

Deep Neural Networks II

Sen Wang

UDRC Co-I – WP3.1 and WP3.2 Assistant Professor in Robotics and Autonomous Systems Institute of Signals, Sensors and Systems Heriot-Watt University

> UDRC Summer School June 2020

> > Slides adapted from Andrej Karpathy, Kaiming He

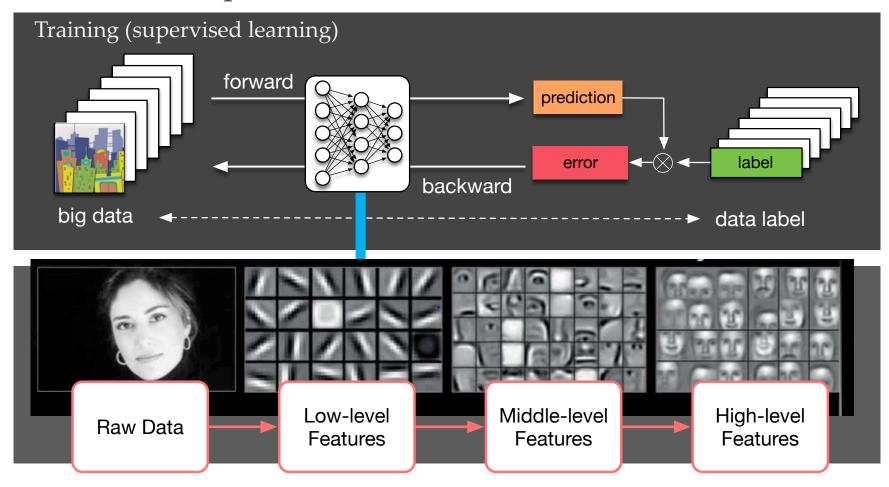
Outline

Learning features for machines to solve problems

- Convolutional Neural Networks (CNNs)
- Deep Learning Architectures (focus on CNNs) learning features
- Some Deep Learning Applications problems
 - Object detection (image, radar, sonar)
 - Semantic segmentation
 - Visual odometry
 - o 3D reconstruction
 - Semantic mapping
 - Robot navigation
 - Manipulation and grasping
 - 0

Deep Learning

Deep Learning: a learning technique combining layers of neural networks to **automatically identify features** that are relevant to the problem to solve



Deep Learning in Robotics

ANN ARBOR, MI, U.S.A. | JUNE 18, 2016

Robotics: Science and Systems (RSS 2016) Workshop Are the Sceptics Right? Limits and Potentials of Deep Learning in Robotics

BOSTON, MA, U.S.A. | JULY, 2017

Robotics: Science and Systems (RSS 2017) Workshop New Frontiers for Deep Learning in Robotics

HONOLULU, HI, U.S.A. | 21 JULY, 2017

Computer Vision and Pattern Recognition (CVPR 2017) Workshop Deep Learning for Robotic Vision

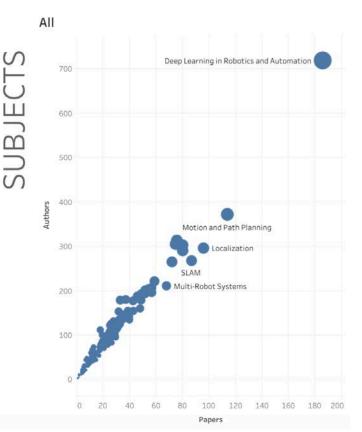
Call for Papers: The International Journal of Robotics Research (IJRR) Special Issue: Limits and Potentials of Deep Learning in Robotics

IJRR 2016

International Journal of Computer Vision Special Issue on Deep Learning for Robotic Vision IJCV 2018 Big Data in Robotics and Automation Deep Learning in Robotics and Automation

ICRA2018 ~2500 submissions: the most popular keyword

ICRA 2019



Deep Learning in Robotics

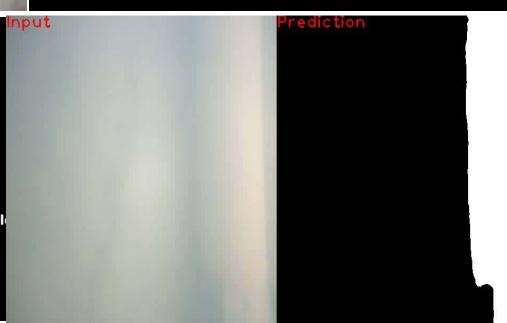
Toward Low-Flying Autonomous MAV Trail Navigation using Deep Neural Networks for Environmental Awareness

Autonomous Flight Over 250m Trail

colai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, Stan Birchfiel

NVIDIA Corporation

arXiv:1705.02550 [cs.RO], May 7, 2017



Convolutional Neural Networks (CNNs)

 \bullet \bullet \bullet

From MLPs to CNNs

- Feed-forward Neural Networks or Multi-Layer Perceptrons (MLPs)

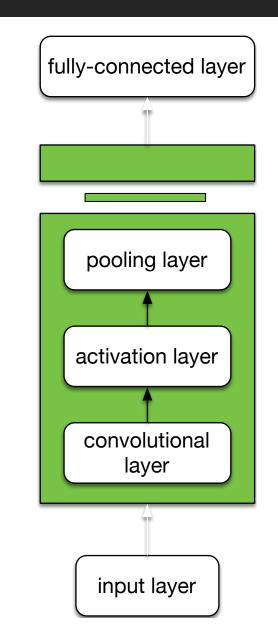
 many multiplications
- CNNs are similar to Feed-forward Neural Networks
 o convolution instead of general matrix multiplication

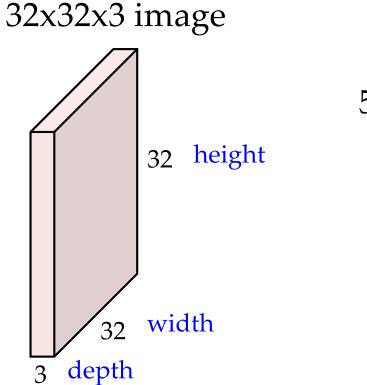
Input

CNNs

- 3 Main Types of Layers:

 convolutional layer
 activation layer
 pooling layer
- repeat many times

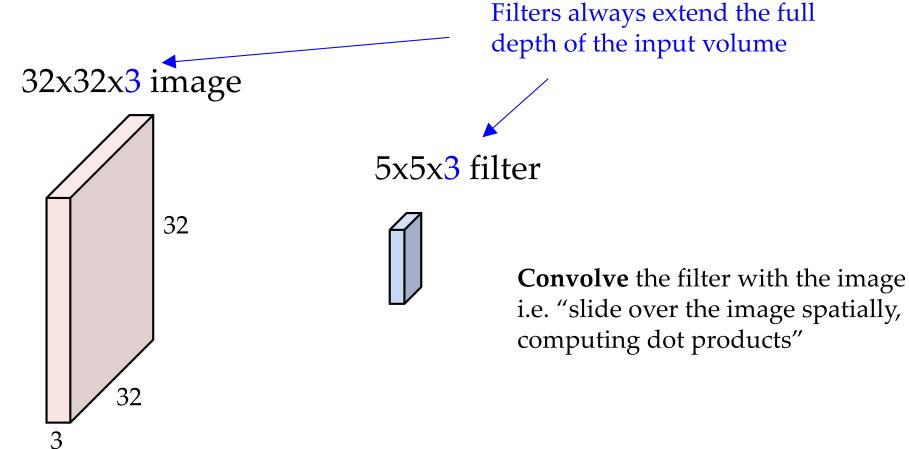


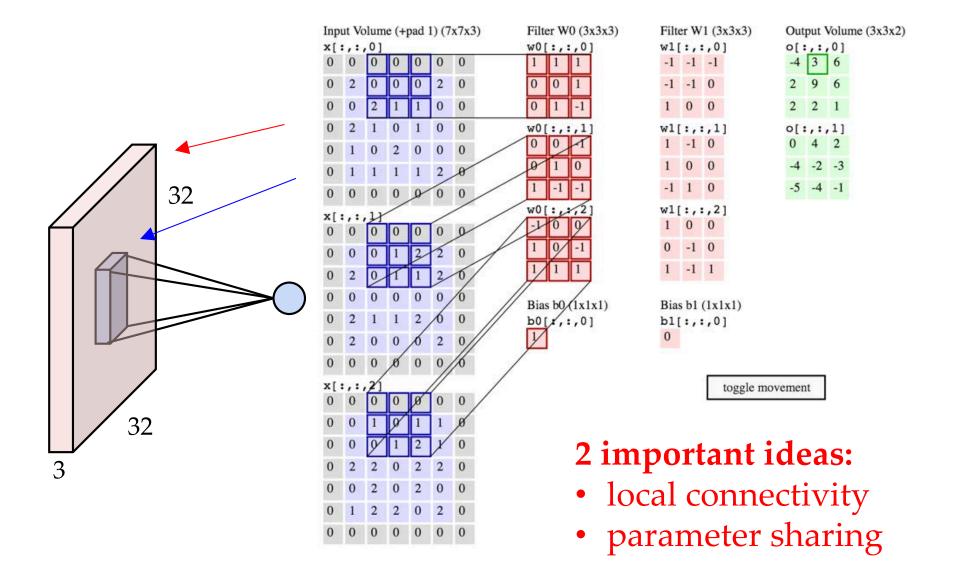


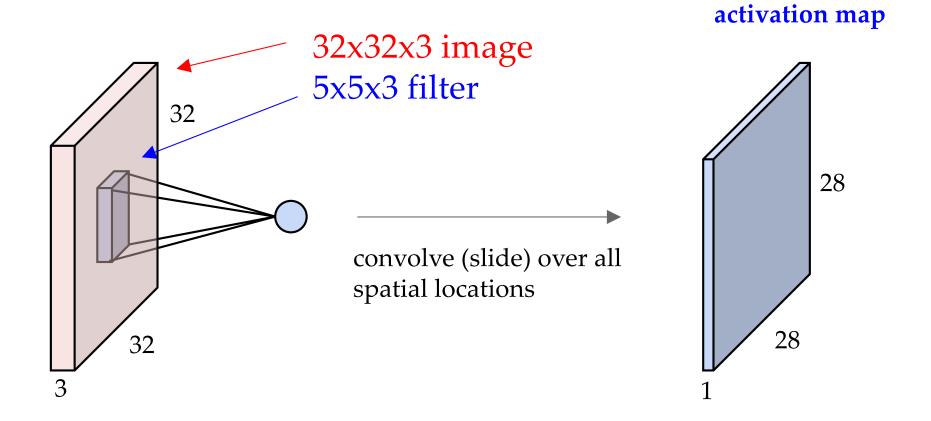
5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

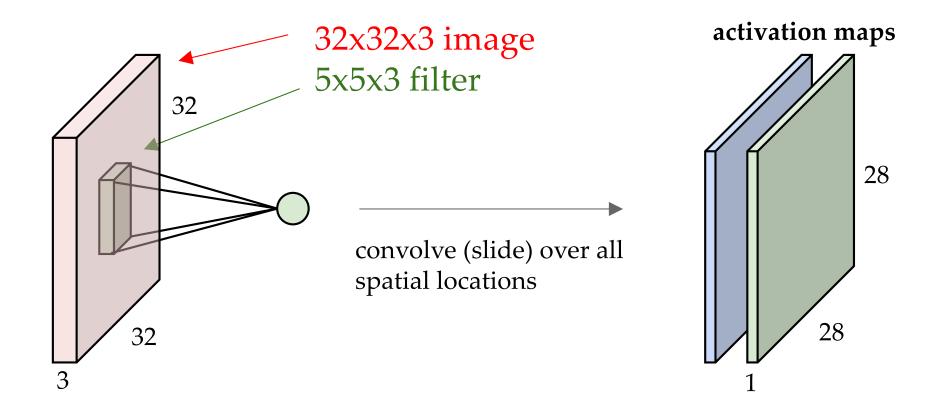
Slides courtesy of Andrej Karpathy



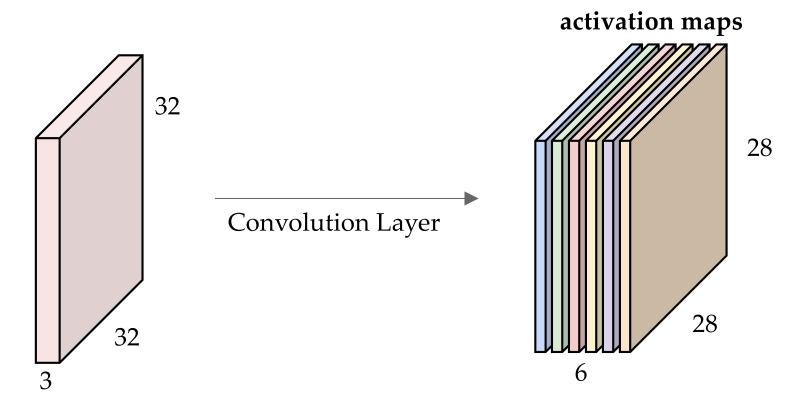




consider a second, green filter

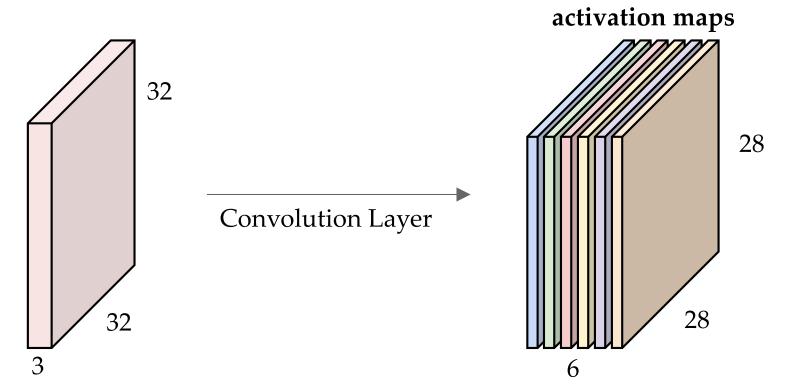


For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:



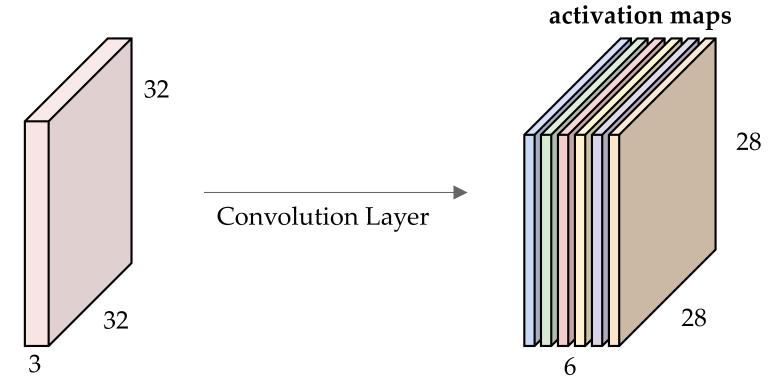
We stack these up to get a "new image" of size 28x28x6

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:



We processed [32x32x3] volume into [28x28x6] volume. Q: how many parameters would this be if we used a fully connected layer instead?

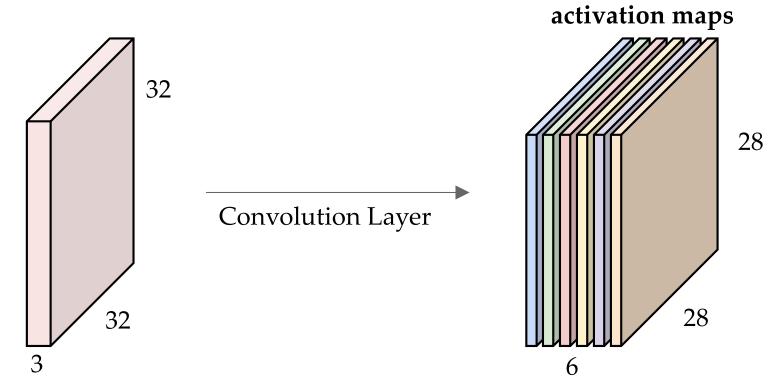
For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:



We processed [32x32x3] volume into [28x28x6] volume.

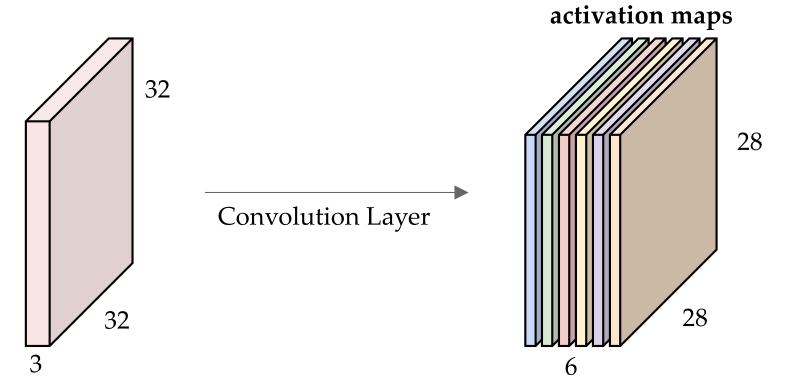
Q: how many parameters would this be if we used a fully connected layer instead? A: (32*32*3)*(28*28*6) = **14.5M parameters**, ~**14.5M multiplies**

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:



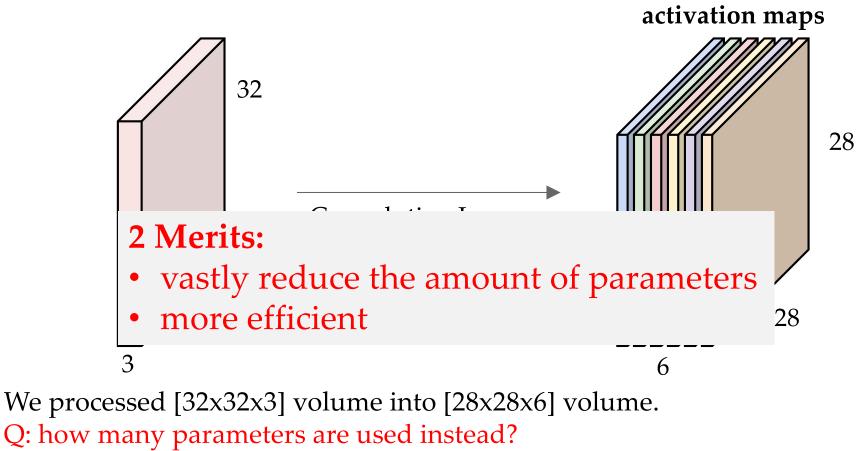
We processed [32x32x3] volume into [28x28x6] volume. Q: how many parameters are used instead?

For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:



We processed [32x32x3] volume into [28x28x6] volume. Q: how many parameters are used instead? --- And how many multiplies? A: (5*5*3)*6 = **450 parameters**

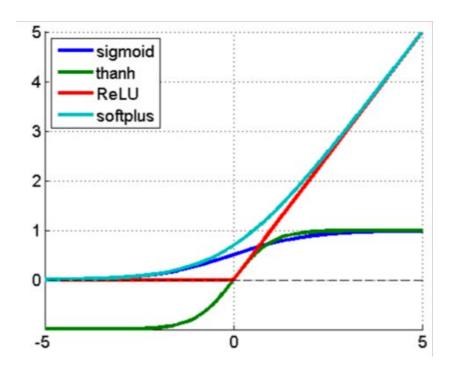
For example, if we had 6 of 5x5 filters, we'll get 6 separate activation maps:

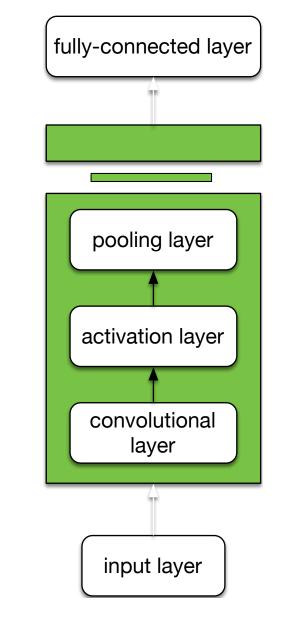


A: (5*5*3)*6 = **450 parameters**, (5*5*3)*(28*28*6) = **~350K multiplies**

CNNs: Activation Layer

- 3 Main Types of Layers:
 o convolutional layer
 - \circ activation layer
 - \circ pooling layer

