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e Background

* BA Computer Science, Cambridge 2002

e Lecturer/Senior Lecturer, QMUL, 2012-16

» Reader (Assoc. Prof), Edinburgh, 2016-

* Head of Machine Intelligence Group

* Funded by EPSRC, DSTL, EU Horizon 2020

* Alan Turing Institute Fellow, 2018-

* Principal Scientist, Samsung Al Research Center, 2019-
» Research Area:

* Deep Learning. Meta-Learning. Vision. Vision & Language.
 Track record:

e Over 50 papers in Tier 1 venues of Al, ML, Vision.

« => CVPR, ICCV, ECCV, ICLR, AAAI, IJCAI, ICML. T-PAMI, 1JCV.

* Four best paper prizes.

* Three patents
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Part |: Sparse Data Deep
Learning



Deep Learning Success

DeepMind
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deep reinforcement
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Sketch-a-Net that beats humans Superhuman Pictionary
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Mechanism of Deep Learning Era
Success?

e Gather and annotate bigger datasets.
* Train bigger models.

-

iel Performance

\/

Data Size
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Success Story of Deep Learning Era

e Gather and annotate bigger datasets.
e Train b|gger models. No saturation so far!

Performance grows with log of train data.

300

40 -
N Model Size @
/ = Inception ResNet-v2
@
30 > 150 -
80 3 .HesNet 101
T 3 vaa ResNet-50
o AlexNet .
5 o O
* = .#Pammatem
< 60 12000
2 GPU Power
10 ?
®—@ [ine-tuning ®—@ ['ine-tuning §'6000
®—@ No Fine-tuning o ®—@ No Fine-tuning & e
0
10 30 100 300 10 30 100 300
Number of examples (in millions) — Number of examples (in millions) — 2012 2013 2014 2015 2016
JFT-300M => MS-COCO JFT-300M => PASCAL

[ Sun et al, Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, ICCV’'17 ]



Do we need another paradigm? |To

 Humans have one shot learning
e Learn 5 objects per day for first 18 years.

* Annotating the long tail of object categories?
* Emerging categories

25
Do we need another paradigm? ld_)._)

w

g7

 Annotating data in the long tail of domains®™
» Underwater, Radar, Sonar, LIDAR, Medical_S:
* Defense applications va; _f_i 4

training data, or rare §_ ‘4




Why is Few-Shot Learning Hard?
Overfitting

e Underfitting vs Overfitting. Linear regression example.

Train Points  Test Points

‘ OVERFITTING ‘ OPTIMUM ‘ UNDERFITTING
]
&
b Xz Xz L 0]
error &
e:'rﬂr % "
X1 - X

EG: 20t order polynomial. EG: 2"d order polynomial. EG: 0% order polynomial.



Why is Few-Shot Learning Hard?

Overfitting

e Underfitting vs Overfitting. Linear regression example.

Xz

OVERFITTING

error

X

Question: How to diagnose
over- vs under-fitting?

Overfitting?

Low train error
High test error

Underfitting?

High train error
High test error

A

X
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Why is Few-Shot Learning Hard?

Overfitting

e Underfitting vs Overfitting. Linear regression example.

Xz

OVERFITTING

error

X

-

EG: 20t order polynomial.

Classic Solution?

Try several model
complexities

Evaluate validation set
performance of each
Pick the model with best
validation performance

Issue for deep learning?

Too many complexity
parameters in DL (depth,
width, non-linearity, etc)
Few-Shot: Would pick a
simple model that doesn’t
provide deep learning level
performance.

X

‘ UNDERFITTING
&
&
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EG: 0% order polynomial.



Common Techniques for Sparse
Data Applications



Reducing Data Dependence

Common techniques for overfitting reduction: Regularisation
* Weight decay / L2 regularization

e Early Stopping

* Dropout

* Transfer Learning



Reducing Data Dependence

Weight decay. L2 regularisation.
* Other things being equal, prefer weights near zero.

/ Supervised loss surface

min,, L(D; w) + A||w||3

o

w2
Test Set ~
w : I -
Linear combination minima
KJ "
\ Regulariser loss surface

Optimum Model Complexily

Model Complexity




Reducing Data Dependence

Transfer Learning

 Transfer Learning: “The application of skills, knowledge, and/or attitudes

that were learned in one situation to another learning situation” (Perkins,
1992).

* Note:
* Transfer Learning # “Fine-Tuning”

e Fine TuningC Transfer Learning

Inductive Learning Inductive Transfer

Search ';'

Allowed Hypotheses

Allowed Hypotheses

All Hypotheses All Hypotheses



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
e [nitialise target parameters using source, and continue training

[ Source: ’ |
Data+Labels




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
* Application:
e Across Task: p(Ys|Xs) # p(YelX)
* Change of label-space. Y #Y
* Across Domain
* Change of data statistics. r&Xs) #p(Xe)

RGB => IR




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e Why does fine-tuning work?
* Neural network optimisation is :
* With small learning rate, target task parameters do not change much.

» Transfer initialization effectively
, rather than towards zero.

e Assume source task is to target task.
e => Better chance of good minima.

