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a b s t r a c t

One of the main interferers for a Doppler radar has always been the radar's own signal
being reflected off the surroundings. This creates the problem of searching for a target in a
coloured noise and interference environment. Traditional space–time adaptive processing
(STAP) deals with the problem by using target-free training data to study this environ-
ment and build its characteristic covariance matrix. The maximum likelihood estimation
detector (MLED) and its generalised counterpart (GMLED) are two reduced-rank STAP
algorithms that eliminate the need for training data when mapping the statistics of the
background interference. In this work the MLED and GMLED solutions to a multistatic
scenario are derived. A hybrid multiple-input multiple-output (MIMO) system where each
receiver is a coherent STAP radar has been employed. The focus of the work is the spatial
diversity provided by the wide separation of the individual transmitter and receiver
platforms. It is proven that this configuration does not affect the constant false alarm rate
(CFAR) property of the bistatic radar case. A Gaussian approximation to the statistics of the
multistatic algorithms is derived in order to provide a more in-depth analysis. The
viability of the theoretical models and their approximations are tested against a numerical
simulation.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multiple-input multiple-output (MIMO) radar with
widely separated antennas has gained an increasing popu-
larity over the past decade. The advantages of using
multiple transmitters and receivers are numerous: higher
accuracy of target localisation, higher detection rate under
a certain false alarm probability, increased spatial and
angular diversity, increased resolution [1–8]. All the ben-
efits come at the cost of the additional elements in the
system and the higher processing power that is required to
obtain and utilise their observations. Apart from deliberate
jamming techniques, ground clutter reflections are usually
rkalev),
the strongest interferers for Doppler radar. In the MIMO
case this is likely to cause an even more significant
problem due to the additional probing signals and their
reflections present in the system. A well-known limitation
of MIMO radar with fast-time orthogonal waveforms is the
reduction of the region clear of sidelobes in the total
ambiguity function [9,10]. This phenomenon has the
potential to degrade the expected theoretical performance
of a MIMO detector.

In this paper two single data set (SDS) [11–22,8] MIMO
algorithms for target detection in coloured Gaussian clut-
ter are presented. The strength of the algorithms is that
they require neither prior knowledge of the spectral
support or power of the background interference as in
[18] nor access to secondary data as in [23–26] and thus
can operate blindly in any environment. Moreover, in a
heterogeneous environment there is no secondary data for
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covariance estimation, thus leaving SDS detection as the
only viable option.

Each receiver platform in the proposed algorithms
operates coherently using the space–time adaptive proces-
sing (STAP) technique which boosts radar performance
when dealing with ground clutter returns [27]. However,
the main focus of this work is not on the coherent
processing at each unit but rather on the cooperation
between multiple widely spaced transmitters and STAP
receivers as in [5]. Thus the maximum likelihood (ML)
estimation and detection of a single target in such a
multistatic scenario is derived where the whole radar
network reaches a joint detection decision.

The proposed algorithms draw multiple low-rank snap-
shots from the observations of each STAP range gate. This
greatly reduces the computational load associated with
estimating and inverting the full STAP interference corre-
lation matrix. Further rank-reduction of the algorithm can
be achieved through the subspace projection methods
proposed in [21,22].

The main contribution of this paper is the derivation of
an approximate model for the statistics of the proposed
MIMO detection algorithms. Extensive statistical analysis
of the bistatic case has been derived and presented in
[14,12,15]. As discussed in [23–26], the challenges asso-
ciated with the theoretical analysis of mono/bistatic target
detectors are compounded in multistatic widely spaced
MIMO. Even when the individual bistatic paths (or chan-
nels) are mutually independent, it is unlikely that the
corresponding general multistatic solutions exist in closed
form [23–26,20]. In [24,26] a specific closed-form expres-
sion is provided for the pdf of a multistatic detector when
no target is present in the system, and thus the multistatic
probability of false alarm is derived. However, the corre-
sponding derivation for the pdf and detection probability
in the presence of targets is a problem of higher complex-
ity that has not been solved. In this paper a methodology is
proposed for deriving approximate expressions for prob-
ability of false alarm and detection for widely spaced
MIMO systems. The methodology is illustrated in detail
for the proposed SDS algorithms and could easily Fbe
extended to the theoretical analysis of other multistatic
target detectors such as [23–26]. The key to obtaining the
approximations is the application of the central limit
theorem (CLT), or more precisely Lindeberg's condition
[28, p. 307], to the summation of bistatic detectors. This
approximation enables the link between the radar opera-
tional parameters and the probabilities of detection and
false alarm to be made.

The performance of the proposed detectors and the
validity of the approximate statistical analysis are tested. It
has been shown that the proposed detectors exhibit the
highly desirable constant false alarm rate (CFAR) property.
The two target detection algorithms have been simulated
in a scenario involving a mixture of multiple transmit
antennas and multiple receive phased arrays. A number of
numerical tests have been performed that validate the
approximate statistical analysis of the algorithms pro-
posed in this paper. The advantages of the MIMO system
with the increasing number of antennas in terms of
detection probabilities are shown in the results.
Section 2 of this paper states the problem and assump-
tions of this work and provides a brief background on the
most widely used target detection schemes currently
available. Sections 3 and 4 provide the derivations of the
two multistatic SDS radar detection algorithms proposed
in this paper. Section 5 contains the statistical analysis of
the detectors, the proposed Gaussian approximations.
Section 6 contains the results of the numerical simulations
and a discussion of these results. Section 7 presents the
conclusions drawn from the work.