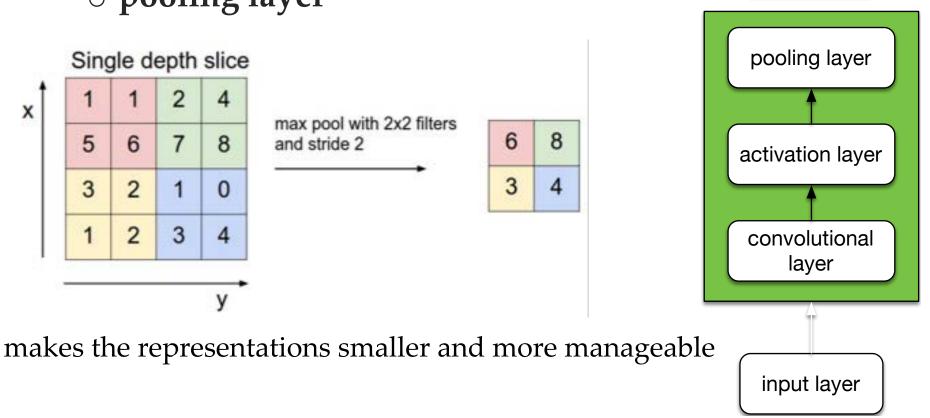




CNNs: Pooling Layer

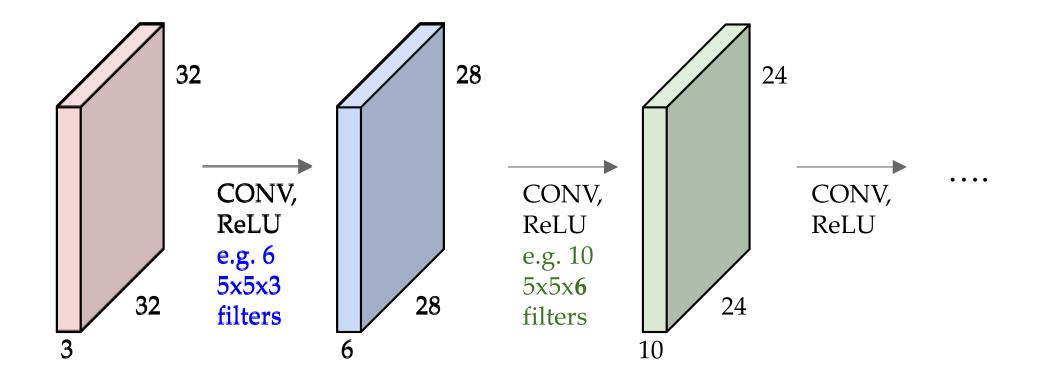
3 Main Types of Layers:

 convolutional layer
 activation layer
 pooling layer



fully-connected layer

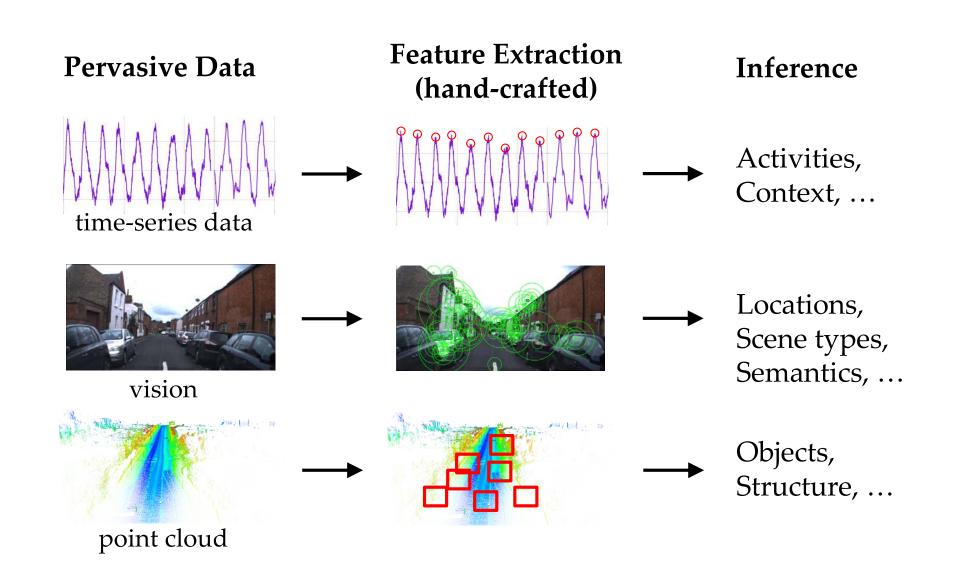
CNNs: A sequence of Convolutional Layers



