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a b s t r a c t

This paper presents the novel theory for performing multi-agent activity recognition without requiring
large training corpora. The reduced need for data means that robust probabilistic recognition can be
performed within domains where annotated datasets are traditionally unavailable. Complex human
activities are composed from sequences of underlying primitive activities. We do not assume that the
exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered
bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level
inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised
Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We
validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own
sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement
of 17% over a Hidden Markov Model baseline.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computer systems that can recognise human activity have
captured the imagination of the research community for decades.
This multi-faceted problem has drawn researchers from many
different disciplines and has wide application potential including;
systems that can monitor the wellbeing of people with a disability
and the infirm (assisted living) [1], improving recognition in areas
where human observers are suboptimal (e.g. security) [2], and
improving situation awareness for autonomous vehicles [3].

Since video surveillance applications are the focus of our work,
we begin with a motivating example. Fig. 1 shows two examples of
the types of activity that occur in security footage (PETS2006). The
‘Watched Item’ activity represents two people travelling together
where one traveller leaves their luggage in the custody of the
other when he leaves the scene. The ‘Abandon Item’ activity is
subtly different; it represents two travellers arriving independently
but waiting in close proximity. In this circumstance, a person
departing without their luggage is cause for concern while the
former scenario is not.

The multi-disciplinary nature of activity recognition research has
led to a set of terms that are inconsistent, and sometimes conflicting.
In this paper behaviours and activities are synonymous, and will be
discussed in two contexts; high-level (complex) and low-level

(primitive). Primitive activities are isolated and do not involve long-
term dependencies. Examples include ‘enter-area’ for somebody
entering the field of view, and ‘object-placed’ for the placement of
luggage on the floor by a person. Complex activities are composite and
are comprised of sequences of primitive activities that achieve a
higher-level goal. For example, watching a companion's luggage can
be considered complex because it involves several components: some
kind of association between people, placing luggage, the departure of
one person and the monitoring of their luggage by another.

The relative infrequency of abandoned objects in security
footage prevents statistically robust conclusions from being drawn
via machine learning algorithms, which are becoming increasi-
ngly important for solving related computer vision problems.
In automated surveillance it is not uncommon to manually sp-
ecify semantic constraints [4,5], but these approaches are largely
deterministic and lack convenient methods for handling observa-
tional uncertainty [1]. In the absence of training corpora one can
rely on the mobilisation of human prior knowledge, but this too
can be time consuming, expensive and unreliable [6]. In distrib-
uted, wide area surveillance, it is unclear if it would be possible to
manually construct robust temporal models. Other state-of-the-art
techniques for detecting object abandonment include monitoring
the proximity of objects to their owners, although such techniques
are unable to distinguish between the two motivating scenarios
and do not generalise to other behaviours. Statistical and distance
based anomaly detection algorithms are another two approaches
for identifying irregular activity, but cannot be used to detect
specific patterns of interest. Clustering techniques such as Hier-
archical Dirichlet Processes [7] can be used to automatically
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discover activities from unlabelled training data, but cannot
always distinguish between behaviours that are very similar [8].

The current state-of-the-art in video-surveillance research has
failed to match the advances being made in plan recognition
research, which has made significant advances in human activity
recognition. The most robust plan recognition techniques adopt
trained probabilistic models, although a limitation is that they are
not well suited to data-scarce domains. By the phrase “data-
scarce” we mean those scenarios where there is a natural lack of
exemplars. In video surveillance applications in particular (since
this is the application focus of this work) accurately annotated
libraries of video do not exist for many of the interesting activities
one would wish a machine to detect: anomalies and infrequently
occurring activities.

This paper proposes that there is a better way to use probabil-
istic models in data-scarce domains and is fundamentally
grounded upon the idea of an alternative activity representation
that removes the need to learn temporal structure. We take our
motivation from a phenomenon in psycholinguistics where ran-
domising letters in the middle of words (or, ‘radnsimnoig lteters in
the mdidle of wrods) has little effect on the ability of skilled
readers to understand the text [9]. We propose that like the letters
in words, it is the primitive activities (e.g. items in ovals in Fig. 1)
that are most important for allowing recognition, and de-emphasis
the strict (temporal) ordering of those primitives. Specifically, we

propose that the primitive activity subcomponents of a complex
activity can be used as salient features, and that by imposing weak
temporal constraints on the expected primitives we can recognise
complex activities without learning their temporal structure. In
doing so we are able to extend state-of-the-art techniques from
plan recognition research to provide new algorithms for robust
probabilistic recognition in data-scarce domains that are able to
reason about uncertainty. The contributions of this work are:

1. A novel framework that builds upon existing research with
Rao–Blackwellised Particle Filters by integrating a feature
based representation and its Dynamic Bayesian Network imple-
mentation (thus retaining a unified and principled mathema-
tical foundation). We demonstrate high recognition F-Score
(0.82) in real-time within a noisy, sensor-based environment
without model training.

2. We compare our approach against a set of Hidden Markov
Model (HMM) classifiers, and show that our approach yields a
mean improvement of 17% in F-Score.

3. Our method can recognise agents concatenating and switching
between activities and remains robust to activities with sig-
nificant similarities.

4. Inspired by cascaded Hidden Markov Models we develop a
cascading particle filter to recognise activity at multiple levels
of abstraction.

Fig. 1. Examples of the types of behaviours which occur in security footage (PETS2006) for which there are few training examples i.e. a “data-scarce” domain. We illustrate
the real-time multi-person tracker employed by our system to recognise the primitive activities (e.g. ‘Place Item’) upon which higher-level (particle filter) inference is
performed. Temporal ordering of activities is encoded only in the low-level video detectors.

Fig. 2. An example of the composite nature of complex activity. At the bottom of the hierarchy primitive activities are detected directly from video. This complex activity has
two distinct roles. (Video frames from our “HW” dataset.) (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
article.)

R.H. Baxter et al. / Pattern Recognition 48 (2015) 2377–23932378



5. We achieve multi-agent (paired) activity detection by merging
filtering densities from multiple particle filters and identifying
the most probable joint activity explanation of all agents using
combinatorial search, demonstrably improving the scientific
state-of-the-art.

We validate our framework within the video surveillance
domain using the PETS 2006 video surveillance dataset (e.g.
Fig. 1), our own video sequences (e.g. Fig. 2) and a large corpus
of simulated data.

The next section of this paper discusses related research.
Sections 2 and 3 will provide an overview of our approach and
encapsulates our ideas within a dynamic Bayesian network (DBN).
Section 4 will show how efficient inference can be performed
using a Rao–Blackwellised particle filter. Section 5 extends the
representation into a hierarchical approach allowing multi-agent
activities to be detected in Section 6. Section 7 will introduce the
application domain and will describe the implementation details
of our validation. We then discuss performance on both simulated
and real video data and compare to the current state-of-the art
before presenting conclusions and future work in Section 9.

1.1. Related work

Complex activity recognition: Recognising complex activities has
primarily been the focus of plan recognition research. Early work
often considered toy problems with manufactured observations
[10], but an inability to reason about uncertainty prevented their
application to real-world problems where observations are often
noisy and uncertain (e.g. [11]). Links have also been drawn
between activity recognition and natural language processing
[12], although Nguyen et al. [13] highlighted that most of this
work has focused on high-level inference and has not considered
noisy observations from low-level sensors.

Many researchers have employed probabilistic techniques that
use temporal information acquired through model training. This
includes the Layered Hidden Markov Model by Oliver et al. [14]
who demonstrated that multiple Hidden Markov Model (HMMs)
could be employed in a tree-like structure. The most likely state
from one level was cascaded into the next as a new observation to
allow abstract recognition. Unlike our approach, Oliver performs
inference on windows of observations rather than recursively.

Murphy [15] showed that HMMs are actually a special case of
Dynamic Bayesian Network (DBN). DBNs also model temporal
processes, but unlike HMMs, they can have any number of hidden
states. Loy et al. [16] used a cascade of DBNs to model different
temporal characteristics of activities. There are several significant
differences from our work: (1) we employ a cascading structure
for the purpose of activity abstraction and to model multi-agent
activities, (2) Loy et al. detect anomalies instead of recognising
specific activities.

Bui and Venkatesh [17], and Nguyen et al. [13,18] have sh-
own that DBNs can model complex human activities. Recursive
Bayesian estimation can perform efficient inference on DBNs and
uses a factored distribution to update probability estimates as new
observations arrive. Where exact inference becomes intractable
Particle Filters can be employed to efficiently explore subregions of
the state-space [19]. In this area the work by Bui and Venkatesh,
and Nguyen et al., is the most relevant. Bui and Venkatesh used
the Rao–Blackwellised Particle Filter [20] to recognise behaviours
within an indoor environment of corridors and rooms. Unlike us,
they segmented the environment into small cells to provide
discrete agent locations and used trained trajectory models to
predict agent movement. Nguyen et al. explored many of the same
concepts using slightly different state models.