Loss
Convex / .. Non-convex JO— ‘ S .
/ N / : Loss ha— : Loss —
| N o e ., —
| | |
\ f | | |
N/ | | |
, W | | |
. e’ | | |
Weights Weights




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

 Very similar to explicit source—>target regularisation.
* Used in many classic learning methods(*).

minwt L(Dt; Wt) + Allwt - wS”%

Compare:

min,, £ = L(D; w) + A|lw||3
min,, £ = L(D; w) + Allw — 0|3

Source:Data+Labels

Target: Data+Labels

[ Improving SVM Accuracy by Training on Auxiliary Data Sources, ICML04 ]
[ Cross-domain video concept detection using adaptive svms, ACM MM’07 ]




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e Assumption:
» Source task relevant to target.

min,, L(Dg; wy) + A|lw; — wgll5

* Practical Considerations. Questions:
* How to control relevance degree?
* Which layers to transfer?
* What learning rate to use?

e Typical: }(—--I Ll
» Relearn top while freeze bottom.

________________

Transfer

Initialisation

* Then LR tune all w/ LR proportional
depth

\/
Target: Data+Labels

Target: Data+Labels Ji

[How transferable are features in deep neural networks?, NIPS’14 ]

Source:Data+Labels

—

Question:

l Source:Data+Labels
Always good practice?




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e Assumption:
 Source task relevant to target.

min,, L(Dt; Wt) + Allwt - WS”%

 Practical Considerations. Questions:
* How to control relevance degree?

» Which layers to transfer? SERRRIISSRRNNNE TN
« What learning rate to use? —— — | —— I |
e Typical: }(___I ______________ I____
Relearn top while freeze bottom. | | m | |
/ Then LR tune all w/ LR proportional I I I I
depth ¥ T
Only for cross-task. [Source:Data+LabeIs ]7 [Target:Data+Labe|s ]7

Assumption:
* Relevance proportional to depth. [How transferable are features in deep neural networks?, NIPS’14 ]




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
* Challenges:
* What if the inputs are heterogeneous
e (EG: Task 1: RGB, Task 2: Depth)?

 How to know if a given source is relevant?
 How to prevent negative transfer if source is irrelevant?

 How to select the relevant source among many?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

* |ssues:
 What if the inputs are heterogeneous?

e EG: Perceptual arithmetic network.
Arithmetic

o
D
=
(@)
D

©
=
o

>

uo11dadad

[ EG: HOUDINI: Lifelong Learning as Program Synthesis, NIPS’18 ]




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

* |ssues:
* How to select the relevant source among many?

 For linear models....
e Optimising target model w; assuming a set of potentially relevant
sources {wy}:

min,, [||ly — wX|| + ming ||lw — wy]|]

e ....not so straightforward with deep models

E.g., Evgeniou et al, JMLR, 2005
E.g., Kang et al, ICML, 2011



Outline

e Part |: Sparse Data Deep Learning
 Intro & common techniques.

* Tensor-based

 Part Il: Learning with multiple domains
e Regression and Energy Functions for matching
e \Vision and Language Examples

e Links to Practical Examples & Exercises



Metric Learning



Nearest Neighbor Classifier . + * |

w
e Classic Method in ML m moe
» Given training data {x;, y; }, o
* 1-NN:
* Classify a new point x*. nearest neighbor:
e y* =y, 1" = argmin||x* — x;||
Can we measure similarity by a
e K-NN: For 1-hot y. better distance than Euclidean?
* Classify a new point x™ as: Find a where
1 different categories are far, and
° p(y* |x*) — E ijeNN(x*) y] same categf)ries are near. ‘
® ‘e 900 °. g7 R
l,. O ,' Ogg00. ,' \
! .; - 1 Metric “ .... ..“ Metric a ‘|
‘.

[ e > e e
. I 2 I
,Learning l..l - ® 'Learnings - s
9 \‘ 0 En.m \\ ,
o o ‘ | ’
~
-~



Classic Metric Learning

* Define a Mahalanobis Metric for NN classification:

Factorize M=LL to view
as linear transform

dy (%, %7) = (x; — x)"M(x; — x7) = (x; —x)" L'L(x; — x7)

e Learn the Metric that separates the training data:

m]\/ljnL(M): z dM(Xi,Xj)— Z dM(xier)

[,JEPOS [,JENeg

@
o

@0
@

* Reuse the metric to solve 1-shot learning by NN matching:

[ EG: Hirzer, ECCV’12; Mignon, CVPR’12 ]

O
WP
o~ O
O
@O




Deep Metric Learning * e mp

e Linear => Non-linear feature transform

dM(xl-,xj) = (x; — xj)TM(xi —x;) = (Lx; — ij)T (Lx; — Lx;)
‘ dw (x5, %) = (fw (%) = fw ()T (fwr (%) — fw (%))
e Common Losses:

mMI/nL(W) = z dW(Xi,Xj) — Z dW(Xl,X])
i,JEPOS i,jENeg Every negative distance more than
every positive distance

li/nL(W) = Z 2 |d5/05(xl‘, x]) + A — df/lv/eg (xi; xk)|+

ieD jePos(i),kENeg(i), All positive pair distances =0

All negative pair distances = 1
minkW) = ) [ldw () =0+ ) lldw(xi3) - 1]

[,JEPOS [,JENeg

Minimize average positive distance,
Maximize average negative distance



Deep Metric Learning: Example:
Triplet Ranking for Similarity Search

Test

Query Ranking Results

19NAUCD
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leD jePos(i),keNeg(i

[ CVPR’14, Learning Fine-grained Image Similarity with Deep Ranking ]



Deep Metric Learning: Challenges?

O min

dy (xi, %) = (fw () = fwr D)™ (fw () = f (%)) w ®_o®
w Jj w WA w WA O‘O‘ ‘ o ®
®e S

* Challenges? Training: Scalibility.
e Num triplets: O(N3).  Lw)= z \dity (20, %) + A = dig G )|
e Sampling useful ones tepjeRosiiceneg(t
* => Hard negative mining, learning sampling policy.
e Annotating them.
* Challenges? Testing: Scalability.