Deep Learning Architectures

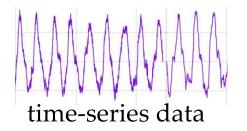
 \bullet \bullet \bullet

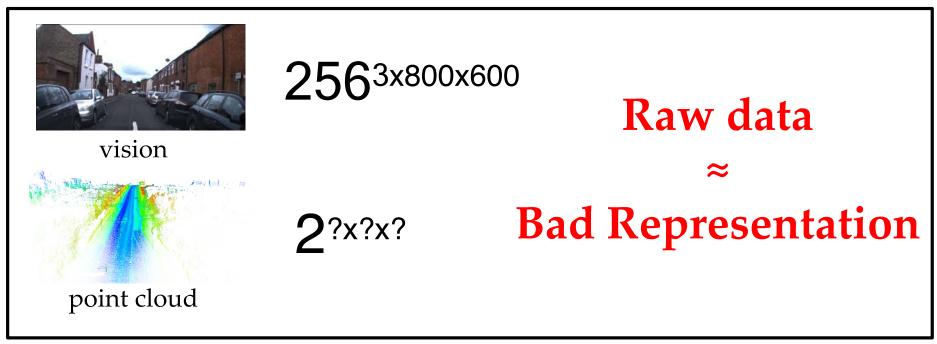
Hand-Crafted Features by Human



Feature Engineering and Representation

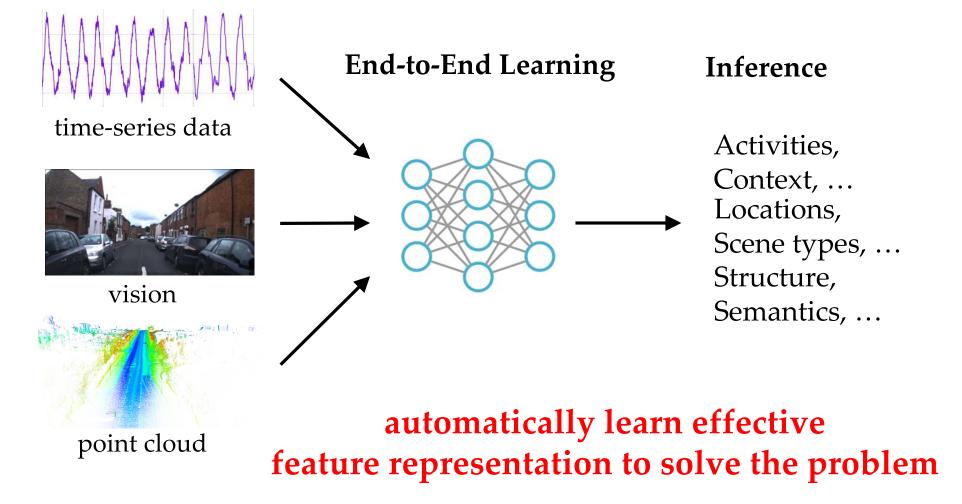
Pervasive Data





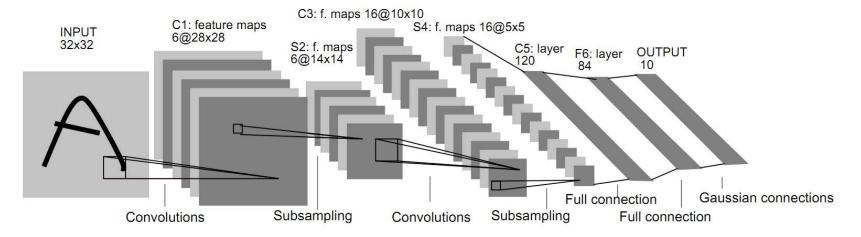
Deep Learning: Representation Learning

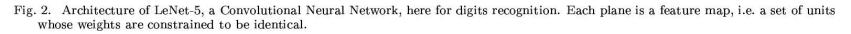
Pervasive Data



LeNet - 1998

- Convolution:
 - o locally-connectedo spatially weight-sharing
- weight-sharing is a key in DL
- Subsampling
- Fully-connected outputs





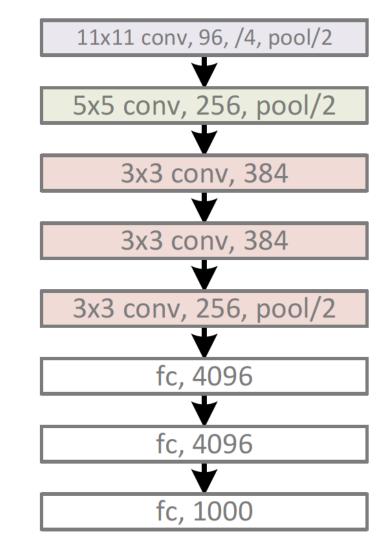
"Gradient-based learning applied to document recognition", LeCun et al. 1998

AlexNet – 2012

8 layers: 5 conv and max-pooling + 3 fully-connected

LeNet-style backbone, plus:

- ReLU
 - Accelerate training
 - o better gradprop (vs. tanh)
- Dropout
 - Reduce overfitting
- Data augmentation
 - Image transformation
 - Reduce overfitting



"ImageNet Classification with Deep Convolutional Neural Networks", Krizhevsky, Sutskever, Hinton. NIPS 2012

VGG16/19 - 2014

Very deep ConvNet

Modularized design

- 3x3 Conv as the module
- Stack the same module
- Same computation for each module

Stage-wise training

• VGG-11 => VGG-13 => VGG-16

3x3 conv, 64
₩
3x3 conv, 64, pool/2
—
3x3 conv, 128
¥
3x3 conv, 128, pool/2

3x3 conv, 256
—
3x3 conv, 256

3x3 conv, 256
•
3x3 conv, 256, pool/2
2.2.2.5.0.512
3x3 conv, 512
2.2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512, pool/2
★
3x3 conv, 512
₩
3x3 conv, 512
♥
3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096
fc, 4096
V
pringen arte 19001 / (ICLD 20

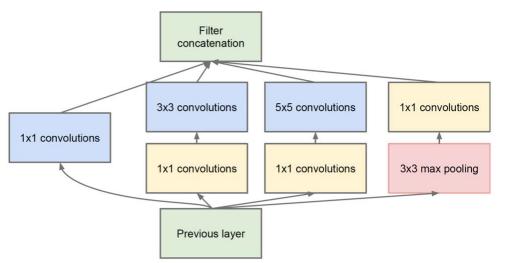
"Very Deep Convolutional Networks for Large-Scale Image Recognition", Simonyan & Zisserman. arXiv 2014 (ICLR 2015) UDRC-EURASIP Summer School 28

GoogleNet/Inception - 2014

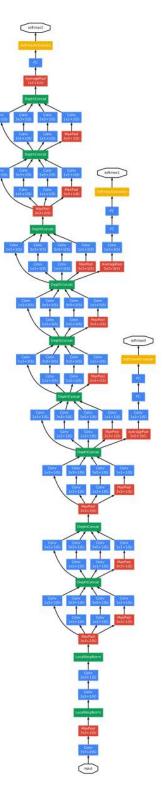
22 layers

Multiple branches

- e.g., 1x1, 3x3, 5x5, pooling
- merged by concatenation
- Reduce dimensionality by 1x1 before expensive 3x3/5x5 conv

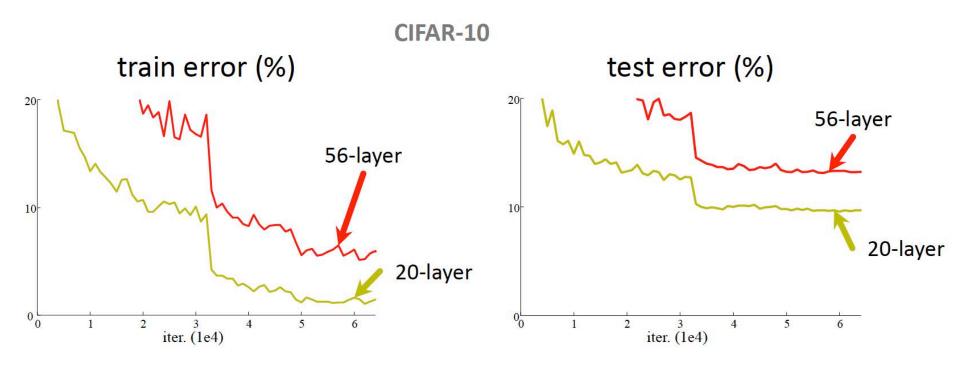


Szegedy et al. "Going deeper with convolutions". arXiv 2014 (CVPR 2015)



Going Deeper

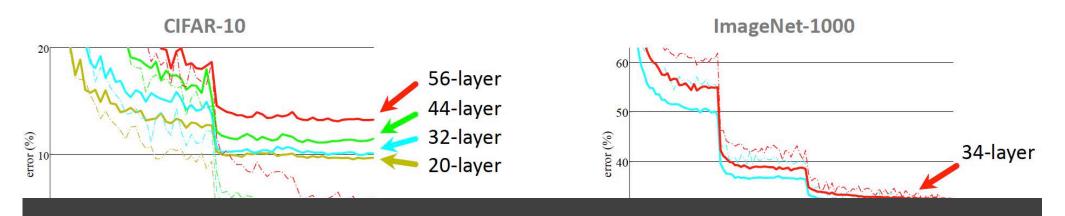
Simply stacking layers?