Recently, recognising complex activities in user generated
video (e.g. YouTube) has gained increased attention. Merler et al.
[21] use Support Vector Machines (SVMs) to learn primitive
semantic classifiers (e.g. beach, baseball) using a large corpus of
hand-labelled web images. By training a further set of SVMs on
primitive activity feature vectors they are able to recognise three
complex activities: baking a cake, hitting a home run, and assem-
bling a shelter. In [22] Ma et al. use hand-labelled videos instead of
web images to learn primitive video attributes. This allows them to
learn spatio-temporal primitive activities such as mixing cake
batter. As before, SVMs are used to learn the correlations between
primitive and complex activities. A further example can be found
in [23], this time combing SVMs with Deep Belief Networks [24].
In each of these cases, the approaches are well suited to multi-
media video labelling, but require large labelled training corpora
which makes them inappropriate for data scarce domains such as
visual surveillance and security.

Multi-agent recognition: Recognising multi-agent activity can be
broadly divided into two categories. The first considers physical
groups of agents and often concerns their formation. Examples
include recognising military formations and American football
plays [25–27]. The second category recognises multiple agents
performing different components of the same complex activity.
Several approaches (e.g. [28,29]) have used strategies that look for
the co-occurrence of activities, but assume that agents are mem-
bers of a single team and do not consider environments with
multiple independent agents/teams. Similar ideas are also encap-
sulated in [30], which implicitly recognises collaborative activities
by ignoring action ownership.

Zhuo [31] adopts a constraint satisfaction approach using a
MAX-SAT solver. They define activity pre-conditions and post
conditions and are able to identify different agent teams collabor-
ating towards joint goals. However, their approach is only applied
to toy problems and is unable to deal with observation
uncertainty.

Data scarcity: Progress in data-scarce domains has been limited.
Security applications have failed to address a lack of training data
[6], while video surveillance work has been limited to recognising
primitive activities. For example, Tian et al. detect small objects as
abandoned without considering whether they are attended [32].
Others have considered simple rules to detect that an agent has
moved away from a bag they placed [33]. To our knowledge
Ferryman et al. [5] is the only prior work to consider social
relationships in object abandonment. Motivated by the ‘Watched
Item’ scenario, they use the calibrated Social Force Model [34] to
infer social groupings from trajectories, and combine this with
heuristic rules to detect object abandonment. These rules are not
probabilistic and only detect object abandonment. Rules have also
been common in other vision research [30,35,4], but Lavee et al.
[1] highlighted that they often lack the ability to reason about
uncertainty.

Anomaly detection attempts to model normal activity for which
training data is easier to obtain, so is well suited to data scarce
domains. Anomalous activity is identified by virtue of its nov-
elty, relative infrequency or distance from learnt models. A
comprehensive introduction to anomaly detection can be found
in Chandola et al. [36], and a more recent survey focusing on
automated surveillance in Sodemann et al. [8]. Clustering algo-
rithms are frequently applied to anomaly detection problems and
context-driven approaches are particularly prevalent. Dee and
Hogg [37] use Gaussian Mixture Models to identify pedestrian
goal-locations from trajectories (e.g. entry/exit regions), and use
manually specified obstacles stored in a polygon form to identify
sub-goal locations. Tung et al. [38] remove the need for manually
specifying obstacles by identifying turn points (e.g. obstacles), and
model transitions between goal locations and turn points using a
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second-order Markov process. This allows sequential anomalies to
be identified (e.g. irregular trajectory combinations) in addition to
novel trajectories.

Arandjelović [39] divide trajectories into overlapping segments,
identify the location and direction of each segment, and then
perform clustering to identify tracklets: common motion primi-
tives. A new track is expressed in tracklet models by divided it into
overlapping segments, computing the direction and location as
before, and associating each segment with the most similar
tracklet primitive. They show two approaches for anomaly detec-
tion, the first using a first-order Markov model to model tracklet
transitions, and the second using a distance-based approach.
Several anomalous trajectories cannot be identified because of
the inherent short-term memory of the first-order Markov model,
while their distance-based model performs better.

Jiang et al. [40] remark that isolated trajectories are not always
sufficient for anomaly detection, e.g. anomalies can arise due to
inappropriate interactions between multiple targets. Their
approach specifically addresses the problem of co-occurring object
anomalies using an HMM to model normally co-occurring events.

Latent Dirichlet Allocation (LDA) [41], and the more recent
(nonparametric) Hierarchical Dirichlet Process (HDP) [42] are two
further algorithms that cluster data into different activities. An
advantage of HDPs is that the number of activities does not need
to be known a priori, while this is not the case for LDA. Niebles
et al. [43] use LDA to recognise primitive activities such as hand-
clapping and waving. Wang et al. [44] use HDPs for video based
anomaly detection. A similarity with our approach is that these
techniques adopt a bag-of-activities approach; that is, the tem-
poral/spatial relationships between activities are neglected. How-
ever, a key difference from our work is that we only ignore
temporal constraints in the representation, and impose weak
constraints at the recognition stage. Moreover, a fundamental
limitation of clustering techniques is that semantic labels cannot
always be attached to the activity clusters identified, and rare or
complex activities may not be clustered at all.

Many of the examples above are based on the assumption that
anomalous activities are significantly different from normal activ-
ity. Sodemann et al. [8] highlight that a considerable limitation of
these approaches is their inability to detect anomalies that are not
significantly distinct from normal activity, and that this is parti-
cularly a problem for activities associated with planned crime and
terrorism. It is this problem that we address here: our goal is to
detect specific activities that may be very similar to normal
activity and are therefore difficult to disambiguate (see example
in Fig. 1). To that end, we use bags-of-activities because they allow
an expert to define collections of specific activities of interest,
whereas clustering techniques such as HDPs discover activities
that are significantly different, and anomaly detection algorithms
cannot be used to recognised specific activities.

HDPs have also been used for activity discovery and recognition
outside of an anomaly detection context. For example, recent work
by Phung et al. [7] used HDPs with unlabelled accelerometer data
to discover activities such as sitting, walking and running.

However, it has not been shown whether HDPs can automatically
discover and distinguish between complex multi-person/multi-
object activities such as those in this paper. As with other
clustering techniques, this could be particularly challenging due
to the similarities between some activities.

1.2. Summary of prior work

Prior work has shown that: (a) recursive Bayesian estimation is
robust in noisy domains; (b) existing approaches often require
large corpora either to learn the temporal structure of activities, or
model normal activity to identify anomalies that are significantly
different; (c) data-scarce domains have been deprived of these
techniques; (d) approaches for recognising multi-agent complex
activity have not been applied with open-world assumptions;
(e) existing approaches only consider single-agent activity in a
surveillance context and often rely on coarse heuristic rules (e.g.
computing distances between person and object to infer “left
luggage”).

In the work of this paper, we present a new algorithm, which
addresses these difficulties and validate it comprehensively on
simulations and benchmarked datasets.

2. Overview of the approach

We show a schematic of the overall approach before explaining
the components. Fig. 3 shows how each component of the work
presented here depends on its predecessor. Although observations
derived from the image processing inputs (these are primitive
human activities) are the key to populating the data on which the
reasoning layer operates, we first explain the inference engine. We
then turn to the application domain and describe the tracker and
primitive activity detectors.

We propose that complex activities can be modelled using
unordered sets of primitive activities derived from video seq-
uences. We do this by breaking the explicitly encoded temporal
relationships between activities (which may themselves be primi-
tive or complex). This is analogous to splitting pixel relationships
for object detection and the model changes from “Expect these
ordered activities” to “Expect these activities”. This means that
extensive corpora are no longer required to learn temporal str-
ucture. We return to Fig. 1a to illustrate this process. Fig. 1a
showed two representations of the complex activity: ‘Watched
Item’. This activity involves two people travelling together, where
one traveller leaves their luggage in the custody of the other while
they leave the scene (extracting the primitive activities from video,
which provide input to the model, is discussed in Section 7). For
now we focus on the theoretical description of the Bayesian
inference model. Illustrative frames of our tracked data are shown
in Fig. 2. Coloured circles represent extracted activity primitives
and can be easily observed using state-of-the-art video trackers
and detectors. It will be seen when we discuss the video dete-
ctors in detail that some activities inherently retain a temporal
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Fig. 3. A schematic of the main components of the system.
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component, but the inference model does not rely on further
temporal ordering, allowing activities to be observed, for example,
from multiple views without a timestamp.