2. Problem formulation and background

This work focuses on widely separated (multistatic)
radar detection, sometimes referred to as statistical MIMO
radar. Consider a setup consisting of M transmit antennas
and N receive arrays that probe an area for the presence of
a moving target. Each array consists of PT closely spaced
elements that can perform coherent processing and STAP
detection. However, as coherent processing is not the main
focus of this work, each array is considered as a single unit,
and the aim is to combine the detection capabilities of
multiple widely separated such units. For simplicity and
without loss of generality the receivers are assumed to be
uniform linear arrays (ULA). Therefore each transmit–
receive pair here forms a standard bistatic STAP system;
this setup is often referred to as a single-input multiple-
output (SIMO) coherent radar [29,30]. The term MIMO
here is reserved for a multistatic setup (Fig. 1) and refers to
non-coherent processing of a number of widely spaced
STAP phased array receivers. Each of the ULA units collects
KT slow-time pulses per STAP range gate. A sliding window
over the observation samples is used to produce K snap-
shots containing independent clutter observations, each
one consisting of a total of P spatio-temporal samples
(Fig. 2 top). The values of K and P can be arbitrary and
chosen to suit a specific radar setup and clutter conditions,
e.g. in clutter with heavy correlation, the sliding window
can skip over samples and trade available data for estima-
tion accuracy, the window can contain more than once
slow-time pulse or only a part of a slow time pulse, etc.

Once obtained from the sliding window, the snapshots
are vectorised by stacking their columns on top of each
other and labelled as xm;n;k; k¼ 1…K . The index fm;ng
signifies the path between themth transmitter and the nth
receiver. Throughout this work these different bistatic
paths will be referred to as “channels.” Let the observation
vectors be arranged as the columns of the observation
matrix Xm;n (Fig. 2 bottom). If the complex amplitude of
the returned signal in a channel is αm;n, the signal model
for the observations in each individual bistatic STAP
channel is the following:

Xm;n ¼ αm;nsm;ntTm;nþNm;n ð1Þ
The superscript T indicates the transpose operator. The
vectors sm;n and tm;n will be referred to as the spatial steering
and the temporal steering vector respectively, and the matrix
Nm;n is a combined term for the noise and interference in
each channel. The spatial steering vector sm;nACP�1 is the
template that the returned signal produces in each observa-
tion snapshot. It depends on the Doppler frequency of the



Fig. 2. Extracting snapshots containing iid clutter contributions with a sliding window over the STAP range gate (top) and vectorising them to produce the
observation matrix Xm;n (bottom).

Fig. 1. Example of a 2-transmitter 2-receiver MIMO system.
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incoming signal as well as the receiver ULA geometry and
orientation. The temporal steering vector tm;nACK�1 indi-
cates the complex phase relations between the K individual
observation snapshots [12–16].

As already mentioned, the observation snapshots in (1)
are obtained from windowing and rearranging the STAP
samples of the cell under test (CUT) such that their clutter
contributions are independent. This can be achieved through
the choice of snapshots size P and snapshot number K
parameters. It is likely that in reality some residual correla-
tion between snapshot clutter will remain, but this will be
neglected for the purpose of derivation in this work. There-
fore the columns of the noise and interference matrix are
assumed to be independent and identically distributed (iid)
complex zero-mean Gaussian nm;n;k � CN Pð0;Cm;nÞ, each
with a different autocorrelation matrix Cm;n. The interference
from channel to channel is also assumed to be independent.
Because the snapshots size P is significantly smaller than the
total number of observations in the CUT, the STAP signal
model used here reduces the size of the correlation matrix
that is estimated [31].

In addition to the interference, the pulses coming from the
different transmitters in the system are also assumed to be
nearly orthogonal to each other (low cross-correlation). A
well-documented problem that arises from the simultaneous
transmission of M ideal orthogonal waveforms at the same
time and on the same bandwidth is the reduction of the clear
region in the range-Doppler MIMO ambiguity function by a
factor of M [9,10]. At the expense of additional bandwidth or
delay, this problem can be alleviated by utilising time division
multiple access (TDMA) or a frequency division multiple
access (FDMA) methods for providing low cross-correlation
between different transmit waveforms. As demonstrated in
[32], such schemes result in negligible inter-channel inter-
ference between the different waveforms in the multistatic
radar scenario. These additional resources are traded for the
spatial diversity that MIMO radar provides in target detection.
Finally, this paper assumes that the range-Doppler search
space has been discretised (e.g. [33]), and the proposed
detectors operate on each separate bin of the grid. Thus in
the derivations that follow the Doppler frequencies f Dm;n and
the array spatial response frequencies f spm;n are assumed to be
known as they come from a specific range-Doppler CUT.

For the time being consider the signal model in (1) and
only a single channel. Thus the index fm;ng will be
dropped for convenience for now. A bistatic STAP detec-
tion algorithm receives the observations X and decides
between two hypotheses for their origin

H0:X ¼N

H1:X ¼ αstT þN ð2Þ
The optimum STAP pre-detection filter derived in [34] and
normalised to exhibit the CFAR property is

w¼ C�1s

sHC �1s
ð3Þ

which is also known as the matched filter (MF). The
superscript H indicates the Hermitian transpose. In a STAP
system this filter is applied to the K individual observation
snapshots, and the results are combined in the post-
processing phase. A more efficient method is to combine
the observations in the pre-detection stage in the case of
iid data. The amplitude and phase estimation (APES) filter
presented in [35] proposes the STAP coherent sample
mean vector for the observation data that can perform
this task given the current observation model (1)

g ¼ 1
K
Xtn ð4Þ

It is assumed that the 2-norm of the temporal steering vector
is jtj2 ¼ K , and the superscript n signifies the complex
conjugate operator. Eq. (4) can also be seen as a narrow
filtering operation that maximises the response to a certain
space–time steering vector t . The weighted output wHg is
then used in a power threshold-comparison scheme in order
to choose the more viable hypothesis from which the
observations originated:

jsHC�1gj2
sHC �1s

≷
H1

H0

γ ð5Þ

Usually the covariance matrix C of the noise and interference
is not known. Traditional sample matrix inversion (SMI)
detection algorithms have assumed the availability of a
secondary data set Z consisting of Kt target-free observation
vectors of size CP�1 from which the sample covariance
matrix estimate can be built:

bC ¼ 1
Kt

ZZH ð6Þ

Using (6) in (3) to replace the covariance matrix gives the
adaptive matched filter (AMF) threshold detector [36]:

jsHbC �1
gj2

sHbC �1
s

≷
H1

H0

γ ð7Þ

Assuming that the covariance matrix C is unknown from the
start and minimising over it in the process, Kelly derived his
generalised likelihood ratio test (GLRT) [37]:

jsHbC �1
gj2

sHbC �1
sð1þgHbC �1

gÞ
≷
H1

H0

γ ð8Þ

Because these algorithms rely on the availability of a second-
ary training data set, they are commonly known as two-data
set (TDS) detectors [37,36]. In recent years SDS detection
algorithms have gained an increasing popularity [11–22]. The
reason for that is the fact that in a non-homogeneous or non-
stationary environment the observation-free training data Z
required by traditional algorithms needs to be constantly re-
estimated to match the changes in the background noise and
interference. This creates a large data overhead, and given the
ever-increasing air traffic nowadays, continuously obtaining
target-free training observations may become difficult. With
an SDS of observations X, a system can construct a sample
correlation estimate of the data in the same manner as (6):

bR ¼ 1
K
XXH ð9Þ

Under H0 the matrix (9) is an estimate to the central noise
covariance matrix C similar to (6), while under H1 it is a non-
central estimate of C offset by the additional contribution
jαj2ssH from the target. The APES filter [35] shown in (10) can
be used to derive an SDS estimate to the central noise
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covariance matrix from (9)

wAPES ¼ Q �1s

sHQ �1s
ð10Þ

Q ¼ bR�ggH ð11Þ
The sample covariance estimate (11) was utilised in the
development of the maximum likelihood estimation detector
(MLED) in [12], which is the SDS counterpart of the AMF
detector:

jsHQ �1gj2
sHQ �1s

≷
H1

H0

γ ð12Þ

The generalised maximum likelihood estimation detector
(GMLED) is also derived as the natural SDS counterpart to
Kelly's GLRT [14, pp. 54–57, 12,15]:

jsHQ �1gj2
sHQ �1sð1þgHQ �1gÞ

≷
H1

H0

γ ð13Þ

Both (12) and (13) are SDS threshold detection algorithms that
are based on statistical modelling of the noise and interfer-
ence through covariance estimation. A different algorithm that
combines SDS and TDS detection is proposed in [16]. It
exploits the benefits of both detection methods but still relies
on forming an estimate to the statistics of the background
noise and interference. A different approach of dealing with
target detection in non-homogeneous environment is pre-
sented in [18]. It derives an SDS projection-based MIMO
solution to the problem while avoiding the need to do any
statistical analysis of the environment. The shortcoming of
these methods is that prior information about the structure
and spectral range of the clutter has to exist. The MLED and
GMLED algorithms operate without any such prior knowl-
edge. A comparison of the hybrid SMI, the TDS SMI, and the
projections approaches has been conducted in [38]. The
subspace approach has been further developed to incorporate
the autoregressive clutter model from [17] in a MIMO
projection-based scenario [20].

3. Multistatic maximum likelihood estimation detector

In this section the ML multistatic solution to the target
detection problem in unknown coloured background noise
is derived. The derivation is a more in-depth extension of
[8]. The resulting detector is similar to the ones presented
in [23,25] but does not use an independent training data
set. The derivation mirrors that of its respective TDS
counterpart and is included here for convenience. The
setup described in Section 2 and the signal model (2) are
adopted (note that the signal model is now channel-
specific and applies to each channel). The channel-
specific probability density function (pdf) of each observed
data matrix Xm;n conditioned on the amplitude of the
reflected probing signal αm;n is given by [14, p. 121]

f Xm;njαm;n
� �¼ 1

πP jCm;nj

� �K

etrf�C �1
m;nM

α
m;ng ð14Þ

where Mα
m;n ¼

PK
k ¼ 1 ðxm;n;k�αm;nsm;ntm;nðkÞÞðxm;n;k�αm;nsm;

ntm;nðkÞÞH . It is assumed that the covariance matrices of the
background interference Cm;n are known for the time being
in order to derive the optimal multistatic detector. Here
the notation that j�j is the determinant, etrð�Þ ¼ eTrð�Þ, and
Trð�Þ is the trace of the matrix ð�Þ has been adopted. In a
MIMO system with sufficient separation between anten-
nas, the background noise processes Nm;n are uncorrelated
to one another. The joint pdf of the complete set of
observations X¼ fXm;njm¼ 1…M;n¼ 1…Ng given the set
of amplitudes ¼ fαm;njm¼ 1…M;n¼ 1…Ng can be repre-
sented by the product of the individual pdfs given in (14)

f ðXj Þ ¼ ∏
m;n

f Xm;n αm;n
�� ��

¼ 1
πMNP∏m;njCm;nj

� �K

etr �
X
m;n

C �1
m;nM

α
m;n

( )
ð15Þ

Let ¼ 0 signify the case when every element of the set
is equal to zero. Therefore, the joint pdf of the set of
observation signals X under the null hypothesis from (2) is
given by

f 0 Xð Þ ¼ f X ¼ 0j Þð

¼ 1
πMNP∏m;njCm;nj

� �K

etr �
X
m;n

C �1
m;nM

0
m;n

( )
ð16Þ

where M0
m;n ¼

PK
k ¼ 1 xm;n;kxHm;n;k. Under hypothesis H1 from

(2), the joint pdf f 1ðXÞ is simply given by f ðXjαÞ from Eq.
(15). To obtain the ML estimate of the unknown para-
meters in the set α, the logarithm of (15) is taken and then
the partial derivative of the expression with respect to
each unknown complex amplitude αm;n individually is
formed. The problem thus becomes linearly separable,
and the solution is identical to the single channel case
presented in [12]

bαm;n ¼
sHm;nC

�1
m;ngm;n

sHm;nC
�1
m;nsm;n

ð17Þ

Note that (17) is identical to the amplitude estimate of the
APES filter derived in [35]. Forming the ML ratio of (15)
and (16), the multistatic MLED threshold detector for a
MIMO system is derived

maxf 1

f 0
¼ etrf�Pm;nC

�1
m;nM

bα
m;ng

etrf�Pm;nC
�1
m;nM

0
m;ng

¼ etr �
X
m;n

C�1
m;nðMbαm;n�M0

m;nÞ
( )