* Binary embedding for fast lookup/hashing e
fuw (x) = sign(Wh + b) N B

« => Gradient descent on discrete gradient operation il

[ Wang, PAMI’18, A Survey on Learning to Hash ] 9o -08



Metric Learning for Few-Shot



Few-Shot Learning: Setup

* Meta-train on Set, DW= {xoux yaur} = fx, yN"
e EG: Vehicles. Disjoint labels: Y¥ % Uswp

* Train on Set DS = {x;, i}
* EG: 1-example per animal ysup = ytst

* Test on Set. Dt = {x;, v},
* EG: New animal images to classify.
: Support .
S M e s N match
@ .. ‘ o Euclidean
® ® “Q /Aﬁ' CNN - fg Distance
[1,0,0,0,0]

oo
O

Q M Query
O -
00 X¢)

©) L ]@)




Few-Shot Learning: Prototypical Nets
(NIPS’17)

 Calculate a ”"Prototype” per class:

1
=7 ), fol®)

(xi,Y;i)ESK

* Classify with

p(y = k|x) < exp(—|lfy (x;) — cill*)

%“B—[ CNN fg {Ck}k 1
-»[ CNN fg ]——» exp(— Ilfe(xl) cill?) —— 11,0,0,0,0]

[ Snell et al, NIPS’17, Prototypical Networks for Few Shot Learning ]




Few-Shot Deep Learning: Relation Net

* Relation Net: Similar to Prototypical, but:
e Architecture: Concatenate branch feature maps and
o | Oss: to 0/1.

- SR
Set e : i :

Query Set

Regress
CNN 9¢ [0,0,0,1,0]

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]



Few-Shot Deep Learning: Architectures

Deep Metric Learning

— Neg Exp
“ NN fy Egclldean

Distance to NN
[1,0,0,0,0]
Prototypical Nets
CNN fg
m—[ CNN fg {Ck}
Neg Exp Euclidean
Distance to
-—{ CNN  fp ]—» exp(=Ilfo(x) = €ll®) ——— (10,0001 o ne

Relation Net

N
‘ : ‘ NN fe
‘ J Regress
Concatenate CNN Yo [0,0,0,1,0]
N\

-
J




Few-Shot Deep Learning: Relation Net

 Relation Net: Episodic Training

Auxiliary | R
- egress
TCI'as.s ' CNN d¢ [0,0,0,1,0]
raining
Set U

Objective

. 1
argming oo ) |90 Uo(xa)zr ). fole] | =10 = 1)
k

Xq€Q,SKES XiESk

Episodic Training. Each mini-batch is a K-way N-shot “episode”
=> Trains features to support few-shot recognition

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]



Relation Net: Analysis

 PrototypeNet/RelationNet: Pros & Cons?

e Pros:

* Train+test cardinality don’t have to match.

* Training is super fast if K-way/N-shot is small.

e Cons:

 Testing is slow if K-way is large.

* (RelationNet) Can’t cache features for fast binary/approx NN lookup
* Neutral
e Can do old+new classes together. (But cost + accuracy....)

-

CNN fy

~

.

CNN fy

J

Inner Product

J
> [0,0,0,1,0]
N

E‘aﬂ\

J
§ CNNJ¢ |— [0,0,0,1,0]

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]



Relation Net

e Summary:
o State of the art on minilmageNet and tieredimageNet

* Also supports zero-shot learning =\, Iy
Prototypical 51.6%
; RelationNet 57.4%
T { ?
Tzité’c:t%)) RelationNet 2.0 62.8%

Text(‘fish”)
CNNg¢ [0,0,0,1,0]

[ Sung, CVPR’18, “Learning to Compare: Relation Networks for Few Shot Learning” ]
[ Zhang, arXiv’'18, “Relation Columns for Few Shot Learning” ]
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Tensor-Based Models

Multi-task Learning



Deep Multi-Task Learning

Input _ Boundaries

e Typically:
» Share feature extraction layers.
e Multiple predictions & losses.

Age Expression  Gender

Given Data: {xi,}’il:--'YiK}

Solve:
Layer 2 Semantic Segmemauon Semantic Boundaries
it g, ), L0 i 000 >~

Human Parts Detection

[ TPAMI 2017, HyperFace: A Deep Multi-task Learning Framework for Face Detection... ;
CVPR’17, UberNet: Training a ‘Universal' Convolutional Neural Network ]



Deep Multi-Task Learning

e Typically: * Why/When to use MTL?
» Share feature extraction layers.  Care about performance on
 Multiple predictions & losses. all tasks (else use TL)
e Share compute & memory

Age Expression  Gender .
Given Data: {Xi, Y5, Vi } of feature extraction.