2.1. A motivating example

Because we ignore the temporal information, two complex
activities may be indistinguishable in the special case that they
consist of exactly the same primitives. However, this trade-off is
balanced by the ability to recognise activities in domains where
current techniques cannot be applied due to a lack of training data.
Many complex activities do not create identical bags and we
propose that as the size of complex activities increases the like-
lihood of generating identical bags reduces. Furthermore, in the
special cases where identical bags are obtained, it is sometimes
possible to alter the activities in the bags to allow disambiguation.
To give a compelling example, consider the following two activity
sequences:

1. Pickup Sandwich-Pickup Coffee-Pay-Leave (Normal)
2. Pickup Sandwich-Pay-Pickup Coffee-Leave (Potential theft

of coffee)

In some cases encoding temporal information might be overly
restrictive. For example, some establishments expect payment for
an item before the item is picked up (e.g. coffee shop), while
elsewhere this might not be allowed (e.g. cafeteria). We propose
that an alternative representation would be to consider that
customers pay, while thieves do not. It is more informative to
model the need for a ‘Pay’ activity, rather than focusing on
ordering. This allows modelling the same two activities like so:

1. {Pickup Item, Pay, Leave} (Normal)
2. {Pickup Item, Leave} (Theft)

With these new bags-of-activities we can clearly distinguish
between theft and normal, and have also removed the constraint
of requiring a rigid temporal structure that over-fits the model to a
particular scene.

Rather than using a strict sequential model to predict obser-
vations for a complex activity Bi, our new model monitors the
intersect between the bags of observed and expected activities. If,
like [45], we make the simplifying assumption that each activity
is only generated once per complex activity, then the set of
expected activities are the elements of Bi not yet observed.
Perhaps surprisingly, for the benchmarked data which is of most
interest to the surveillance community this assumption holds
well (as is demonstrated by the use of public datasets for primary
validation). We address extensions to this work in Section 9
which may be useful in the cases where this assumption does not
hold. To clarify, this assumption does not say that activities
cannot be detected twice through mis-detection, and similarly,
repetition of an entire complex activity does not contravene the
assumption. If this set of expected activities is continually
updated we can apply a weak temporal ordering to the elements
of Bi. Although simplistic, this replacement temporal structure is
adequate for recognising all of the activities within our validation
set, while remaining weak enough to allow novel activity
permutations to occur.

Let us define C as the set of currently observed activities and T
as the set of target activities for Bi. We make the simplifying
assumption that the activities of T can be defined by a domain
expert. T n C is the set of expected (future) activities. Denote αi as
the ith activity from the set of detectable activities. At each time

step activities in T n C have uniform probability, while all other
activities have zero probability.

2.2. Worked example

Using the ‘Watched Item’ example from Fig. 1a, at time step
t¼0 each of the 5 activities has equal probability and C ¼∅. In this
example P EnterAgentð Þ ¼ 1=5. Let us assume that EnterAgent is
observed at t¼1 and thus at t¼2, C ¼ fEnterAgentg. Because of the
single-occurrence assumption PðEnterAgentÞ ¼ 0 at t¼2 while the
elements of T n C have uniform probability: 8 iAT n C : PðiÞ ¼ 1=4.
This process repeats until all elements of T have been observed.
Note that any element that is not in T has a zero probability at all
time-steps. Furthermore, when all elements of T have been
observed no further activities are expected.

3. Basic representation

Motivated by previous work modelling complex human activity
(e.g. [17,13,18]), we encapsulate the bag-of-activities approach
using a Dynamic Bayesian Network (DBN): an acyclic graphical
model where each time-slice denotes the state of a system as a
snapshot and each node denotes a state variable. Directed edges
between nodes represent dependencies, while the absence of an
edge implies conditional independence. DBNs allow us to utilise a
large class of algorithms developed for Bayesian inference, includ-
ing the ability to reason about uncertainty and perform recursive
Bayesian estimation (discussed in more detail later).

Fig. 4 shows a two-slice DBN for our approach. To specify a DBN
using the notation from [15], assume that Zt represents all of the
nodes in a given time-slice. A DBN is then defined to be a pair
(B0;B-), where B0 is a Bayes Net defining the prior PðZ1Þ and B- is
a two-slice Bayes Net defining PðZt jZt�1Þ such that

P Zt jZt�1ð Þ ¼ ∏
N

i ¼ 1
P Zi

t jPaðZi
tÞ

� �
ð1Þ

where PaðZi
tÞ are the parents of node Zt

i. Note that DBNs assume
that the process being modelled is Markov and thus the state at
time t is only dependent on the state at the previous time step:
PðZt jZ1:t�1Þ ¼ PðZt jZt�1Þ.

Returning to Fig. 4, nodes T and C represent the target and
currently observed activity sets as before, respectively. Adopting
terminology from the belief-desire-intention (BDI) architecture of
human reasoning [46], node D represents the next desired activity
and is conditionally dependent upon the target and currently
observed activity sets. Node A represents the activity detected and
is dependent upon the agent's desire. Moving to the top of the
DBN, node I represents an activity interruption. We will discuss

Fig. 4. The two-slice Dynamic Bayesian Network for the Bag-of-Activities.
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how interruptions are detected in due course, but for the discus-
sion at hand we can summarise that interruptions occur for two
reasons:

� When an agent changes their complex activity the target
activity set changes. (I¼TPCh (True-Positive Change))

� When an activity is misdetected the agent's desire is not
constrained to T n C. (I¼FP (False-Positive)). Traditionally, false
positive (FP) detections are handled via PðAjDÞ. However, in
this work we also considered agents that switch and concate-
nate complex activities, both of which could result in observa-
tions that are misconstrued as FP detections. Consequently, we
model all three conditions using node I.

When an interruption has not occurred I¼TPS (True-Positive
Same). If variables fC; T ; I;Dg are referred to as latent variable Z,
and the observation A as y then the network is reduced to the
generic form: Z-y giving rise to what is commonly referred to as
the observation model: PðyjZÞ.

To fully specify the DBN the prior, conditional and transitional
dependencies must be defined. This is best achieved with the
descriptions below and the formal notation in Table 1.

1. When there is no interruption (It ¼ TPS) the target activity set
remains the same.

2. When a change of complex activity is detected (It ¼ TPCh) the
target activity set is re-initialised according to the uniform
distribution.

3. When a misdetection occurs, the target activity set remains
the same.

4. The set of currently observed activities (Ct) gains the agent's
last desire (Dt�1) when it matches the last observation (At�1)
and there was no interruption.

5. The set of currently observed activities (Ct) becomes the empty
set when the target set has changed and all elements of T �1

had been observed.
6. When the target set has changed (It ¼ TPCh) the set of

currently observed activities becomes the elements of Ct�1 [
Dt�1ATt when Dt�1 ¼ At�1. Note that Ct retains the elements
from Ct�1ATt to facilitate switching from one complex
activity to another.

7. When the target set has changed (It ¼ TPCh) the set of
currently observed activities becomes the elements of
Ct�1ATt when Dt�1aAt�1.

8. The set of currently observed activities (Ct) remains the same
as (Ct�1) when the previous time-step was a misdetection
(It�1 ¼ FP).

9. The desire(Dt) has a uniform probability for all elements in C n T .
10. The desire (Dt) has a zero probability for any element not in

C n T .
11. The desire (Dt) has uniform probability for all elements in α

when I¼FP.

4. Basic inference

We will first explain how inference is performed on our flat
activity structure before introducing a hierarchical algorithm that
allows activity abstraction and multi-agent activities to be mod-
elled. To achieve real-time recognition approximate inference is
performed, while online recognition is achieved by using a
recursive algorithm that updates probability estimates as observa-
tions arrive. Our inference algorithm is based on the Rao–Black-
wellised particle filter (RBPF) [20,17], which we briefly describe
below before applying to our model.

4.1. Particle filtering

Particle filtering can be used for approximate recursive Baye-
sian estimation. Using the general state-space model with hidden
variables Zt and observed variable yt the goal of filtering is to
calculate PðZ1:T jy1:T Þ, or more frequently, the filtering distribution:
PðZT jy1:T Þ. We represent this distribution using a set of N weighted
samples (particles) denoted fZi

1:T ;ω
i
T g

N

i ¼ 1. Let Zi
1:T be the i'th

particle sampled from PðZ1:T Þ, and ωt
i its associated weight such

that
PN

i ¼ 1ω
i
t ¼ 1 and ωi

T ¼∏T
t ¼ 1Pðyt jZtÞ. From this sample we

approximate the filtering distribution via:

P Zt jy1:t
� ��

XN

i ¼ 1

ωi
tδ Zt ; Z

i
t

� �
ð2Þ

The general particle filtering algorithm is often referred to as
Sequential Importance Sampling with Resampling. Full details can
be found in [47], but to summarise, the particles are initialised by
generating fZi

1;ω
i
1g

N

i ¼ 1 from the prior and assigned uniform
weights. The algorithm then proceeds as follows:

� Sample: N times with replacement from fZi
t�1;ω

i
t�1g

N

i ¼ 1.� Transition: Draw Zi
t �Q ðZi

t jZi
t�1; ytÞ.