- Plain nets: stacking 3x3 conv layers
- 56-layer net has **higher training error and test error** than 20-layer net
- A deeper model should not have higher training error

UDRC-EURASIP Summer School

Going Deeper



Cannot go deeper for deep neural networks!

Problem:

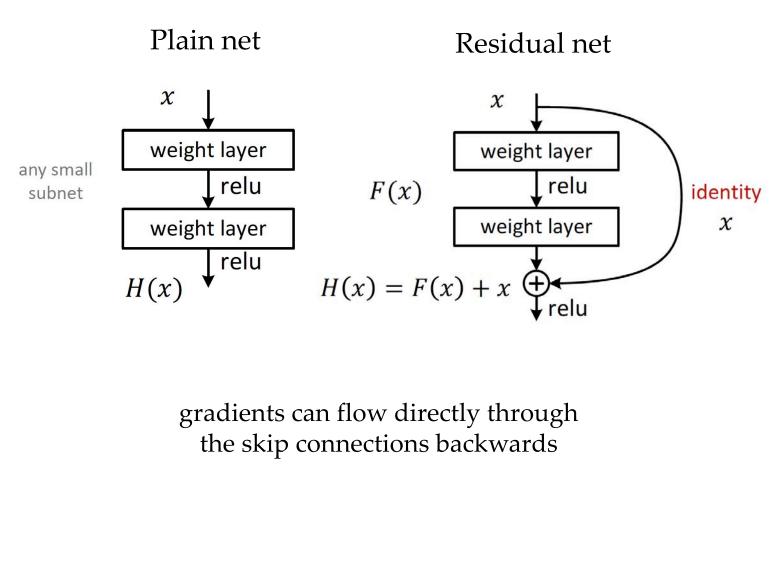
deeper plain nets have higher training error on various datasets

Optimization difficulties:

- vanishing gradient
- $\circ~$ solvers struggle to find the solution when going deeper

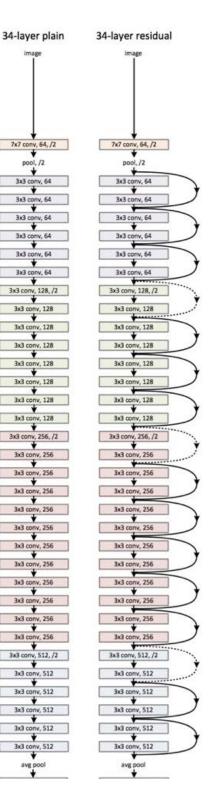
Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ResNets-2016

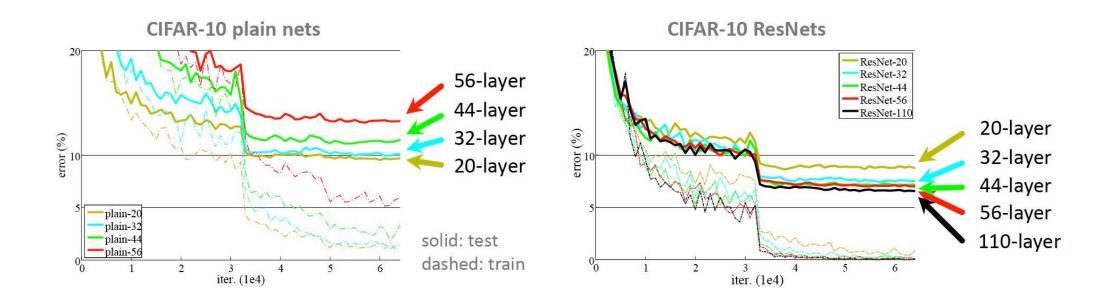


Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Rec

UDRC-EURASIP Summer School



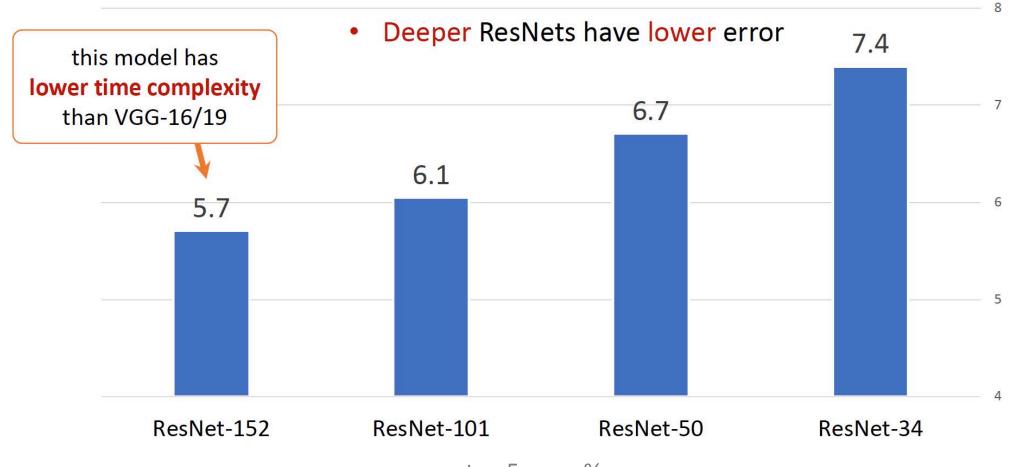
ResNets-2016



- Deep ResNets can be trained easier
- Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

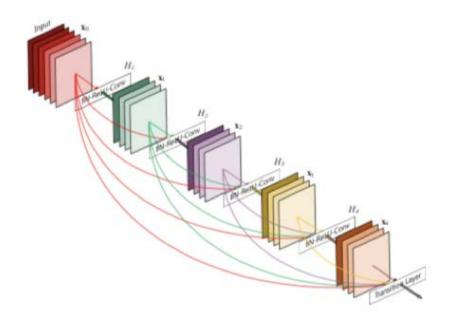
ImageNet experiments



top 5 error %

DenseNets - 2018

- simply connect every layer directly with each other
 - each layer has direct access to the gradients from the loss function and the original input image
 - exploit the potential of the network through feature reuse
- DenseNets concatenate the output feature maps of the layer with the incoming feature maps.