ð18Þ

where Mbαm;n ¼
PK

k ¼ 1ðxm;n;k�bαm;nsm;ntm;nðkÞÞðxm;n;k�bαm;nsm;

ntm;nðkÞÞH , with bαm;n being the ML estimate given by (17).

The relationship between Mbαm;n and M0
m;n is derived in [14,

p. 122] and is provided in Appendix A for convenience

Mbαm;n ¼M0
m;n�Kgm;ng

H
m;n

þKðgm;n�bαm;nsm;nÞðgm;n�bαm;nsm;nÞH ð19Þ

Plugging the relation (19) in (18), taking the logarithm of the
expression, and using the identity vHMv¼ TrðMvvHÞ for an
arbitrary vector v and matrix M, we obtain the ML multi-
static threshold detector for the case when the covariance
matrices of the background noise and interference Cm;n for
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all different channels are known

TMF ¼
X
m;n

jsHm;nC
�1
m;ngm;nj2

sHm;nC
�1
m;nsm;n

≷
H1

H0

γ ð20Þ

where γ is the decision threshold associated with the
combinedML term from all channels. In the current problem,
note that TMF in (20) represents the multistatic matched
filter-based detector which is an extension to the single-
channel one described by (3) and (5). To obtain the multi-
static MLED detector, the noise data covariance matrices Cm;n

are replaced with their SDS APES estimates Qm;n (11)

TM ¼
X
m;n

jsHm;nQ
�1
m;ngm;nj2

sHm;nQ
�1
m;nsm;n

≷
H1

H0

γ ð21Þ

The ML SDS solution (21) to the MIMO case investigated in
this work is a summation of the individual single-channel
solutions (12) for each path fm;ng in the system. The linear
separability of the multistatic detector in the sum of the
bistatic ones is in accordance with our prior assumption that
the individual transmit–receive channels are independent.
4. Multistatic generalised maximum likelihood
estimation detector

In this section the multistatic GMLED threshold test
algorithm for SDS detection is derived. The derivation is a
more in-depth extension of [8]. The resulting detector is
similar to the multistatic generalised likelihood ratio test
presented in [23–26] but does not require an independent
training data set. The derivation is similar to that of its
respective TDS counterpart and is included here for con-
venience. While in the derivation of the MLED the covar-
iance matrices of the noise and interference signals Cm;n

were assumed to be known, in the GMLED they are kept as
unknown parameters from the start. The expression for
the pdf of each individual observation signal set Xm;n, now
conditional on both the amplitude αm;n and covariance
matrix Cm;n, is identical to the respective MLED case given
by (14). Therefore, the joint pdf in the multistatic exten-
sion also remains the same as the one given in (15), this
time conditional on the complete set of unknown covar-
iance matrices Cv ¼ fCm;njm¼ 1…M;n¼ 1…Ng. This is also
the expression that provides the relevant likelihood func-
tion under the H1 hypothesis from (2). Under the alter-
native hypothesis, the likelihood function, now conditional
on the parameter set Cv, is the same as (16). If the
logarithm of this expression is taken, the problem is once
again linearly separable. Therefore, the maximum of (16)
with respect to all Cm;n parameters is equivalent to max-
imising all the individual likelihoods in (14). As described
in [14, p. 122, 12,15] this happens when the matrices Cm;n

are replaced by their ML estimates bCm;n ¼ K �1M0
m;n, and

the maximised likelihood function is thus

max
Cv

f 0 Xð Þ ¼ 1

ðeπKÞMNP∏m;njM0
m;nj

 !K

ð22Þ

From the same source, the maximisation of the pdf under
the alternative hypothesis occurs when Cm;n are replaced
by bCm;n ¼ K �1Mα
m;n, resulting in the following expression:

max
Cv

f 1ðXj Þ ¼ 1
ðeπKÞMNP∏m;njMα

m;nj

 !K

ð23Þ

Noting that once again the conditioned likelihood (23) can
be made linearly separable through taking the logarithm,
the maximisation of the expression can be achieved when
each of the individual terms jMα

m;nj is minimised with
respect to αm;n. The solution is thus the same as the one
provided in the single-channel GMLED derivation and is
detailed in Appendix B:

min
αm;n

jMα
m;nj ¼ KP jQm;nj 1þgH

m;nQ
�1
m;ngm;n�

jsHm;nQ
�1
m;ngm;nj2

sHm;nQ
�1
m;nsm;n

 !
ð24Þ

jM0
m;nj ¼ KP jQm;njð1þgH

m;nQ
�1
m;ngm;nÞ ð25Þ

Forming the ratio of the maximised likelihoods (23) and
(22), the multistatic threshold detector expression can be
obtained

max
;Cv

f 1

maxCv
f 0

¼ ∏m;njM0
m;nj

∏m;nmin
αm;n

jMα
m;nj

0@ 1AK

ð26Þ

Plugging in the relevant expressions for the determinants
(24) and (25) into (26) and forming the Kth root of the
likelihood ratio, the expression for the multistatic GMLED
is obtained

TG ¼ ∏
m;n

1þgH
m;nQ

�1
m;ngm;n

1þgH
m;nQ

�1
m;ngm;n�

jsHm;nQ
�1
m;ngm;nj2

sHm;nQ
�1
m;nsm;n

≷
H1

H0

ν ð27Þ

where ν is the decision threshold associated with the
combined ML threshold detector. The multistatic GMLED
(27) is a product of the bistatic solutions (13) for each path
fm;ng in the system expressed in their original form.