Table 1
Prior, Conditional and Transition probabilities between time steps t�1 and t for the DBN in Fig. 4. Node I has three possible values: FP (False positive), TPS (True Positive
Same), and TPCh (True-Positive Change).

Priors:

P C1 ¼∅ð Þ ¼ 1, PðI1 ¼ TPSÞ ¼ 1, PðT1 ¼ BiÞ ¼ jBj �1

1 P Tt ¼ Tt�1 j It ¼ TPSð Þ ¼1 Same complex activity
2 PðTt ¼ Bi j It ¼ TPChÞ ¼ jBj �1 Complex activity changed

3 P Tt ¼ Tt�1 j It ¼ FPð Þ ¼1 Misdetection

4 P Ct ¼ Ct�1 [ Dt�1 j It�1 ¼ TPS;Dt�1 ¼ At�1ð Þ ¼1 Previous desire was observed
5 P Ct ¼∅j It ¼ TPCh \ jCt�1 j ¼ jTt�1 jð Þ ¼1 Target set changed, prev. beh. completed
6 P Ct ¼ fCt�1 [ Dt�1gATt j It ¼ TPChð Þ ¼1 Target set changed and Dt�1 ¼ At�1

7 P Ct ¼ Ct�1ATt j It ¼ TPChð Þ ¼1 Target set changed and Dt�1aAt�1

8 P Ct ¼ Ct�1 j It�1 ¼ FP; It�1 ¼ TPSð Þ ¼1 Previous Obs. was a mis-detection

9 P Dt ¼ αi
� � ¼ jCt \Tt j �1 8 i : α

iAC\T
10 P Dt ¼ αi

� � ¼0 8 i : α
i 3 C\T

11 P Dt ¼ αi jCt ; Tt ; It ¼ FP
� �¼ jαj �1 8 i : α

iAα
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� Weight: Update the particle weight such that

ωi
t ¼ωi

t�1
Pðyt jZtÞPðZt jZt�1Þ

PðZt jZt�1; ytÞ
ð3Þ

� Re-sample: Generate a new set of particles fZin
t ;ω

in
t g

N
i ¼ 1 by

sampling N times with replacement from the approximate
representation of PðZT jy1:T Þ so that PðZin

t ¼ Zi
tÞ ¼ωi

t . Set new
weights to: fωin

t ¼ 1=NgNi ¼ 1.

The effect of re-sampling is that particles with very low weights in
fZi

tg
N
i ¼ 1 are less frequent in fZin

t g
N
i ¼ 1, while particles with higher

weights are more frequent.

4.2. Rao–Blackwellisation

The purpose of Rao–Blackwellisation is to reduce the size of the
sampled state-space to increase efficiency [20]. This is achieved
using a model's structure to analytically marginalise some
variables conditioned upon others. To proceed, partition
the variables in Zt into those that will be sampled, and those
that will be marginalised. Denote the sampled component as r,
and the marginalised component z : Zt ¼ frt ; ztg. The posterior
filtering density can then be expressed by the following factorisa-
tion:

PðZt jy1:tÞ ¼ Pðyt j zt ; rtÞPðzt j rtÞPðrt jy1:t�1Þ ð4Þ
In the next subsection we show how this factorisation is

applied to our model.

4.3. Application to our model

Eq. (4) is a filtering distribution, and can be approximated using a
Rao–Blackwellised Particle Filter (RBPF) by partitioning the DBN in
Fig. 4. Returning to the model's structure, observe that variable Dt is
conditionally dependent upon fC; T ; Igt . Recall that Dt represents the
agent's desire: the next activity to be performed, and is trivial to
calculate conditioned upon fC; T ; Igt . This dependency structure is
particularly useful for Rao–Blackwellisation, which can be applied by
segmenting the latent variables such that rt ¼ fC; T ; Igt and zt ¼ fDgt .
The RBPF therefore consists of N random samples of the form
ffr; zgi1:t ;ωi

tg
N
i ¼ 1 that characterise the posterior density PðZt jy1:tÞ,

where each sample point fr; zgit has an associated weight ωt
i such thatPN

i ¼ 1ω
i
t ¼ 1. To approximate the posterior density at time t:

P Zt jy1:t
� ��

XN

i ¼ 1

ωiδ fr; zgt ; fr; zgit
� �

ð5Þ

P Zt jy1:t
� ��

XN

i ¼ 1

ωiδ fC; T ; I;Dgt ; fC; T ; I;Dgit
� �

ð6Þ

The dependencies in (3) are too complex to calculate accurately
without model learning. Our approach therefore applies the principles
of particle weighting to generate a weight. It is composed of two
factors: PðZi

t jytÞ: the true positive probability of the observation and
the proportion of activities in the target set that have been observed.
These components can be combined as follows:

ωi
t ¼ωi

t�1 � PðZi
t jytÞ �

jCi
t j þ1

jTi
t j þ1

ð7Þ

A particle will attract a weight of zero whenever it cannot
explain yt. To prevent filter collapse (all particles having zero
weight) a particle regeneration step is applied to detect and re-
initialise such particles after the sampling step. This can be
achieved by identifying where PðAi

t j fC; T ; Igit ;Ai
1:t�1Þ ¼ 0 and adding

such particles to regeneration set R. The remaining particles form
the eligible set ℓ such that fRt [ ℓtg ¼ fZi

tg
N
i ¼ 1 and fRt \ ℓtg ¼∅.

A subset of R proportional to 1�PðDt jAtÞ are selected to
represent a false-positive observation and are assigned a nominal
weight of 0.01 (arbitrarily chosen and held static throughout the
validation). The remaining particles in Rt are used to assume that
the agent has changed their complex activity, and thus variable I is
set to TPCh and the variables are re-initialised per Table 1.
Algorithm 1 summarises our inference procedure.

Algorithm 1. The basic RBPF inference algorithm.

Init: Generate ½ffC; T ; Igi0;ωi
0g

N

i ¼ 1� � PðZ1Þ and ω1

for t¼1 to T do
for i¼1 to N do

Sample fC; T ; I;Dgit�1

Transition fC; T ; I;Dgit�1 to obtain fC; T ; Igit
if PðAt j fC; T ; IgitÞ ¼ 0 then
if randomðÞo1�TPðAtÞ then

Set I¼FP and weight 0.01 //False-positive
else

if Ck
t ¼ Tk

t then
Reset with prior // complex activity completed

else
Reset for activity change

end if
end if

end if

if IitaFP then

Calculate RB-Posterior: PðDi
t j fC; T ; Igit ;A1:tÞ

Predict Dt
i from RB-Posterior giving fC; T ;D; Igit

Weight with (7)
end if

end for
Normalise weights and re-sample Zt

end for

5. Hierarchical representation

A more natural representation of activity is to consider a hierarch-
ical decomposition. See for example the hierarchical representations
used in the literature [17,13,18]. Updating the algorithm to incorporate
hierarchical structure achieves the following:

1. Allows multi-agent activity to be modelled.
2. Aids activity specification via re-usable components.
3. Facilitates the explanation of recognised activities.

To adapt the algorithm into a hierarchical model the representation
is first set into a hierarchical context. To do so, we continue to use the
terminology of primitive and complex activities, but also introduce the
term root activity to refer to the most abstract complex activity in a
hierarchy. Recall that primitive activities are short term and achieve an
immediate goal, while complex activities are composed of a number of
primitive and/or complex activities. From these definitions one can
immediately construct tree structures such as Fig. 2, where PlaceObject
would be considered a primitive activity and LeaveObject would be
considered complex. In this example ‘Watched Item’ is the root
activity.

With this representation hierarchical recognition is achieved by
considering each layer of complex activities as a set of alternative
hypotheses. The target set for each complex activity is derived from
its child components and thus the root activity ‘Watched Item’ has
four components. In the flat model desires had uniform probability
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over the set C n T , however, this is now updated to be proportional to
the number of children that comprise the activity. As an example of
this updated distribution, PðDt ¼ LeaveObjectj fC; T ; IgtÞ ¼ 0:4 while
PðDt ¼ SplitGroupj fC; T ; IgtÞ ¼ 0:2 when C ¼∅ and I¼TPS.