Solve:

ming ¢, Z Z L, far (99(x))
k

i

[ TPAMI 2017, HyperFace: A Deep Multi-task Learning Framework for Face Detection... ;
CVPR’17, UberNet: Training a ‘Universal' Convolutional Neural Network ]



Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

category
* prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

Total nr. flops: 832M
4M

16M
37M

74M

224M
149M

223M



Tensor-Based Models

Transfer Learning



Multi-Source Knowledge Transfer Scenarios




Multi-Source Knowledge Transfer Scenarios

Source

Huy 89"ATwHWY. 28 * A HWY 89 AT HWY 28
."h"""' g

ey




Tensor Composition vs Decomposition

* You may have heard of matrix . min||X — UV *
* We also have tensor Dim(X) = NxD
Dim(U) = NxR

PCA, SVD, etc )
N
U B

Cmin 1%k = $x,U %P xU3|

Dim(X) = LXMXN

v Dim(S) = Ry XR,XR;
X Dim(UY) = LXR,

Dim(U?) = MXR,
Dim(U3) = NXR;

~y

Tucker



Tensor-based Transfer: Background

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks 3 o
F f—r) B fer F [~ Z

Day/Night/Summer l = ; £

y / =

4 fa o
Expression/Gender = - oy F
= <2 ard Pty

= . 0 & Task Agnostic

Push/Hit = FC1 Specific

Task Specific

|

Tucker Decomposition I \ Input Specific




Tensor-based Transfer: Background

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks
5 P of
5 b
Day/Night/Summer
Expression/Gender I g:’_ o
Push/Hit

Task Agnostic Task Specific

. i

Task

Original Tensor W is size: TXD XH.
Approximate it as product of low-rank factors:
W = SX]_UTXZUDX3UH

dim(S): RXRXR (Agnostic)

dim(UT): RxT (Task specific)
dim(UP): RxD (Input specific)
dim(U™): RxH (Hidden unit specific)

Compress params from TDH to R® + RT + RD + RH



Note: Tensor Composition vs Decomposition

* You may have heard of matrix/tensor
* Note that we are doing matrix/tensor composition.

N

Implementation:
Decompose Every weight tensor is replaced with a set of factors.

Multiple the factors out into the tensor for forward pass.
_ Update individual factors in back pass (no problem,

multiplication is differentiable)

PCA, SVD, etc

Input
<

¥ ey .
' ~
i CP, Tucker, TT, etc

Task



Tensor-based Transfer: Multi-Task
Source Training

1. Find the low-rank subspace spanned by the source tasks.

Source Tasks V-5 : k
5 - - Z min v L o (gw (x;))
P-4 = s = -
Day/Night/Summer i F Lk
e [=
IIII"' » e . E E k
Expression/Gender z o yol = min g ;7 ;b yH L(»y; rf¢k (gW(xi))
& ik
Push/Hit

Task

Original Tensor W is size: TXD XH.
3 Approximate it as product of low-rank factors:
Task Agnostic Task Specific W ~ le UTXZ UD X4 UH

%\ j Where: R <T,D,H
dim(S): RXRXR (Agnostic)
s

Input

= dim(UT): RXT (Task specific)
] dim(UP): RXD (Input specific)
o dim(U"): RxH (Hidden unit specific)

Compress params from TDH to R3 + RT + RD + RH



Tensor-based Transfer: Idea

1. Find the low-rank subspace spanned by the source tasks.

2. Train only the task-specific parameters for new task.

Source Tasks

Day/Night/Summer
Expression/Gender

Push/Hit

=4
=
=
=
7 &
o a
&
=

o

=

=

=

> 2 —

At At a”
=~
=

Task Specific

/
ik

Task Agnostic

~ Age

Few parameters to train.

* => Fast and overfitting

resistant

Target Tasks

Winter

Throw




Tensor-based Transfer: Context

L, Regularisation Transfer Learning Multi-Task Learning
w w °L e
1 1 Target ®e
Source 8 W, J
(X ) *
® s 04 ?/
° o
/‘. ®e L ° ‘\0? °
Tensor-Rank
W, W, w,

Task Agnostic  Task Specific
* W3 ,

[ Yang & Hospedales, ICLR’15; Yang & Hospedales ICLR’17 ]

IR

Task




Tensor-based Transfer:

Question: What is the difference between these two strategies?

~ N -

N

Task

Input x FC1.

o
= - -7 5‘;
P4 e A7 3 Vec(Wtask)

\
{ \

Task




Tensor-Based Transfer Learning:
Some Examples

Robot Control



Robot Control Task

e Consider robot with an arm.
* Model: a; = f,, (x¢)
* X;t: Angle of each joint, time, (ball
position, target position)
* a,: Force to apply at each joint at
time t.
* fw: Neural network controller
 Train with reinforcement learning
«R(x,) = {+(1) ilf ball hit§ target
—0.1 otherwise
 Train: w = argmax,, ).+ R(x;)




e [SSue:

RObOt ContrOI TaSk * Requires lots of data:
N
{{atl Xt R(Xt)}g;l}n:l
 Consider robot with an arm. e Each is trial slow and expensive.
* Model: a; = f,, (x¢) » Redo for each new task.

* X;t: Angle of each joint, time, (ball
position, target position)
* a,: Force to apply at each joint at
time t.
* fw: Neural network controller
 Train with reinforcement learning
. __ | +1if ball hits target
R(x) = {—0.1 otherwise
 Train: w = argmax,, ).+ R(x;)




Robot Control Task

* Given some known tasks, use knowledge transfer to learn new
task quicker.

Hit Push Throw



Robot Control Task

* Given some known tasks, use knowledge transfer to learn new
task quicker.

Throw Cast Ball-In-Cup



Tensor Transfer for Robot Control

* In this case vectorize entire neural network....

Learning Source Tasks Learning Target Task

S e s et it Cast

|

¢

BIC+

¢ g ¢

BIC: |

¢

ETIFTRETINTL

¢

BICk |

0

T

[ Yang et al, ICLR’17. Zhao et al, Tensor Based Knowledge Transfer Across Skill Categories for Robot Control, IJCAI, 2017 ]



Tensor Transfer for Robot Control

* Dramatic Improvement in Learning Efficiency for Target Task:
* Now possible to learn BIC with RL.