5. Analysis

This section provides a statistical analysis of the derived
multistatic versions of the MLED and GMLED algorithms.
To derive an expression for the probability of false alarm
Pfa and the probability of detection Pd, the CLT is employed
to obtain a Gaussian approximation to both threshold
detectors' pdfs for a large number M � N of transmit–
receive pairs.

5.1. Statistical properties of the multistatic MLED

The statistical properties of the bistatic MLED detector
are described in [14, pp. 63–65, 12,15]. The detection test
for a single bistatic channel shown in (12) is thus equiva-
lent to

ζm;n

Lηm;n
≷
H1

H0

γm;n ð28Þ

where L¼ K�P. The random variables ζm;n and ηm;n are
mutually independent. The random variable ηm;n follows
the type I beta distribution with Lþ1 and P�1 degrees of
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freedom. The random variable ζm;n is distributed according
to the non-central F distribution with 2 and 2L degrees of
freedom and a non-centrality parameter λm;n given by

λm;n ¼ 2KPηm;nρm;n ð29Þ
The signal-to-noise ratio (SNR) ρm;n for each antenna
element and pulse in a single channel is derived in [14,
p. 17, 12,15]

ρm;n ¼
1
P
αm;n

2sHm;nC
�1
m;nsm;n

������ ð30Þ

In the case where no target is present in the set of
observations Xm;n, the non-centrality parameter λm;n

becomes zero, and the random variable ζm;n has a central
F-distribution with 2 and 2L degrees of freedom. Using
(21), the multistatic MLED detection test statistics are
distributed asX
m;n

ζm;n

Lηm;n
≷
H1

H0

γ ð31Þ

The test statistics consists of a sum of random terms
shown in [12] to be independent of the underlying noise
and interference. Therefore, the multistatic MLED is also
independent of the statistics of the noise, preserving the
CFAR property in the MIMO extension of the algorithm.
Due to the complex nature of the random variables
involved, obtaining a closed form expression for the pdf
of the multistatic MLED detector would be difficult and
impractical. Similar conclusions have been reached in both
[23,25] where analogical TDS MIMO algorithms for target
detection have been proposed. The bistatic approach to the
test statistics in (31) is to assume that the random variable
η is known, which results in the detection variable having
the non-central F-distribution. This pdf can then be inte-
grated to obtain an expression for the probability of
detection and the probability of false alarm. In the multi-
static case assuming that all variables ηm;n are known
results in the detection variable being a sum of M � N
independent non-identically distributed non-central
F-distributed random variables. The pdf of such random
variable is not trivial to obtain which makes analysis of the
proposed multistatic algorithm difficult. However, if the
sum in (31) consists of enough terms, it can be approxi-
mated by a normal distribution. This enables the deriva-
tion of approximate expressions for the probability of false
alarm PMf ðγÞ and the probability of detection PMdðγÞ for a
given detection threshold γ. The approach and solution can
be easily extended to existing TDS detectors [23,25] by
using the appropriate parameters and degrees of freedom
for those algorithms.

5.2. Gaussian approximation of the multistatic MLED

The multistatic MLED threshold detector consists of a
sum of M � N independent random terms as shown in
(31). The CLT dictates that the statistics of the decision
variable can be closely approximated by a Gaussian dis-
tribution, i.e. TM �N ðμM ; σ2MÞ, provided that M � N is
sufficiently large. Because the terms are not identically
distributed, Lindeberg's condition has to be satisfied which
is shown in Appendix C. The mean μM and variance σ2M are
given by the sum of the means and variances of the
individual terms in the detector

μM ¼
X
m;n

μMðm;nÞ ð32Þ

σ2M ¼
X
m;n

σ2Mðm;nÞ ð33Þ

μMðm;nÞ ¼ E
ζm;n

Lηm;n

� �
ð34Þ

σ2Mðm;nÞ ¼ var
ζm;n

Lηm;n

� �
ð35Þ

Here E½�� signifies the expectation and varð�Þ the variance
of the random variable or vector �. Because the random
variables ζm;n and ηm;n are independent, the central
moments of their ratios factorise in the following manner
[39]:

μMðm;nÞ ¼
1
L
E ζm;n
	 


E
1

ηm;n

� �
ð36Þ

σ2Mðm;nÞ ¼
1

L2
E½ζ2m;n�E

1
ηm;n

� �2
" #

� 1

L2
E½ζm;n�2E

1
ηm;n

� �2
ð37Þ

Provided that L42, which can be ensured by collecting
enough slow-time samples K at each node, the first two
central moments of the F-distributed random variable ζm;n

are given in statistics literature [40]

E ζm;n
	 
¼ L

2
2þλm;n

L�1
ð38Þ

var ζm;n
� �¼ L2

4
ð2þλm;nÞ2þ4ð1þλm;nÞðL�1Þ

ðL�1Þ2ðL�2Þ
ð39Þ

The first two central moments of η�1
m;n are obtained by

solving the expectation integral of the reciprocal beta-
distributed random variable with Lþ1 and P�1 degrees of
freedom

E
1

ηm;n

� �
¼ K�1

L
ð40Þ

var
1

ηm;n

� �
¼ ðK�1ÞðP�1Þ

L2ðL�1Þ
ð41Þ

Using the fact that E½�2� ¼ varð�ÞþE½��2, (38)–(41) can be
plugged in (34) and (35) to obtain an expression for the
mean and variance of the random variable that signifies
the bistatic MLED threshold detector