Unlike some approaches (e.g. [13]), we do not need to model a
termination distribution for each activity for three reasons: 1) we
assume that all child activities terminate immediately, 2) the hierarchy
is kept in lock-step, preventing transitions at one layer without the
others, and 3) a complex activity will have zero probability of further
execution once all child activities have been observed. In essence, this
means that each layer of the hierarchy is decoupled and can be
recognised independently using the flat inference algorithm already
introduced. To recognise a set of hierarchical activities with depth ~D
thus requires a particle filter for each layer of complex activities
forming a collection of ~D�1 filters.

For a set of complex activities at level l, a single particle filter
approximates PðZl

T ¼ αi
l jy1:T Þ, and thus we can recursively calculate

PðZl
T ¼ αi

l jy1:T Þ for any level by starting at the bottom of the
hierarchy ( ~D�1) and cascading up filtering densities to approx-
imate PðZl

T ¼ αi
l jytÞ at the level above.

6. Multi-agent recognition

A benefit of the hierarchical filter is that it can model multi-agent
activity. This is achieved by assigning agent-roles to complex activities
with the implication that if activities γ and ι are assigned different
roles then they must be performed by different agents. Continuing
with the example from Fig. 2 the agent fulfilling role 1 enters the
scene, places an object, splits from an agent group and exits the scene.
Agent 2 enters with Agent 1, splits from the group and stays in the
scene. Assigning roles to complex activities has minimum impact on
the DBN, with the only notable change being that role information
needs to be present within both T and C and the agent assigned to a
role needs to be tracked to ensure consistency.

The addition of multi-agent activity converts the task into a
multi-target tracking problem, where the number and identity of
targets is unknown. Our solution to this problem is based upon
combinatorial optimisation under the premise that the most likely
activities for a set of agents can be used to identify those involved
in multi-agent/solo activity. To maintain tractability we restrict
multi-agent activity to pairs of agents and make the assumption
that agents can only exhibit one root activity at a time.

Because filters must only receive observations for the agent
(s) being tracked multi-agent and solo activities must be filtered
independently. To determine whether an agent is involved in solo
or multi-agent activity thus requires posterior densities from
multiple filters to be combined to give a single, normalised
filtering density. This is required for each potential pair of agents.

6.1. Merging filter posteriors

There are several stages to merging filter posteriors.

6.1.1. Calculate the un-normalised weight of each filter
Denote M and S as a multi-agent and solo filter respectively. To

preserve notation similarity denote PðSt jy1:tÞ as the posterior
probability of solo activities and PðMt jy1:tÞ as the posterior for
multi-agent activities. Where as a normalised particle weight is
denoted ωi, let ωin denote the un-normalised particle weight. And
if f AfS;Mg is a filter representing the solo or multi-agent activities,
and Bf is the set of associated root activities, then ft

i is the i'th
particle in filter f and δðf it ;Bf

bÞ ¼ 1 when particle i represents the
b'th activity in Bf. The un-normalised weight (FWf) of filter f is then

given by

FWf ¼
Xj Bf j

b ¼ 1

FWf
b ¼

Xj Bf j

b ¼ 1

Xj f j

i ¼ 1

ωinδðf it ;Bf
bÞ ð8Þ

where j f j indicates the number of particles in filter f.

6.1.2. Calculate the importance of each filter
To re-normalise the posterior density estimates the importance

of each filter is required. For example, if FWS ¼ 100 and FWM ¼ 50
then the importance of each filter can be described as Imp
ðFWSÞ ¼ 100=150¼ 0:67 and ImpðFWMÞ ¼ 50=150¼ 0:33. However,
it should be noted that this calculation is only correct if the
number of particles in each filter is equal. If the number of
particles is imbalanced then the filter weights must first be
equalised by normalising by j f j : The number of particles in each
filter. Denote EqðÞ as a function to perform this.

6.1.3. Re-normalise the posteriors
The final step is to recompute the likelihood of each activity Bb

f

by weighting it with the filter's importance:

PðZt ¼ Bf
b jy1:tÞ � ImpðEqðFWf ÞÞnPðf t ¼ Bf

b jy1:tÞ ð9Þ
Given a set of combined solo/multi-agent filtering densities for a

set of B root activities and N agents, combinatorial optimisation can be
used to identify the most likely joint distribution. However, such a
process requires OðB2N2Þ operations. In order to achieve real-time
recognition we reduce this runtime by opting for a heuristic approach
based on simulated annealing [48]. We represent the joint root activity
probability as a solution's utility and thus the objective of simulated
annealing is to maximise the utility.

Because the optimal assignment of agents to root activities changes
with each observation we make predictions when root activity
termination is detected. This can be achieved by analysing the particles
that represent the optimal root activity assignments. If the majority of
those particles have observed all features (i.e. Ct¼Tt) then the activity
has terminated and a prediction can be made.

7. Video surveillance application

To validate our algorithm in a realistic domain we implemented a
visual surveillance application using object detection, tracking, and
event recognition techniques. Visual surveillance is one area in which
annotated corpora are rarely available due to privacy concerns and the
time consuming nature of annotating video. As stated in Section 1, the
majority of existing research in this area has focused on recognising
primitive activities and where complex activity has been considered,
non-probabilistic event matching techniques are prevalent. Vision
algorithms were used to extract object tracks from video sensor data,
from which primitive activities could then be detected. These primi-
tives were then provided as input to the reasoning (bag-of-activities)
recognition algorithm. For the purposes of reproducibility, we briefly
describe the implementation of our three-layer framework which
consisted of: Image Processing, Reasoning, and Operator Interaction.
Within each layer different processes were performedwhile individual
layers were strictly de-coupled to facilitate the integration and
replacement of different processing techniques. The overall framework
is shown in Fig. 3.

The Image Processing layer detects the essential primitive activities
for the RBPF algorithm, and is described in the following section.
Simulations were used to validate the method prior to deploying a
real-time tracker. A schematic outlining the contribution of these and
the primitive activities extracted is shown in Fig. 5.

At the Operator Interaction layer activity predictions were
made whenever a root activity completed all child activities. For
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each root activity, an explanation template was provided contain-
ing detail ‘slots’. During prediction details were extracted from the
filters (e.g. agent ID, activity time) to provide a complete activity
description. Example descriptions can be observed in the supple-
mentary videos, and in the example of Fig. 6.

The results were used to generate the number of true positive
(TP), false positive (FP) and false negative (FN) classifications from
the PETS 2006 ground-truthed test data and our own dataset. We
quote, principally, the F-Score, defined as the weighted average of
precision and recall with range [0:1] calculated as

F�Score¼ 2� Precision� Recall
PrecisionþRecall

ð10Þ

7.1. Person tracking

Our tracker consisted of a set of Sequential Importance Sam-
pling (SIR) filters with re-sampling implemented on combined

CPU/GPU architecture [49]. For brevity we only repeat the salient
details in this paper. Output frames from this tracker have already
been presented in Figs. 1 and 2. Our implementation used 100
particles to represent a person's position on the ground plane,
velocity, and direction of travel. A uniform grid was generated on
the ground plane using a homography transform derived from the
camera calibration data using Zhang's technique [50]. For each grid
point an ellipsoid was projected with height E1.8 m and diameter
E0.4 m (an average for human subjects), around which a rectan-
gular bounding box was generated within the image plane using
the inverse transform. For each frame of video background sub-
traction was used to identify foreground pixels (blobs), and
bounding boxes with Z65% foreground pixels were classed as
person detections. A new filter/track was instantiated for each
unexplained detection. Instantiating a track implied the entry of
an agent into the scene, while track termination indicated depar-
ture. To address temporary occlusion (e.g. people crossing paths),
particles also contained a visibility variable to indicate the person's
disappearance. A Markov model was used to determine changes in

Video Datasource

Synthetic Classification 
Errors Added

Primitive Activity
Generation

Primitive Activity Sim.

Bag-Of-Activities
Inference

Visual Data Object Detection & 
Tracking

Primitive Activity
Detection

EnterAgent
PlaceObject

.

.
ExitAgent

Fig. 5. The video processing components of the framework provide a stream of primitive activity observations to the bag-of-activities inference algorithm. The primitive
simulator also provides such a stream and incorporates synthetic classification errors to mimic video processing failures.

Fig. 6. Example explanation from the PETS dataset (Scenario 4). The text reads:“Agent H5 has left luggage with agent H7, but they are not known companions. H5 may have
abandoned an object. The item was placed around frame 878 and abandoned around frame 1941. (High certainty)”.
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visibility state, while track termination occurred after 5 s of
invisibility (full details available in [51]).

7.2. Immobile object detection

Our approach to immobile object detection was similar to other
published work [49,52,53]. Background subtraction was used to
identify foreground pixels using a static (empty) reference frame.
Luggage objects were then identified as blobs having a real-world
width/height of [0.3, 1] metres using the same technique as our
person tracker. This range was chosen by manually measuring
items similar to those of interest in the PETS dataset. Excluding
blobs o0:3 m had the additional benefit of eliminating many
small blobs created by lighting changes.