—  Without Curriculum — With Curriculum —  Without Curriculum — With Curriculum

-
wn
o
o
3 2
c (]
-l [a's
> ")
< &
) g
g 5
(U lf)
—_
()
3: 0.2
M A A
560 10‘00 15‘00 20‘00 25‘00 30‘00 35‘00 4000 0'00 560 10‘00 15‘00 20‘00 25‘00 30‘00 35‘00 4000
Learning Trials Learning Trials

[ Yang et al, ICLR’17. Zhao et al, Tensor Based Knowledge Transfer Across Skill Categories for Robot Control, 1JCAI, 2017 ]



Tensor-Based Transfer Learning:
Some Examples

Multiple Visual Domains



Visual Decathlon Challenge

* A small sub-challenge of Artificial General Intelligence (AGI):
* A general visual feature extractor.
e Current best results: train one deep feature per dataset.
» But for general visual intelligence, prefer a single deep network.

* \/isual Decathlon Challenge [ Rebuffi, NIPS'17, Learning multiple visual domains with residual adapters ]
» 10 datasets: Aircraft, Handwriting, Flowers, Pedestrians, Traffic Signs...
* Goal is to learn them ’ ,and with




Visual Decathlon: Tensor Solution

* Train Deep networks for the
first K domains

e Extract and fix the core tensor
* (no forgetting)
* For each new domain, train
only task specific factor
* (small growth pert task)

Task Agnostic  Task Specific

\ /
Na
_

Task




Tensor-based Transfer: Results

* VVisual Decathlon [ Bulat et al, arXiv'19 |

Dataset
[ Model | #param | ImNet | Airc. | C100 | DPed | DTD | GTSR | Flwr | OGIt | SVHN | UCF | mean | | Score |
#images - 1.3M 7k 50k | 30k 4k 40k 2k 26k 70k 9k - -
Rebuffi et al. [27] 2x 59.23 | 63.73 | 81.31 | 93.30 | 57.02 | 97.47 | 83.43 | 89.82 | 96.17 | 50.28 | 77.17 2643

Rosenfeld et al. [7] 2x 57.74 | 64.11 | 80.07 | 91.29 | 56.54 | 98.46 | 86.05 | 89.67 | 96.77 | 49.38 | 77.01 2851
Mallaya et al. [22 1.28x | 57.69 |65.29 | 79.87 | 96.99 | 57.45 | 97.27 | 79.09 | 87.63 | 97.24 | 47.48 | 76.60 2838
Series Adap. [30] 2x 60.32 | 61.87 | 81.22 | 93.88 | 57.13 | 99.27 | 81.67 | 89.62 | 96.57 | 50.12 | 77.17 3159
Parallel Adap. [70] 2% 60.32 | 64.21 | 81.91 | 94.73 | 58.83 | 99.38 | 84.68 | 89.21 | 96.54 | 50.94 | 78.07 3412
Parallel SVD [29] 1ox 6032 | 66.04 | 81.86|94.23 | 57.82 | 99.24 | 85.74 | 89.25 | 96.62 | 52.50 | 78.36 3398
Ours 1.35x []161.48 | 67.36 | 80.84 | 93.22 | 59.10 | 99.64 | 88.99 | 88.91 | 96.95 | 47.90 | 78.43 3585




Tensor-Based Transfer Learning:
Some Examples

Fact Induction



Knowledgebase Completion

* Induce Missing Facts:

e Completion model induces missing tuples:
» <Cambridge, locatedIn, England>
e Task := Relation

* - Independent tasks.

historian male
gender

Typical Solution: Train Embeddings ©O:

e vecg(“Cambs.”)+vecy(“locatedIn”)=vecy(“England”)
* vecy(“Cambs.”)*matrixg(“locatedIn”)=vecy(“England”) Pact b
* vecg(“Cambs.”)*matrixg(“locatedin”)*vecg(“England”) = 1

profession

nationality

Florence Italy

\ )
I

Regression Problem. One per relation.

location nationality

[ Balazevic et al, arXiv’18; arXiv’'19 ]



Share across regressions (and entities)

Knowledgebase Completion

* Induce Missing Facts: Subject
€s de
Typical Solution: Train Embeddings ©: /
vecg(“Cambs.”)*matrixg(“locatedIn”)=vecy(“England”)

Relation

vecg(“Cambs.”)*matrixg(“locatedIn”)*vecg(“England”) = 1
Object

CoreTensor x; vecg(“locatedIn”) x, vecg(“Cambs.”) x3 vecg(“England”) = 1

CoreTensor x; vecg(“locatedIn”) x, vecg(“Cambs.”) = vecg(“England”)

\ )
I

. ‘historian male
Generates a DxD matrix

gender

profession )

= View as a weight generation net. EE—
place of birth

To learn one relation:
Before: D2 parameters. Florence Italy

Now: R<D parameters. ;
location nationality

[ Balazevic et al, arXiv’18; arXiv’'19 ]

nationality



Share across regressions (and entities)

Knowledgebase Completion

w
* Induce Missing Facts: Subject
e Completion model induces missing tuples: oM a,
» <Cambridge, locatedIn, England> d,/f
| : |

* Task := Relation Relation

€,

* - Independent tasks. Object
WNI18RR FB15k-237
Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1
DistMult (Yang et al., 2015) yes 430 490 440 .390 241 419 263 .155
ComplEx (Trouillon et al., 2016) yes .440 .510 460 410 247 428 275 .158
Neural LP (Yang et al., 2017) no — — — — .250 408 — —
R-GCN (Schlichtkrull et al., 2018) no - - - - .248 417 264 151
MINERVA (Das et al., 2018) no - - — - - 456 — —
ConvE (Dettmers et al., 2018) no 430 .520 440 400 .325 001 .356 237
HypER (BalaZevi¢ et al., 2018) no 465 .522 ATT 436 341 .520 376 .252
M-Walk (Shen et al., 2018) no 437 — 445 414 - - — -