μMðm;nÞ ¼
K�1
2L

2þ ~λm;n

L�1
ð42Þ

σ2Mðm;nÞ ¼
ðK�1ÞðKþP�2Þð2þ ~λm;nÞ2

4L2ðL�1Þ2ðL�2Þ
þðK�1ÞðK�2Þð1þ ~λm;nÞ

LðL�1Þ2ðL�2Þ
ð43Þ

where it has been accounted for the fact that λm;n is a
random variable dependent on ηm;n by replacing it with its
expected value ~λm;n given by

~λm;n ¼ E½2KPρm;nηm;n�
¼ 2PðLþ1Þρm;n ð44Þ
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It should be noted that (44) is an additional approximation
that is performed for convenience. The CLT holds without
replacing the variables λm;n with their first order estimates
proposed here. Without this approximation however both
the mean (34) and the variance (35) of the normal
distribution used to describe the detector statistics are
random variables. Integrating over all the ηm;n variables in
the Gaussian pdf is the approach that would be taken in
the bistatic detector case, but once again in the multistatic
version this is impractical and has no trivial solution which
justifies the usage of (44). To obtain the probability of false
alarm for a given threshold γ, it is noted that in the absence
of target the multistatic MLED threshold detector is
approximately distributed as N ðμM0; σ

2
M0Þ where

μM0 ¼
X
m;n

μm;nð~λm;n ¼ 0Þ ð45Þ

σ2M0 ¼
X
m;n

σ2m;nð~λm;n ¼ 0Þ ð46Þ

Therefore the false alarm probability Pf is approximately

PMf γð Þ ¼Q
γ�μM0

σM0

� �
ð47Þ

where Q(x) is the Q-function associated with the tail
probability Pr½X4x� of the standard normal distribution.
The probability of detection is obtained in the case where a
target is present in the observations. The multistatic MLED
detector variable is then approximately distributed as
N ðμM1; σ

2
M1Þ, where μM1 and σ2M1 are the same sums as

(32) and (33) respectively with the ~λm;n parameters given
by (44). Thus

PMd γð Þ ¼ Q
γ�μM1

σM1

� �
ð48Þ

Note that the Gaussian approximation to the multistatic
MLED proposed here can be easily extended to the multi-
static AMF proposed in [23,25]. The approach closely
follows the one presented in this work and is thus not
provided.

5.3. Statistical properties of the multistatic GMLED

The analysis of the GMLED in [14, pp. 54–63, 12,15] has
been performed for the threshold detector expressed in
the form given in (13). The multistatic expression (27)
requires the return to the original GMLED likelihood ratio
expressed as

TGðm;nÞ ¼
1

1� jsHm;nQ
�1
m;ngm;nj2

sHm;nQ
�1
m;nsm;nð1þgH

m;nQ
�1
m;ngm;nÞ

≷
H1

H0

νm;n ð49Þ

where νm;n ¼ ð1�γm;nÞ�1 is the relation between the
transformations of the threshold in the bistatic case. The
statistical distribution of (49) is thus equivalent to

ζm;n

L
þ1 ≷

H1

H0

νm;n ð50Þ

where ζm;n is the same random variable from the MLED
statistics. The multistatic GMLED threshold detector in
(27) is therefore distributed as

∏
m;n

ζm;n

L
þ1

� �
≷
H1

H0

ν ð51Þ

The test statistics thus consist of a product of random
terms that were shown in [14, p. 61, 12,15] to be inde-
pendent of the underlying noise and clutter distributions.
Therefore, the multistatic GMLED threshold detector is, in
turn, independent of the statistics of the noise, preserving
the CFAR property in the MIMO extension of the algo-
rithm. Similar to the multistatic MLED detector, its gen-
eralised extension is difficult to analyse in the statistical
sense. In [24,26] statistical analysis of the multistatic TDS
detector derived from Kelly's GLRT is provided. However,
closed-form expressions for the detection variable pdf
exist only for the case when no target is present (hypoth-
esis H0 here), and thus only the probability of false alarm is
derived. A general closed-form expression for the multi-
static detector's pdf has not been reached. Therefore, in the
next section an approximation to the statistics of the
detector in (51) is provided given that a large number of
terms take part in the product. As a result it is possible to
derive approximate expressions for the probability of false
alarm PGf ðνÞ and the probability of detection PGdðνÞ for a
given detection threshold ν. The approach and solution can
be easily extended to existing TDS detectors [23–26] by
using the appropriate parameters and degrees of freedom
for those algorithms.

5.4. Log-normal approximation of the multistatic GMLED

The multistatic GMLED threshold detector consists of a
product of M � N random terms as shown in (51). It would
be convenient to take the logarithm of this product to
transform it into a sum of random variables

log TG ¼
X
m;n

log TGðm;nÞ ≷
H1

H0

log ν ð52Þ

The CLT dictates that the statistics of the logarithm of the
decision variable given in (52) can be closely approximated
by a Gaussian distribution, i.e. log TG �N ðμG; σ2GÞ, provided
that the number of signal paths M � N in the system is
sufficiently large. Once again the random variables in the
sum are not identically distributed so a proof of the
validity of Lindeberg's condition for the detector is given
in Appendix D. Because the exponential of a normally
distributed random variable follows the log-normal dis-
tribution with the same parameters, it can be concluded
that in a large network TG � lnN ðμG; σ2GÞ. To obtain expres-
sions for the parameters of this distribution, the first two
moments of the multistatic GMLED random variable have
to be obtained. The expectation of the individual terms in
the product (27) can be obtained from (50) by using the
expectation of an F-distributed random variable given
in (38)

E TGðm;nÞ
	 
¼ 2Lþλm;n

2ðL�1Þ ð53Þ

Because it is assumed that the random variables coming
from the different channels TGðm;nÞ are independent, the
expectation of their product factorises into a product of
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their expectations. Therefore, the first moment of the
multistatic GMLED random variable is given by

E TG½ � ¼ ∏
m;n

2Lþλm;n

2ðL�1Þ ð54Þ

The second moment of the individual product terms TGðm;nÞ
is obtained from the variance of the F-distributed random
variable given in (39) and the derived first moment (53).