At each time-step we obtained a matrix of detected item
centroids. Because immobile objects were of interest, we corre-
lated objects between frames using a spatial threshold of 0.3 m
(corresponding to the width of each grid point). We also applied
an n-second persistence rule before instantiating new ‘immobile
object’ detections, and likewise for terminations through n-sec-
onds of absence. The temporal threshold served to reduce the
number of candidate immobile objects caused by temporary
lighting effects and allowed the object position to stabilize. This
approach is broadly similar to [33]. In our validation n¼1 was
found to work well across both video datasets.

For both the person and object trackers, output consisted of time
indexed tuples containing a unique track ID, the person/object
coordinates within the image frame, and the real-world coordinates.

7.3. Extracting primitives

We detected video events from the tracker output using
elementary semantic rules. These events were then correlated
with primitive activities to provide input to the reasoning layer of
the framework. Table 2 summarises these rules in which the
parameter μ is a threshold determining how close agents must
be to be considered ‘grouped’. As with similar work (e.g. [54]), we
draw on proxemics research from the psychology and sociology
literature to determine a suitable value for μ. The term proxemics
was proposed by Hall [55] and relates to the social use of space,
and in particular personal space: an area with invisible boundaries
surrounding an individuals body that defines a comfort zone for
inter personal communications. Hall identifies a number of classi-
fications for personal space, with inter-person distances r3:5 m
broadly meeting our definition of ‘grouped’ individuals. We chose
a mid-range value of μ¼ 2 m for our experiments.

In the evaluation video some grouped persons were occluded
when entering the scene, and later split apart allowing the tracker
to detect them. Because our tracker was not configured for multi-
view camera tracking in our experiments (which may have
alleviated this problem), we defined a ‘spawning’ threshold η to

trigger ‘split’ activity primitives under these conditions. We
empirically identified η¼2 m as a good value from the PETS
dataset, although multi-view tracking is recommended as a more
robust solution to this problem in future work.

Note that object related primitives are associated with both an
object and an actor. To achieve actor association we use the same
approach as [5,53]: the person previously closest to the object
when the primitive was detected was the activity performer. It
should be highlighted that because ObjectPlaced and ObjectRe-
moved are associated with both person and object identifiers, one
can determine that ObjectPlaced(obj1) and ObjectRemoved(obj1)
refer to the same object but that ObjectPlaced(obj1) and ObjectRe-
moved(obj2) do not.

It should also be highlighted that it is here, at the primitive
extraction layer, that a small amount of temporal information is
automatically captured by virtue of the fact that a foreground blob
of any kind cannot ‘disappear’ before it has ‘appeared’. Conse-
quently, objects and people alike can only be removed/leave after
they have been placed/entered. This small amount of temporal
information is gained without explicit modelling.

7.4. Parameter sensitivity

This section has described the video processing pipeline we
implemented to convert raw surveillance videos into primitive
activity observations. Many of the techniques employed are based
on prior work with the PETS 2006 dataset, where the trend has
been to hand-pick parameter values (e.g. [33,53,56]), in part
because training data is not provided as part of the dataset. We
have followed the same approach, but it should be noted that
different parameter values could be required in alternative
environments.

An advantage of our decoupled framework is that the primitive
activity detectors can be easily replaced as the state-of-the-art
evolves, without directly impacting inference. This allows different
detectors to be integrated as required. For example, EnterAgent and
ExitAgent detections could be made more robust by using spatial
context to restrict their occurrence to learnt regions (as in [38]),
and Lin and Sun [57] presented a more extensive group interaction
algorithm for detecting forming, splitting, ignoring, following and
chasing. Leach et al. [58] showed that head-pose can help identify
social groups. Integrating these or other detection algorithms into
the framework in future work is trivial because the primitive
activity detectors are not tied to bag-of-activities inference. How-
ever, it should be noted that any such algorithms could be
susceptible to the quantity of training data available.

8. Experiments

To validate our approach we performed two sets of experi-
ments: (1) using a combination of both simulated and real video

Table 2
Primitive activity detection rules. Perst and Objt are the sets of person and static luggage object detections (respectively) at time t. posðκÞt is
the function returning the position of person/object κ at time t. μ and η are thresholds.

Event conditions Primitive emitted

(ρ : ρ 3 Perst�14ρAPerst EnterAgentðρÞ
(ρ : ρAPerst�14ρ 3 Perst ExitAgentðρÞ
if (ϕ : ϕ 3 Objt�14ϕAObjt then ρn ¼ argminρAPerst :posðρÞt�posðϕÞt: ObjectPlacedðρn;ϕÞ
if (ϕ : ϕAObjt�14ϕ 3 Objt then ρn ¼ argminρAPerst � 1

:posðρÞt�1�posðϕÞt�1: ObjectRemovedðρn;ϕÞ
(ρaρ0 : fρ; ρ0g � Perst \ Perst�14:posðρÞt�1�posðρ0Þt�1:4μ4:posðρÞt�posðρ0Þt:rμ FormGroupðρ; ρ0Þ
(ρaρ0 : fρ; ρg � Perst \ Perst�14:posðρÞt�posðρ0Þt:4μ4:posðρÞt�1�posðρ0Þt�1:rμ SplitGroupðρ; ρ0Þ
(ρaρ0 : fρ; ρ0g � Perst ; ρ0 3 Perst�1, ρAPerst�14μr:posðρÞt�posðρ0Þt:oη SplitGroupðρ; ρ0Þ
(ρaρ0 : fρ; ρ0g � Perst�1; ρ

0 3 Perst , ρAPerst4en:posðρÞt�1�posðρ0Þt�1:rμ SplitGroupðρ; ρ0Þ
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data within a surveillance setting and (2) using simulated data to
compare performance with a competing approach for video-
classification.

8.1. Surveillance scenarios

Table 3 describes the seven root activities used throughout the
validation. Four of these can be directly observed in the publicly
available PETS 2006 video dataset [59]. This paper is the first to
consider complex activities within this data and its realism and
widespread use make it a good choice for future comparisons with
alternative approaches. In addition to the four directly observable
activities a fifth (synthetic scenario, marked with an ‘s’ in column
3 of Table 3) was generated by merging tracking information from
two separate videos. This was achieved by truncating the tracker
output from S4-T5-A at video frame 1000 and joining this with the
tracker output for S6-T3-H commencing with frame 1370. The use
of synthetic scenarios is not uncommon in prior work (e.g.
[60,61]), where it is often recognised that extending existing
datasets is difficult. Finally, two further activities were defined
which were not present nor synthesised in the PETS 2006 dataset,
but were present within our second dataset. This second video
dataset contained all activities and was gathered for the evaluation
to increase the variability of activities. Termed the HW data, it
included 20 instances of each activity.

We used an HMM classifier as a comparative baseline to our
method, mobilising prior knowledge about the temporal order of
activities to set model parameters. Different levels of HMM
sensitivity were explored using three different classification stra-
tegies. The first two strategies classified observations using a ratio
σ, where σ¼2 implies that classifications should only be made if a
model is at least twice as probable as any other. The other σ value
used was 1.5. The third strategy used a threshold θ, where θ¼0.5
means a classification was made if the normalised probability was
Z0:5. σ and θ were not used concurrently.

8.1.1. Primitive activity recognition
We first discuss the recognition performance of the primitive

activity detectors. The raw video data was presented to the person
and object trackers, and their output was in turn presented to the
primitive activity detectors. The person tracker achieved a multiple
object tracker accuracy (MOTA) [62] of 93%.1 Fig. 7a shows the
precision of each of the six primitive activity detectors: EnterAgent,
ExitAgent, FormGroup, SplitGroup, PlaceItem and RemoveItem. It is

clear that the FormGroup detector had a low precision in the PETS
data (0.33), and was slightly higher (0.62) in the HW data. This
was because the PETS data only exhibits one example of the
FormGroup activity, although two false-positives were also
detected in a particularly challenging scene (S1-T1-C). Frames
from this scene are shown in Fig. 8 where one can observe that
four agents enter the scene in close proximity. This in itself caused
problems for the person tracker, which changed the persons
associated with the green and yellow ellipses, and failed to detect
two agents at all.

The HW data contains eight true-positive FormGroup detections
but five false positives are also generated during some of the TH
behaviours. RemoveObject was also detected with low precision in
both datasets (HW: 0.65, PETS: 0.5), while the other activities were
detected with reasonable accuracy (Z0:74).

Fig. 7b shows that the recall of the detectors was generally
high. Again, the primary exception was FormGroup, which had a
recall of only 0.47 in the HW data. All other activities had a recall
of Z0:73 on both datasets. Combining the precision and recall
over both datasets gave a mean recognition F-Score of 0.78.