TuckER (ours) yes 470 .526 482 443 .358 .544 394 266 9




Tensor Knowledge Transfer

summary: ol Task Agnostlc Task/Specific
* Pros: o ////
e Fast L 7Z

e Sample-efficient
e Parameter-efficient
» Relatedness is not crucial if enough ranks.

e Cons:

* Need many source tasks (cf: Few-Shot vs “Fine-tuning”)
e Tasks need same “shape”



Tensor vs Metric Based Few-Shot

e Tensor-based * Metric-based
e Suitable for any task e Suitable for classification.
(classification, regression, e Suitable to extend an
detection) existing label-space.
* Weak assumption on * No requirement (+), and
known source task limited exploitation (-) of
relevance (vs fine-tune). multi-source.

* Requires (-) and exploits
(+) multiple sources-.



Tensors: Bonus Topics

Tensor-Based Network Compression



Tensor-Factorisation for Model Compression

* Aside: These tensor methods also widely used for model
compression & acceleration.

e Fully Connected Compression: D1xD? — Dxr + D?xr

Factorise
Example Pipeline:
NS .
w — u BY% 1. Train full network.

2. Decompose
3. Fine-tune

e Convolution Compression:

Dim(W) = WXHXCi,XCpyt

Dim(S) = Ry XR,XR3XR,
Dim(U') = WxR;,

~ X Dim(U?) = HXR,

Dlm(U3) = CinXR3

Dim(U*) = C,,: ¥R

[ Lebedey, ICLR’15, Speeding-up Convolutional Neural
Networks Using Fine-tuned CP-Decomposition ]

Tucker




Tensors: Bonus Topics

Tensor-Based Modality Fusion



How to fuse multi-modal data?

e Often: One prediction, Two signals: Audio, video. Still, Motion.
* Typical answer: y =wl[xg,x,] = wlx, + wlx,
 Shallow model: concatenate (implies linear combination)
e Deep model: concatenate and pass through MLP.  y = Ve(W[x,, x5])
 Also: Tensor-based data fusion
e Tensor fusion layer: y = WX XgX2Xp
e Question: What'’s the problem with this?
* Too many O(N3) parameters:
e Low-rank tensor fusion layer: Yy =8X1(Uxg)x2(Vxp)

[ Hu et al, Neural Tensor Fusion Networks, ICCV’17 ]



Outline

e Part |: Sparse Data Deep Learning
 Intro & common techniques.
e Metric learning
e Tensor-based

e Regression and Energy Functions for matching
* VVision and Language Examples

e Links to Practical Examples & Exercises



Part Il: Learning with Multiple
Domains



What is the difference between transfer
learning and domain adaptation?

e Confusion caused by vagueness of term “transfer learning”
 If “TL” means any knowledge transfer: DA is a subset of TL.
* IF “TL” means “supervised” or more specifically "fine-tune”:
* (Unsupervised) Domain adaptation is disjoint to TL.

e Problem: Domain-Shift vs Task Shift

* Data:
p(Xs) # p(Xe) p(Ys|Xs) # p(YelXe) Confusing.
d 4 g g Some methods,
Supervised Domain Adaptation. Supervised Task Adaptation. e.g., FT, Tensor,
X5 ¥ } = Xe, V) (Incl: Fine-tuning, Tensor). (Incl Fine-tuning. Tensor). ‘can apply to
- both.
{Xs, Y5} - {X¢ } Unsupervised DA. Impossible. Unless ZSL.
X, Y.} - {} Domain Generalization Impossible. Unless ZSL.




Learning with Multiple Domains

Solving Domain-Shift: Cross Domain Matching:
* Model still works, even e Your goal is to match across
when data statistics change: domains.

e Different domains are a
nuisance variable:




Cross-Domain Matching



Cross Domain Matching: Examples

* Text->Image Retrieval

a white plate topped with a cut in half sandwich.

a city street filled with lots of traffic.

a train traveling down tracks next to a forest.




Cross Domain Matching: Examples

* |[mage->Caption Retrieval

a white plate topped with a cut in half sandwich.

a city street filled with lots of traffic.

a train traveling down tracks next to a forest.




Cross Domain Matching: Examples

* Graph -> Image Retrieval

wearing —s jacket — yellow
S

| Ly Wearing H‘opcﬂ
man / nextto_ glasses ——s on —foce
~  thick
sitting nexi 1o * below ——liiir .’,_’

gray

—— \ white
Coam ) -
wnm:-slttlﬂz man ——s caucasian
I\ Told \ \ .
\ ~— wearing —stie— striped
\ - ~. o
smiling

\ \\:______—h
\\.M‘Q +old

=N\ e floor
M:i:::";sﬁﬁ \ittin{: next o " ‘//I/’ ‘ \’l

L aator on under wood under  under
L 'm'_‘jm:f'_-u_‘m 4 / rd 4
AT NN wall blanket table under
Boe—gas )\ v P i e +
™ / "B tan ontopof black on dark white by

glass mn/ T e

bed
s
has next to
+

next to phone
¥

black ontopof on

y\
desk

white clean

white wood brown wooden below has nextto



Cross Domain Matching: Examples

e Bilingual Dictionary Induction

v
v

[ Mikolov, arXiv’13, Exploiting similarities among languages for machine translation ]



Cross Domain Matching: Examples

 Sketch-based Image Retrieval: Online Shopping

N S AL FHEIBF B
AJﬂsz $ o= BH
t J A2 2] 221D
@ja-’jé A’!‘i*!