E T2
Gðm;nÞ

h i
¼ ðλm;nþ2LÞ2�4L

4ðL�1ÞðL�2Þ ð55Þ

The second moment of the multistatic GMLED detection
variable is the product of the second moments of the
statistically independent individual terms TGðm;nÞ

E T2
G

h i
¼ ∏

m;n

ðλm;nþ2LÞ2�4L
4ðL�1ÞðL�2Þ ð56Þ

From statistics literature, the first and second moments of
a random variable TG following the log-normal distribution
with parameters μG and σG

2
are given by

E½TG� ¼ eμG þ σ2G=2 ð57Þ

E½T2
G� ¼ e2μG þ2σ2G ð58Þ

The derived expectations (54) and (56) and the parametric
expressions (57) and (58) form a system of two equations.
Solving the system for the parameters of the approximat-
ing distribution μG and σG

2
results in

μG ¼ 1
2

X
m;n

log
ð~λm;nþ2LÞ4ðL�2Þ

4ðð~λm;nþ2LÞ2�4LÞðL�1Þ3

 !
ð59Þ

σ2G ¼
X
m;n

log
ðð~λm;nþ2LÞ2�4LÞðL�1Þ

ð~λm;nþ2LÞ2ðL�2Þ

 !
ð60Þ

where once again the random variables λm;n have been
replaced with their expected values ~λm;n given by (44). In
the absence of target the threshold detector is distributed
as ln N ðμG0; σ2G0Þ where μG0 and σ2G0 no longer need to be
approximated. Their exact values can be computed due to
the fact that for λm;n ¼ 0 the non-central F distribution
becomes a central F distribution with 2 and 2L degrees of
freedom, and the pdf of the distribution simplifies to

f 2;2L xð Þ ¼ 1

1þx
L

� �Lþ1 ð61Þ

Thus the integral expression for the first and second
central moments of the logarithm of the bistatic GMLED
random variable becomes solvable and yields the follow-
ing results for the multistatic one which are no longer
approximations:

μG0 ¼
MN
L

ð62Þ

σ2G0 ¼
MN

L2
ð63Þ

The probability of false alarm for a certain threshold ν is

PGf νð Þ ¼Q
log ν�μG0

σG0

� �
ð64Þ
When a target is present the detector statistics are
distributed as ln N ðμG1; σ2G1Þ where μG1 and σ2G1 are given
by (59) and (60) respectively. The probability of detection
is thus

PGd νð Þ ¼Q
log ν�μG1

σG1

� �
ð65Þ

Note that the log-normal approximation to the multi-
static GMLED proposed here can be easily extended to the
multistatic GLRT proposed in [23–26]. The approach clo-
sely follows the one presented in this work and is thus not
provided.

6. Simulations

The multistatic MLED and GMLED algorithms were simu-
lated in order to show the viability of the theoretical models
and approximations presented in this work. Three approaches
to the performance analysis of the models have been used.
The first approach is a numerical Monte Carlo simulation of
the proposed algorithms in (21) and (27). The results from
these runs are labelled as “simulated” in the presented figures.
The second simulation approach that is undertaken is based
on the theoretical analysis of the multistatic MLED and
GMLED algorithms. A closed-form expression for the test
statistics of the detectors was never obtained. Therefore, the
theoretical simulation results have been obtained through
drawing samples from the random variables (31) and (51)
presented in the analysis of the two algorithms. Instead of
doing a Monte Carlo simulation to generate the λm;n random
variables, the first order approximation in (44) was used.
These sets of results are labelled as “theoretical” in the
provided figures. The third implemented approach aims to
show the viability of the normal and log-normal approxima-
tions developed in this paper. These results are labelled as
“approximation” on the figures.

The operational parameters of the transmitted pilots
are the same as the ones in [18]. A pulse repetition
frequency of 500 Hz, carrier frequency of 1 GHz, and target
velocity of 30 m/s are set. It is also assumed that the
direction of movement of the target is known which
means that the exact velocity v¼ ½vx; vy�T in the (x,y)-
direction is known given 2-dimensional motion. A number
of experiments have been done with a smaller setup of
M¼N¼ 10 transmitters and receivers and a larger one of
M¼N¼ 20. The geometry of the MIMO setup consists of
random placement of transmitters and receive ULAs. The
amplitudes of the returned pilots αm;n are also chosen at
random from a complex normal distribution CN ð0;1Þ. The
exact formula for obtaining the Doppler frequencies of the
returned pilots in the sense of MIMO radar can be found in
[18,41]. The receiver ULA has PT ¼ 5 elements that collect
KT ¼ 40 and KT ¼ 120 pulses per CPI. These slow-time
observations have been rearranged into data snapshots
of size P ¼ 10, where the number of snapshots is K ¼ 20
and K ¼ 60. To generate the clutter in each channel, the
general clutter model presented in [31] has been used. The
spectrum of the clutter exhibits low-pass behaviour and is
also roughly shaped in accordance to the realistic model
discussed in [42, pp. 293–322]. The simulations consist of
106 Monte Carlo runs of each system for different SNR
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values and depict the average probability of detection for
each case when the probability of false alarm has been
fixed to 2� 10�2. The SNR follows the definition in (30)
and is assumed to be the same for all channels in the
system.