These results demonstrate that our primitive activities can be
detected from both video datasets, although the single-camera via
makes them susceptible to target occlusions. As suggested in
Section 7.3, using multiple camera views could alleviate this
problem and increase detector performance.

8.1.2. Comparing model likelihood
Fig. 9a shows the probability of each root activity as the

number of observations increases. After the first observation the
PT1 (passing through 1) activity is the most probable, even tho-
ugh all root activities can explain the observation. The reason for
this is that shorter activities have a higher posterior probability
pðDjC; T ; IÞ. Being the shortest root activity, each PT1 particle
making a correct prediction gains a higher joint probability than
other activity particles, leading ultimately to the effect observed.

At the second observation PT1 can no longer explain the
observations, while AO2 (abandon object 2) significantly increases
in probability (66% of AO2 has been observed). At the third
observation the probability of AO2 increases further, as do the
other activities also able to explain the observation. In this
example AO2 was correctly identified as the observed root activity.

To contrast these results Fig. 9b shows the baseline (HMM)
probability for the same activities. The HMM models cannot
distinguish between HO (hand-off) and AO2, which are identical
for the first three observations when observed sequentially. After
three observations the HMMs are unable to distinguish between

Table 3
Root activities used in the evaluation and their presence in the PETS [59] and Heriot-Watt (HW) datasets. Synthesised scenarios are indicated with an ‘S’ in column 3 (further
details in Section 8).

Name Description In
PETS

In
HW

Passing Through 1
(PT1)

Person enters and leaves the scene Y Y

Passing Through 2
(PT2)

Persons enters, temporarily places luggage, then leaves the scene (with luggage) Y Y

Watched Item (WI) Two people enter the scene as a group. One places luggage and leaves the scene without it. The other person remains in the
scene

S Y

Abandon Object 1
(AO1)

Two people enter the scene independently. The people temporarily form a group. One person places luggage and leaves the
scene

Y Y

Abandon Object 2
(AO2)

Person enters the scene, places luggage and leaves without it Y Y

Theft (Th) Person enters the scene and places luggage. Second person enters scene and removes other agent's luggage, leaving the scene
with it

N Y

Hand-Off (HO) Person enters the scene, places luggage and leaves. Second person enters the scene, removes luggage and leaves the scene with
it

N Y

1 Full validation of our tracker is available in [49].
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these activities, preventing it from making a classification (as will
be shown in the next section). Under the assumption that
primitives are detected reasonably reliably, it is true that AO2
should be more probable then HO, and thus our approach is
fundamentally able to classify root activities that cannot be
classified by the HMMs.

We next analysed model sensitivity with respect to changes to
temporal order while observing the AO1 (abandon object 1) root
activity. Such changes could arise from natural variability, human
adaptation, or errors encoding domain knowledge. In a distributed
sensor network observations could also be delayed by unknown
and/or varying degrees of latency. Fig. 10 (top) can be considered
the ‘control’ in this experiment, where the observation sequence
matched the model order. Fig. 10 (middle and bottom) show the
HMM was very sensitive to a single observation arriving ‘out-of-
order’ (the luggage item was placed at different points). Our
approach was also affected by the change of order, but still
converged with a high probability to the correct model, out-
performing the HMM in both cases. The temporal order still had
some effect on our model because some activities were common
to both root activities. A person could switch their root activity at
any point, and thus it is possible for a particle to ignore previous
(inconsistent) observations with a low probability.

Fig. 10 sequence 1 also showed that some primitives were more
informative than others. The forth observation in sequence 1 was
‘FormGroup’; a primitive activity belonging only to the AO1 root
activity. This lead to a significant increase in AO1 probability at
observation 4, mimicking a high transition probability of a HMM.

8.1.3. Recognition performance
Fig. 11a shows bag-of-activities recognition F-Scores on our two

video datasets (PETS and HW). The HW dataset contained 49,348

frames and included 20 examples of each root activity. The PETS
dataset contained 75 examples in total (12,195 video frames),
however, activities TH=HO (Theft/Hand-off) were absent, and most
root activities were poorly represented. This is reflected in the
results on the PETS data, where all root activities were detected
with a very high F-Score. The mean F-Score was 0.99, with
incorrect classifications being caused by the person tracker incor-
rectly detecting luggage items as people (a common failure mode
of a real-time visual system). When the framework was applied to
the more challenging HW dataset the results obtained varied. PT1
was still recognised with the lowest F-Score (0.57) and was again
caused by tracking inaccuracies. The remaining root activities were
all detected with an F-Score Z0:74, and had a mean F-Score
of 0.77.

Because of the limited nature of the PETS data, the remaining
experiments focused exclusively on the more challenging HW
dataset. Fig. 11b shows that our approach out-performed the
HMMs for 5/7 root activities, with very poor AO2 recognition by
the HMM (mean AO2 F-Score for the HMMs: 0.08). This can be
explained by the HMMs inability to distinguish between two of
the root activities (AO2 and HO), as discussed in Section 8.1.2.

Fig. 12 shows the error range of each metric (precision, recall
and F-Score) for the competing approaches. In part, the inability of
the HMMs to recognise AO2 can be ignored by initially focus-
ing on the precision metric, which is the proportion of positive
test results that are true positives. Our model achieved a mean
precision that is significantly higher than the HMMs, at the cost of
a slightly higher error range. Our approach showed significantly
higher means and shorter error ranges for both recall and overall
F-Score.2
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2 This remained the case even when AO2 was excluded.
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8.1.4. Comparison to the state-of-the-art
The novelty of complex activity recognition from video surveil-

lance makes comparison difficult: no work to our knowledge
generates descriptions of complex scenarios with such accuracy.
Research in complex video activity recognition is not as well
organised as that of primitive activity recognition. As such there
are few common surveillance activities or benchmarked datasets.
However, the detection of abandoned objects has received con-
siderable attention. We therefore make a comparison against the
recognition of this root activity: the “abandoned object (2)”
recognition. Note that the techniques compared against are not
recognising activities with any layered reasoning, simply recognis-
ing metric distance from person to object. We compare precision
and recall against the benchmarked PETS data where it may be
derived from the published work on this dataset.

Table 4 shows the results of this comparison with several state-
of-the-art approaches (all eliminate model learning by using
hand-picked parameters). F-Scores have been calculated for videos
1, 3, 4 and 6 in PETS, which were the same videos used in this
paper. Our approach out-performs competing techniques.

8.1.5. Simulated corpus
In addition to the use of actual video datasets a simulator was

developed to allow hundreds of scenarios to be generated, greatly
extending test data variability. The simulator used a plan library to
generate observation sequences in a similar way to prior work
[63]. To enhance realism the simulator added spurious noisy
observations at a rate and distribution similar to the real video
event detectors. By “noise” we mean artificial low-level misclassi-
fications of the primitive activities.

Effect of detector accuracy: We next evaluate our approach with
less robust primitive detections. This might occur in more complex
environments, or where parameters are estimated from insuffi-
cient training data. We used simulated observation sequences
containing 0–40% noise for this analysis. Fig. 13a shows an F-Score
of 0.97 was achieved at zero noise, which dropped by E0.1 for

every 10% increase in noise. Cross-referencing these results with
the video-based experiments highlights that because high-level
inference has no means of recovering from missed primitive
detections, it is susceptible to poor recall detectors. In simulations
with 10% noise the mean F-Score was 0.92, while the combined
video experiments (both datasets) gave an F-Score of 0.82.
Although the simulator added noise at the same rate as the real
video event detectors, recall was assumed to be 1 (no false
negatives), while the real video detectors gave a mean hit-rate of
only 0.8. This showed the importance of having detectors with
good hit-rates, and it is likely that more robust video processing
methods would be needed to maintain accuracy levels in more
complex environments.

Effect of novel and multi-goal activity: To analyse sensitivity to
novel bags-of-activities, Fig. 13b shows recognition performance
under two scenarios. When observations were constructed from
the seven known root activities the mean F-Score was 0.92 and the
mean false positive rate was 0.31%. The second scenario included
instances of unknown (random) bags-of-activities in the observa-
tion streams. Encouragingly, only 13% of the unknown bags were
misclassified. This gave an average F-Score of 0.89 with negligible
effect on the FP rate.

Novel bags-of-activities could also be agents pursuing multiple
root activities concurrently. We report recognition performance of
concatenated and switched activity in Table 5. Concatenation is
the (complete) observance of one root activity followed by
another. Switching is the partial observance of two different root
activities as observed when an agent aborts one to pursue another.
Concatenated activity recognition gave an F-Score of 0.73. This
performance was caused by the fact that not all particles repre-
sented the same state and thus only some of the particles were
reset when a root activity completed. As a result, a subset of the
particles attempted to explain all observations, reducing accuracy.
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Table 4
Comparison of AO2 (abandoned object 2) detection accuracy with state-of-the-art
techniques.