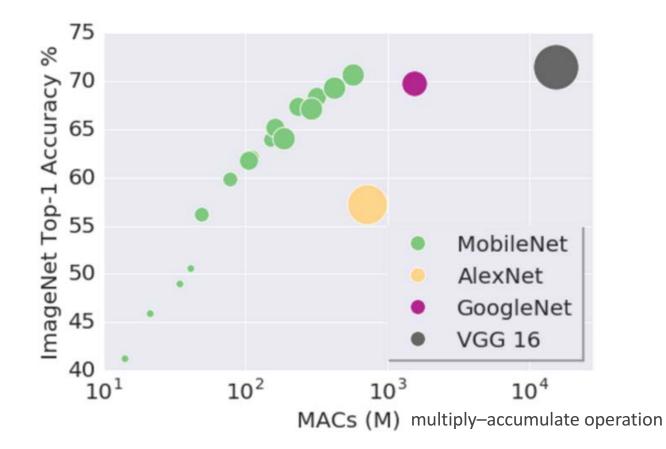


 $\begin{aligned} x_{l} &= H_{l}(x_{l-1}) \\ x_{l} &= H_{l}(x_{l-1}) + x_{l-1} \\ x_{l} &= H_{l}([x_{0}, x_{1}, \dots, x_{l-1}]) \end{aligned}$

G. Huang, Z. Liu and L. van der Maaten, "Densely Connected Convolutional Networks," 2018.

MobileNets - 2017

Light-weight ConvNets for mobile applications using depthwise convolutions

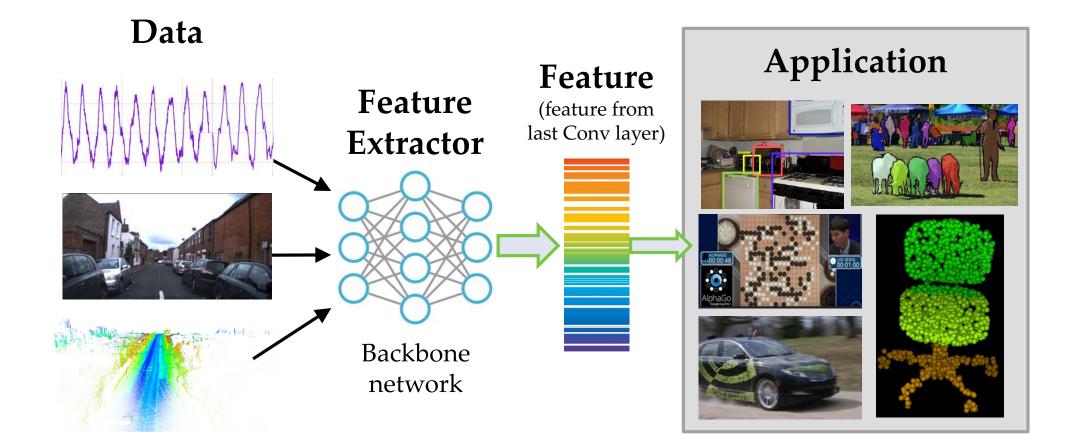


Howard. et. al. MobileNets: Efficient Convolutional Neural Networks for Mobile VisionApplications 2017

Deep Learning Applications

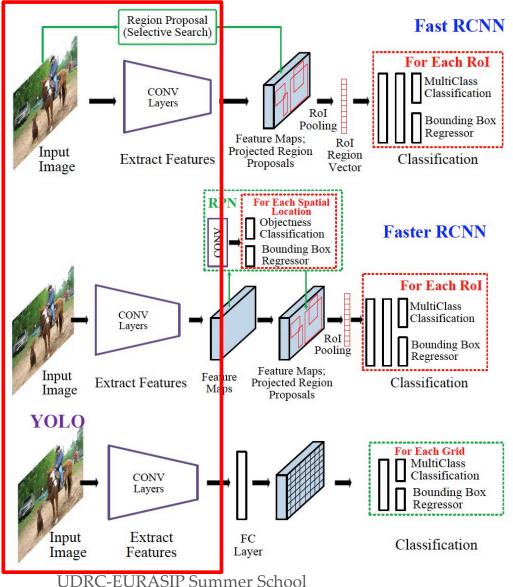
• • •

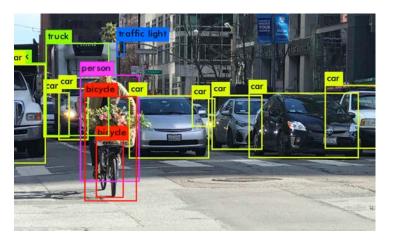
Deep Learning Applications

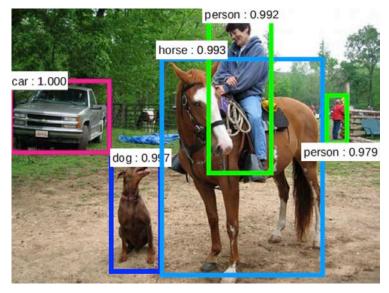


Object Detection and Recognition

Vision based: RCNN, Fast RCNN, Faster RCNN, YOLO, SSD,.....

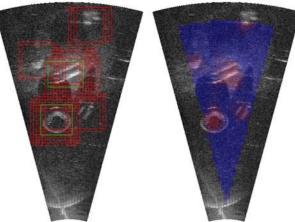




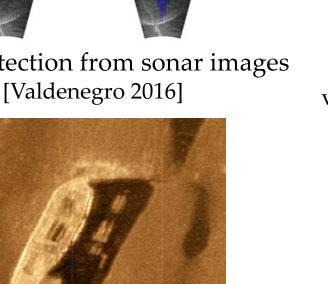


Object Detection and Recognition

Radar and sonar based object detection and recognition



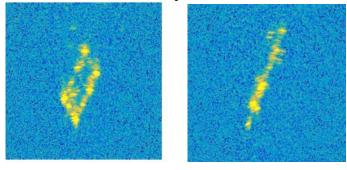
object detection from sonar images [Valdenegro 2016]



object detection/recognition on side scan

UDRC-EURASIP Summer School

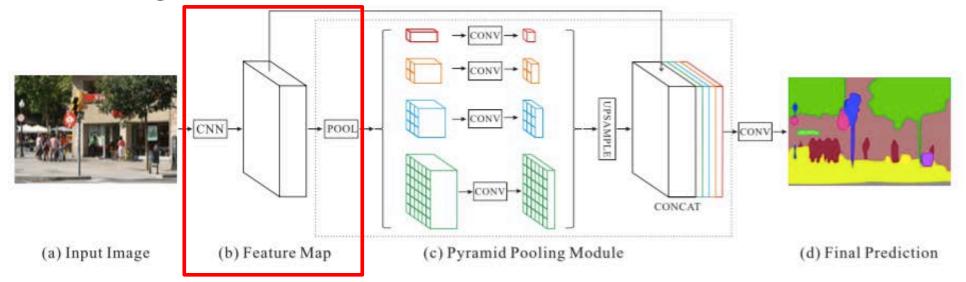
vehicle detection using polarised infrared sensors [Sheeny 2018]



