positions on their respective manifolds….
• Then a few examples can establish correspondence

between the two spaces
• And any new category can also be recognized.

Wolf
Lion

Cat Dog



ZSL Summary

• Family of ways to recognize (or regress, etc) with no training 
examples.
• Pros:
• Avoid data bottleneck.
• ZSL performance can be similar to K (1-5) shot performance

• Cons:
• Need category embeddings
• Performance is worse than many-shot learning.



From Supervised to Unsupervised 
Cross-Domain Matching
A Dictionary Induction Example
[ Mukherjee & Hospedales, Learning Unsupervised Word 
Translations Without Adversaries, EMNLP 2018 ]



Intro: Bilingual Dictionary Induction

Goal: Inferring a bilingual lexicon from data

• Bilingual Lexicons: 

• Important for multi- and cross-lingual tasks: Multilingual 
word embedding, cross-lingual transfer learning, etc.

• Not all pairs of languages have them.

• Can we infer them from data? English Spanish

Horse Caballo

Pig Cerdo

Cat Gato



Intro: Bilingual Dictionary Induction

Supervised Lexicon Induction
• Given some matching word pairs, deduce the full bilingual lexicon.
• Famously studied by Mikolov et al, 2013.
• Approach: 
• Monolingual word embeddings
• Train a regressor on known pairs
• Apply regressor to match unknown pairs

English Spanish

Cat Gato

Wolf Lobo

…

Dog ?

Tiger ?

Dog

Tiger

Perro

Tigre

Cat

Wolf

Gato

Lobo

Regressor Tr
ai
n

Te
st



Intro: Bilingual Dictionary Induction
Unsupervised Lexicon Induction
• Related to statistical decipherment (Knight, Coling’06)
• How to deduce the full bilingual lexicon starting with no pairs?

Dog

Tiger

Cat

WolfLion
Perro

TigreGato

Lobo

Leon



Deep Distribution Matching: Matching
Our Approach: Statistical dependency: 

• EG: Hilbert Schmid Independency Criteria (HSIC). Squared loss mutual information (SMI). 
Search for the representation and the pairing, that maximises statistical dependency.

Roughly: Search for the sorting that 
makes the two within domain 
kernel matrices “look” similar.

Spanish, p(y)

DMAE

Text	Modality Image	
Modality

En
gl

ish
, p

(x
)

Perro

TigreGato

Lobo

Leon
Dog

Tiger

Cat

WolfLion

1. Update: Association to 
maximize statistical dependency 
(given representation)



Method: Deep Distribution Matching
Our Approach: Statistical dependency: 

• EG: Hilbert Schmid Independency Criteria (HSIC). Squared loss mutual information (SMI). 
Search for the representation and the pairing, that maximises statistical dependency.

• Good:

• Every update decreases objective

• No adversarial min-max.

Spanish, p(y)

DMAE

Text	Modality Image	
Modality

En
gl

ish
, p

(x
)

Dog

Tiger

Cat

WolfLion

Perro

Tigre

Gato

LoboLeon

1. Update: Association
➡ Linear Assignment Problem

2. Update: Representation
➡ Normal back-prop.



Results
• Results Summary:
• Promising results compared to recent adversarial methods.
• Both much better than prior non-adversarial methods.
• Simple convergence compared to adversarial methods.

Adversarial

Previous
Heuristics

Ours
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Practical Exercises

• Examples and exercises on metric-based few-shot 
recognition.
• Python/pytorch on google colab platform.

• Link to walkthrough (google docs): 
• http://tiny.cc/ye2s8y

http://tiny.cc/ye2s8y
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