Approach F-Score

Bag-of-activities 1.0
Krahnstoever et al. [64] 0.86
Smith et al. [53] 0.86
Guler and Farrow [65] 0.8
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When observing switched activities the first root activity was
not completed. This prevented termination detection and as a
result, no predictions were made for the first activity. Predictions
of the second root activity had a mean F-Score of 0.68. This
reduced performance is a result of the limited length and large
overlap of the root activities. When few primitives were observed
after a root activity had switched the filters rarely converged to the
new root activity before termination. Indeed, this result is con-
sistent with work by Geib and Goldman [66] on detecting activity
abandonment who remarked that the length of the evaluation
activities was a significant cause of limited performance.

Run-time performance: Our final experiment in this section ana-
lysed run-time performance as the number of particles (N) was
increased (Intel 2.4Ghz i5 PC with 4 GB RAM.). To isolate the number
of particles the number of agents was held at six. In Fig. 14 every
additional 100 particles increased total inference time by E1000 ms,
and cross-referencing this with F-Score indicated that 200–300
particles would deliver an F-Score Z0:8 in around 3 s when primitive
activity noise was 10%. Using this analysis, we identified 220 particles
per complex filter as a suitable configuration for all the experiments
reported. With this configuration we found that activity alerts were
made with E2.5 s frame latency, which is consistent with Fig. 14.

In our experiments video detection and tracking were per-
formed offline, so Fig. 14 reports the run-time of the Reasoning and
Operator Interaction layers of the framework (Fig. 3). However,
detection and tracking can be performed in real-time and online
(see for example [49]), and it should be noted that none of our
bag-of-activities inference algorithms were highly parallelised.
Particle filters are inherently good candidates for parallelisation,
and since temporal ordering is not considered in our algorithm, it
is anticipated that good performance gains could be achieved
through parallelisation, which is the focus of ongoing research.

Two other factors should also be highlighted: (1) Our framework
does not impose temporal thresholds on either the intervals between
primitive activities, or on the overall duration of root activities. Doing
so could hinder recognition of very fast or slowly evolving activities. As
a consequence, activity information for all agents is maintained
indefinitely. (2) The number of agents in memory changes the number
of active filters and correspondingly; runtime. Some ideas for reducing
memory requirements in the future are discussed in Section 9.

8.2. Video classification scenarios

A second comparison with the state-of-the-art was ma-
de against Merler et al. [21] who focus on multimedia video

classification. Using the TRECVIDMED 2010 dataset3 they address
classification of 3 root activities; assembling a shelter, batting a
home run and baking a cake. We used their reported results for the
most highly correlated model vectors (primitive activities) to
define the bags-of-activities for each root activity. Primitive
activity detections were simulated using the average precision
metrics from [21]. Miss-rates and false positive rates are not
reported in [21] so we included classification errors (false posi-
tives) and missed detections into our simulated data with range
½0;40�%. Each root activity was simulated 400 times per test
condition. Because we simulated missed detections, we report
the most probable root activity at the end of each observation
sequence.

Merler et al. report average precisions of 0.36, 0.69 and 0.32 for
baking a cake, assembling a shelter, and batting a home run respectively
(Fig. 15). Because a direct comparison cannot be performed, we
compared performance at a high level of classification errors / miss
rate (both 40%). It is clear from Fig.15 that our approach performs better
for two activities, and offers comparable performance on the third.

It is important to highlight that [21] uses training data to learn
the primitive/complex activity detectors. This has two bearings on
our comparison: 1) our approach assumes that training data is
unavailable so requires a higher degree of manual configuration. 2)
Since the efficacy of model learning can be affected by the
availability of training data it is conceivable that the performance
of [21] could be improved with further training.

However, precision alone is insufficient for demonstrating perfor-
mance. Fig. 15 shows that the F-Score gradually reduced from 1 as the
classification error and miss detection rates were increased. An
important observation is that the assembling a shelter and batting a
home run root activities were increasingly confused with baking a cake.
The reason for this was that the bag-of-activities for baking a cakewas
significantly smaller (by more than 50%) than the other two activities.
When fewer genuine primitives were observed through missed
detections, and more false primitives observed through classification
errors, particles representing baking a cake had a higher probability of
predicting an activity that wasmiss detected (and thus gained weight).
This resulted in the same effect as that discussed in Section 8.1.2 where
particles representing the smaller bag-of-activities gained higher
posterior probabilities than those representing larger bags. Because
root activity classification errors were drawn towards baking a cake the
precisions of the assembling a shelter and batting a home run root
activities actually started to increase again as the classification error/
miss rates continued to increase. Inversely, the precision of baking a
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Table 5
Summary of multiple goal activity performance on
simulated data.

Goal-type F-Score

Single-goal 0.96
Concatenated 0.73
Switched 0.68
Multi-goal 0.88
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3 http://www.nist.gov/itl/iad/mig/med10.cfm.
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cake continued to decrease, while the recall of baking a cake re-gained
performance.

9. Discussion, conclusion and future work

This work has dealt with the issues missing in the literature on
complex activity inference by developing a new probabilistic
technique for data-scarce domains. We have presented both a
novel generic framework and a new surveillance application that
has achieved strong recognition performance on benchmarked
data without requiring training/experts to define key model
parameters or prepare large training datasets.

As a probabilistic inference technique, the framework has been
successful in recognising complex activity. This was achieved by
combining Rao–Blackwellised Particle Filters with a novel activity
representation that removed the need for model learning. The
validation – both synthetic and real – showed that the approach is
robust to noise, giving a mean recognition F-Score of 0.92 (mean
FP rate: 0.003) when evaluating the approach in a surveillance
application using seven noisy (10%) root activities. Further valida-
tion was provided by the video-processing test-harness using
publicly available and newly gathered video data. A mean F-Score
of 0.82 (mean FP rate: 0.03) was achieved on the combined
datasets which were comprised of 61,543 frames of video.

Comparing performance with HMM classifiers has highlighted
several benefits to our approach: (1) HMMs cannot distinguish
between activities that have the same prefix, as demonstrated by
only recognising one of our root activities (AO2) 5% of the time. In
stark contrast, our approach achieved 95% recognition. (2) By not
modelling temporal order our approach showed less sensitivity to
ordering changes while sequential models such as HMMs are
particularly susceptible to ‘out-of-order’ observations. These could
be caused by encoding errors or network latency from distributed
sensors. Distributed surveillance networks are receiving growing
levels of interest and thus resilience to observation latency is a
highly desirable feature. (3) Our approach outperformed the
HMMs with a mean increase in precision and F-Score of 10% and
17% respectively. In-part, this improvement was achieved by being
able to determine when a root activity had been fully observed.
Irrespective of activity probability, our algorithm only made
classifications when it determined that all sub-components had
been observed. The HMMs did not have this ability and thus were
more prone to make false-positive classifications.

With respect to object-abandonment detection, the AO1, AO2
and WI root activities could all be individually recognised. Our
approach also demonstrated success in detecting the much more
challenging multi-goal activities with a mean F-Score of 0.71. The

approach successfully recognised both multi-agent and single
agent activities, while most related work only considered single
agents. Real-time performance was also demonstrated, but this
can only be maintained when restricting the number of agents to
twenty. This limitation is caused by using combinatorial search to
identify multi-agent activities.

As one would expect, good low-level detection accuracy is key
to high-level inference, although the results indicate that good
(Z80%) performance can still be achieved with high primitive
noise (20%).

9.1. Future work

We briefly identify some of the challenges to be addressed in
future work. (1) Using combinatorial search for multi-agent
activity detection causes exponential growth as the number of
agents increases. One approach for limiting this complexity would
be to use predictions to reduce the space of potential agent pairs.
(2) An assumption of our approach is that activities do not contain
repetitive components. This assumption may be overly restrictive
because the real issue is with regards to components that can be
repeated an infinite or unknown number of times. This is because
uniform probability is assigned to elements in C n T , which is
undefined when an element can be repeated infinitely. (3) Experi-
mental results have shown that reasonable performance can be
achieved with suboptimal primitive detectors even though the
approach is susceptible to missed detections. It is anticipated that
modelling the recall/hit rate would improve performance in
scenarios where primitive activities are frequently missed by the
detectors. (4) Rather than constructing specific primitive activity
detectors, it may be possible to automatically extract primitives
using Hierarchical Dirichlet Processes (or other clustering techni-
ques). The extracted primitives could then be labelled and used to
define the complex activities of interest.
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Appendix A. Supplementary material

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.patcog.2015.02.
019.
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