Trolley object detection/recognition on radar

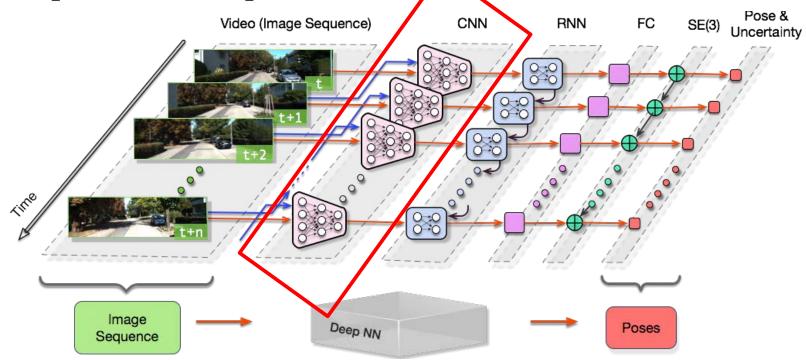
Semantic Segmentation

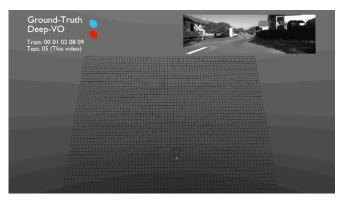
FCN, SegNet, RefineNet, PSPNet,

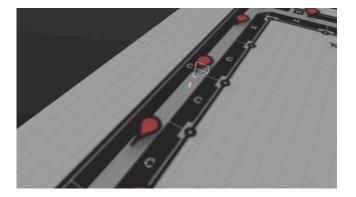


Visual Odometry

• DeepVO, UnDeepVO, VINet



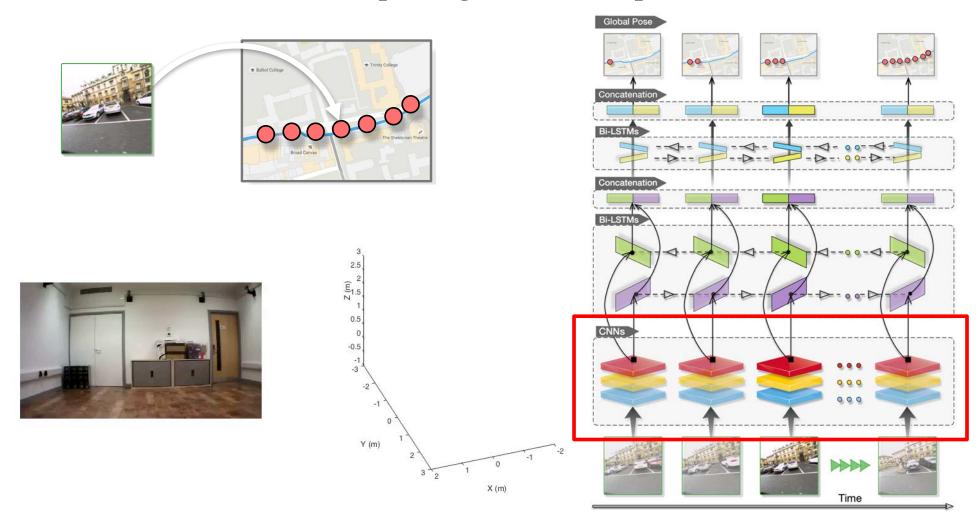




UDRC-EURASIP Summer School

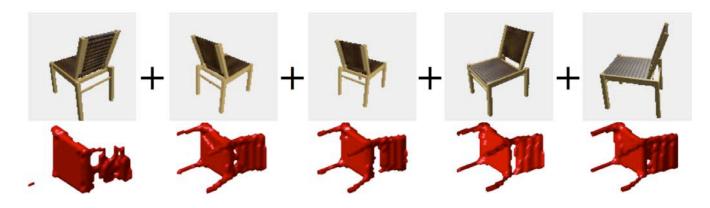
Image based Localisation

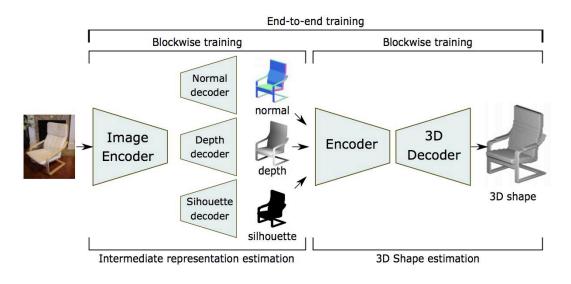
PoseNet, VidLoc, : map images to 6 DoF poses

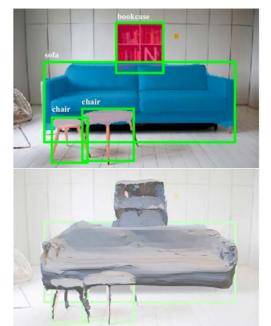


3D Reconstruction

• OctNet, Octree Generative Network (OGN), Mesh R-CNN, ...

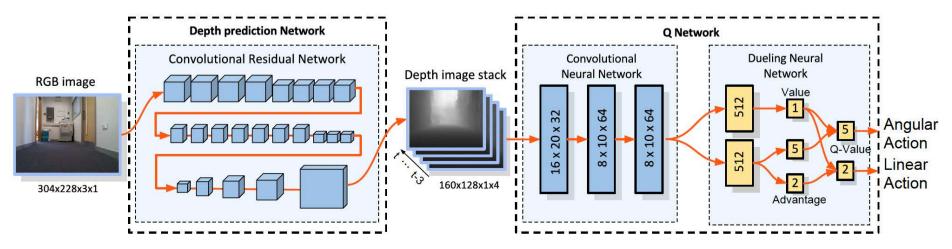






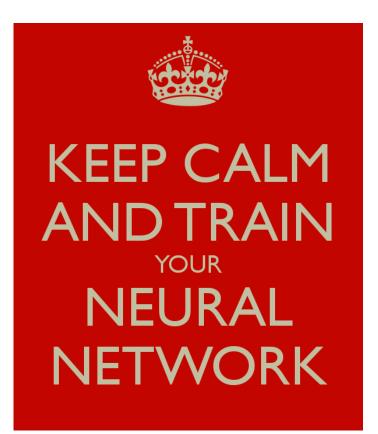
Semantic Mapping

Robot Navigation



Summary

- Deep Learning is a powerful tool
- Learning representation is the key for Deep Learning



Thank you for your attention!

Slides adapted from Andrej Karpathy, Kaiming He