[ Yu et al, CVPR 2016, Sketch me that shoe ]



Cross Domain Matching: Examples

e Person Re-ldentification







~—g
¥ 0000 7aH
s b= 31 - 2000 SOF

00 24H
b~ 31 = 2000 S6F
-




Cross Domain Matching: Examples

 Description-Based Person Search

Description-based person search:

e E.g., “Suspect had blue jeans, - CCTV Video ‘
brown jacket, and blonde hair” patabase

| Red-Shirt I Blue-Trousers I Red-Shirt + Blue-Trousers

The man 1s wearing a
white shirt and a pair

of brown pants, and a
black backpack.

—

5.
:
: o
s
’l

SN 4507 Tt
T e
Sl el
£y Y - »
]
|

¥

YT,
1"‘ £ I
e
el W



Cross Domain Matching: Examples

* Mind Reading

— Happy

Angry
Sad

Afraid

[ Mitchell, Science’08, Predicting Human Brain Activity Associated with the Meanings of Nouns ]



Outline

e Part |: Sparse Data Deep Learning
 Intro & common techniques.
e Metric learning
e Tensor-based

 Part Il: Learning with multiple domains

e \Vision and Language Examples
e Links to Practical Examples & Exercises



Regression and Energy Function
Methods



Matching Approaches: Regression

Linear Deep
e Train: * Train:

minWZIIyi — Wx|| mian”}’i — fw ()l
e Test: Nearest Neighbour e Test: Nearest Neighbour

argminijGallery ”yj _ fW(x*)

3 *
argmlnijGallery”yj - Wx



Matching Approaches: Energy Functions

e Bilinear Train:

minyy, Z |—x[Wy; — A+ xiTWyk|+
(i,/)EPos(Lk)ENeg * Low-Rank

ming y Z |—x;UVy; — A+ x;UVy|T

e (i,j)ePos,(i,k)ENeg
e Bilinear Test:

argmaijeGallery ”y}*wx* ”



Matching Approaches: Energy Functions

* Deep Train: * Deep Test

min >GRO — fuGd ) -l maxy ecatfu (x")" fr ()

(i,j)epos,(i,k)ENeg

Connection to Metric Learning:
* “Siamese”

* Max energy/min distance

min > | (£ (o () —d* (s (e fi 07)) - A
(i,j)EPoOS
(i,k)ENeg

min > |a* (fi G fir 07)) = & (£ (e fi G)) + 4]

(i,j)epos
(i,k)ENeg




Discussion

* Multiple losses
e Sometimes good to use classification,
matching, and ranking.
e Siamese. Homo. vs Hetero. Branches.
e Depends on modality heterogeneity.

* Non-CNN encoders:

Training
samples

Mini-
batches
=]

Triplet

Sketch Branch

Photo Branch

Photo Branch

Embedding



Discussion e QL

Mini- 5 Photo Branch
batches

* Multiple losses - g
« Sometimes good to use classification, H& Photo ranch

Triplet Embedding

matching, and ranking.

e Siamese. Homo. vs Hetero. Branches.
e Depends on modality heterogeneity.

* Non-CNN encoders:

P3q13
3 j ,E. ! ';_.5/.;

- gl
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Cross-Domain Regression
Examples



Sketch-to-Image: Sketch-based Image Retrieval

i
Y Queen Mary EXAMPLE

C Q

Copyright © 2016 SketchX Lab.

[ CVPR’16 — Sketch me that shoe, ICCV’17, CVPR’18 ]



Image-to-Sketch: Learning to Draw

+
wQ Queen Mary

University of London

Input Photo Synthesised Sketch

i

RECORDEDUWITH

SCREENGAST! () IMATIC

[ Song, CVPR’18, Learning to Sketch with Shortcut Cycle Consistency ]



Zero-Shot Learning



What is Zero-Shot Learning?

Live Demonstration!

e Audience Task: Recognise the
* Impossible?

e Solution: Semantic Transfer

o Wampimuk :=small, horns, furry, cute

WIKIPEDIA
Zero-Shot: oossen ”Z”
1. Pattern recognition with ng:gyralnﬂlgexé F?;ﬁfm
2. Solved by semantic transfeﬁw " “_\ 6 o e




From Supervised to Zero-Shot Pattern
Recognition

Output Labels:
Dog
Cat
Monkey




From Supervised to Zero-Shot Pattern
Recognition

Key iS to embed Categories as vectors Task: Transferred from external source

Category Vectors

Output Labels: )
Dog R W
Cat ! ¢
Monkey ®
©0 g0 ¢
[
Input Data X
Feature-Category Vector
Mapping: Map: Transferred from past
v=F(x) experience
Wampimuk

Data-category vector map can generalize to new categories.



Where to get Category Vectors?

e “Supervised” sources:
* Manual annotation of class properties Category Vectors
* \/ector encoding of a taxonomic class hierarchy

Vi *
e “Unsupervised” sources: Existing unstructured data
* Word (token) co-occurrence.

*
e OR: word2vec: Representation of word prediction
neural net.
e => Automatic+Free word vector for any “nameable”
CategO ry K-Vector for any
I Vocab K token!
. R Word
Egélh‘ a _:::53“- Co-occurence

Gt P °Vb
e OS5 R e
wie )

B

!

i

EE

i
Vocab

7”7

Vocab




Regression/Classification Approach

* A simple category vector: class-level attribute description.
« Wampimuk := small, cute, furry, horns.

* Train:
e Given some known class-category vectors v and data x:
* Learn image-attribute classifiers/regressors v=f(x).
* E.g., SVM/SVR. Deep Neural Nets.

* Test:
 Specify vec v* for new class
* Map new data f(x*)
* NN matching of v* vs f(x*)

e Pros: .| * {:.js: . -:o

» Easy and fast! ,
e Cons ®®

» Category separability

Category Vectors

Input Data



Why Does Zero-Shot Recognition Work?

* Very little theory.
* [ntuition:

e | training category vectors and image vectors lie in the
same relative positions on their respective manifolds....

* Then a few examples can establish correspondence
between the two spaces

* And any new category can also be recognized.




ZSL Summary

* Family of ways to recognize (or regress, etc) with no training
examples.

* Pros:

* Avoid data bottleneck.

« /SL performance can be similar to K (1-5) shot performance
e Cons:

e Need category embeddings

e Performance is worse than many-shot learning.



From Supervised to Unsupervised
Cross-Domain Matching

A Dictionary Induction Example

| Mukherjee & Hospedales, Learning Unsupervised Word
Translations Without Adversaries, EMNLP 2018 ]



Intro: Bilingual Dictionary Induction

Goal: Inferring a from data
* Bilingual Lexicons:

e Important for multi- and cross-lingual tasks: Multilingual
word embedding, cross-lingual transfer learning, etc.

* Not all pairs of languages have them.

e Can we infer them from data? mm

Horse Caballo
Pig Cerdo

Cat Gato



Intro: Bilingual Dictionary Induction

Lexicon Induction
* Given some matching word pairs, deduce the full bilingual lexicon.
e Famously studied by Mikolov et al, 2013.
e Approach:
* Monolingual word embeddings

 Train a regressor on known pairs mm

e Apply regressor to match unknown pairs Cat -

Regressor Wolf Lobo
C Dog ‘Gato Perro

o o -~ _ O
P d ~
-’
.’Tlger‘ Wolf .Tlgre' Lobo

» a
> >

Train

Dog ?

Test

Tiger ?



Intro: Bilingual Dictionary Induction

Lexicon Induction

* Related to statistical decipherment (Knight, Coling’06)

* How to deduce the full bilingual lexicon starting with no pairs?

Cat Dog .Gato Tigre

Leon
[

o o
Tiger Perro
@'° Wolf




Deep Distribution Matching: Matching

Our Approach: Statistical dependency:

* EG: Hilbert Schmid Independency Criteria (HSIC). Squared loss mutual information (SM).
Search for the representation and the pairing, that :

1. Update: Association to Roughly: Search for the sorting that
maximize statistical dependency ‘ makes the two within domain
(given representation) kernel matrices “look” similar.

II
—\
3!.;,_10000
;‘00010
@ |01 000
9 10 0 0 0 1
w |lo0o100

Spanish, p(y)

Y Gato g Tigre
® .. Leon
Tiger \wolf Perro
o Lione ® e Lobo



Method: Deep Distribution Matching

Our Approach: Statistical dependency:

* EG: Hilbert Schmid Independency Criteria (HSIC). Squared loss mutual information (SM).
Search for the representation and the pairing, that

1. Update: Association

&J Linear Assignment Problem amgan(D; ©,0,) — A\D(D; Oz, Oy),
o Regu;;rizer Depe:trdency
2. Update. Representation DH(D,@m,@)y) = DH({gm(mi):g‘y(yr(i))}?:l)u
& Normal back-prop. AUD;04,0y) = ||z — falga(z:))|
i=1
* Good:
» Every update decreases objective II
 No adversarial min-max. % 10000
- {00010
< 1o 100 0 eCat ¢ Dog eGatog Perro
® 100001 .
w0010 0 e Tiger \wolf

elione

Spanish, p(y)



Translation Accuracy
[=]
s

Results

e Results Summary:
e Promising results compared to recent adversarial methods.

e Both much better than prior non-adversarial methods.
e Simple convergence compared to adversarial methods.

02}

Acc. Unsupervised
Acc. Semisupervised
Loss Unsupervised

10

20 30 40
Epochs

Previous
Heuristics T

—

Ours {

MUSE Dataset
Methods es-en en-es it-en en-it zh-en en-zh
TM (Mikolov et al., 2013) 5.6 4.8 52 438 2.6 1.8
CCA (Faruqui and Dyer, 2014) 6.1 5.6 58 5.2 3.1 23
MCCA (Haghighi et al., 2008) 57 51 54 438 3.0 22
KS (Quadrianto et al., 2009) 8.3 7.4 63 5.7 4.8 32
Self-Training (Artetxe et al., 2017) | 124 122 10.7 102 5.8 5.6
EMDOT (Zhang et al., 2017b) 724 718 728 726 328 317
W-GAN (Zhang et al., 2017b) 782 774 753 748 38,6 375
GAN-NN (Conneau et al., 2018) | 69.8 713 72.1 715 413 402
Deep-SMI (Ours) 7599 806 1757 T52 2383 381 |
Deep-SMI-CSLS 79.2 845 788 785 437 428




Outline

e Part |: Sparse Data Deep Learning
 Intro & common techniques.
e Metric learning
e Tensor-based

 Part Il: Learning with multiple domains
e Regression and Energy Functions for matching
e \Vision and Language Examples



Practical Exercises

e Examples and exercises on metric-based few-shot
recognition.

* Python/pytorch on google colab platform.
* Link to walkthrough (google docs):


http://tiny.cc/ye2s8y
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