Fig. 3 shows the obtained results for the smaller net-
work of 10 transmitters and 10 receivers and K ¼ 20
snapshots. As expected, the GMLED algorithm performs
slightly better than the MLED one for a small K, exhibiting
the same probability of detection at approximately 1 dB
less SNR. The results show that the simulated detector
curves based on (21) and (27) match the theoretical
models describing their statistics shown in (31) and (51)
respectively. Moreover, the fact that the approximation to
the λm;n variables was used in the theoretical curves proves
the viability and justifies the usage of (44). The Gaussian
approximations to the multistatic detectors given in (47),
(48), (64) and (65) are also close to the simulated and
theoretical curves. The small offset comes from the fact
that approximation based on the first two moments of the
multistatic MLED and GMLED threshold detector random
variables is performed. Moreover, the convergence of sums
of non-identically distributed random variables to the CLT
is usually slower than the iid counterparts. As it will be
show, the approximations become much better as the
number of transmitters and receivers in the system
increases.

Fig. 4 shows the simulation results under the same
conditions as Fig. 3 except the number of snapshots is now
K ¼ 60. It can be seen that both the multistatic MLED and
GMLED are significantly affected by the temporal frame
size, having the same detection rate at approximately 6 dB
lower SNR value. This can be explained by the improve-
ment of the SDS covariance matrix estimate (11) through
the addition of more data samples. It should be noted that
as the temporary frame size increases, the multistatic
MLED and GMLED algorithms' performance becomes
almost identical. This is evident in the simulations as well
and reflects the behaviour of the MLED and GMLED
bistatic algorithms presented in [12,14,15].
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Fig. 3. Probability of detection vs SNR of the multistatic MLED and GMLED
detectors for PMf ¼ 2� 10�2 and PGf ¼ 2� 10�2, K¼20, M ¼N ¼ 10.
Fig. 5 aims to simulate the performance of a larger
radar network. The number of transmitters and receivers
doubles. Compared to Fig. 4, the curve of the probability of
detection shifts by a further 3 dB to the left. This reflects
the improvement in the performance of the multistatic
MLED and GMLED detectors due to the increased spatial
diversity in the system. The accuracies of the proposed
Gaussian and log-normal approximations to the multi-
static MLED and GMLED respectively are also greatly
enhanced. This is because the number of terms in the
summations (31) and (52) increases which, according to
the CLT, brings the distribution of the sums closer to the
Gaussian curve. In a hypothetical radar network of infinite
size this approximation will become exact.

Fig. 6 presents an investigation into the relative approx-
imation error of the detection probability provided by the
Gaussian models proposed in this work. As expected, the
approximation is poor for a small number of channels in
the multistatic system. This is due to the fact that there are
not enough random variables coming from the different
detectors for PMf ¼ 2� 10 and PGf ¼ 2� 10 , K¼60, M¼N ¼ 10.
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channels to provide reliable convergence of the CLT. As
more channels are added to the system, the approximation
continues to get asymptotically closer to the real value of
the detection probability.

Another factor that influences the approximation error
is the number of iid snapshots in the system K. Fig. 7
shows the relative approximation error of the detection
probability as a function of the number of channels for
K ¼ 60 snapshots. It is clear that the convergence of the
combination of bistatic random variables to the CLT is
much quicker. The reason for this phenomenon is found in
the higher moments of the underlying central and non-
central F distributions present in the statistical analysis of
the MLED and GMLED algorithms. As K increases, the
higher moments of these distributions get smaller [40].
Thus the distributions become more and more Gaussian-
like, which inherently speeds up the convergence rate to
an actual bell-shaped curve after multiple convolutions.
7. Conclusion

This work proposes two SDS multistatic STAP algo-
rithms for the detection of signals of known template in
coloured Gaussian interference. The performance of the
multistatic algorithms in a MIMO radar target detection
scheme has been analysed. It has been shown that the
algorithms exhibit the CFAR property. In order to analyse
the system, simplified Gaussian approximation models for
the statistics of the detectors have been proposed. Through
these models the theoretical probabilities of detection and
false alarm have been derived. The validity of the theore-
tical models as well as the simplified Gaussian approxima-
tions has been verified through numerical simulations. The
performance gains of the multistatic detectors over their
bistatic counterparts have been shown.
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Appendix A. Detailed derivation of Eq. (19)

This appendix contains a detailed description of the
steps required to obtain Eq. (19). The steps are originally
found in [14, p. 122] and are provided here for conveni-
ence. All references to the index fm;ng indicating the path
between the mth transmitter and the nth receiver are
omitted in this proof. The matrices M0 and Mbα introduced
earlier are defined as

M0 ¼
XK
k ¼ 1

xkxHk ðA:1Þ

Mbα ¼ XK
k ¼ 1

ðxk�bαstðkÞÞðxk�bαstðkÞÞH ðA:2Þ

Expanding (A.2), the connection with (A.1) can be made

Mbα ¼ XK
k ¼ 1

xkx
H
k �

XK
k ¼ 1

bαnxkt
nðkÞsH

�
XK
k ¼ 1

bαstT ðkÞxHk þ XK
k ¼ 1

jbαj2jtðkÞj2ssH
¼M0�KbαngsH�KbαsgHþKjbαj2ssH ðA:3Þ

where the substitution for g from (4) has been made, and
the fact that in this work jtj2 ¼ K has been used. Adding
and subtracting the term KggH to (A.3) and grouping the
factors, the desired results in (19) are obtained. The factor
K comes from the normalisation of the power of the
temporary steering vector which is arbitrary. In some
works it is set to unity and is therefore omitted. In this
work the factor is simply included into the threshold γ of
the target detector.
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Appendix B. Detailed derivation of Eqs. (24) and (25)

This appendix contains a detailed description of the
steps required to obtain Eqs. (24) and (25). Some of the
steps are originally found in [14, p. 123] and are provided
here for convenience. All references to the index fm;ng
indicating the path between the mth transmitter and the
nth receiver are omitted in this proof.

Note that (19) can be written in terms of the SDS
covariance estimation matrix Q that directly follows from
its definition in (11) and the fact that bR is defined as a
scaled version of M0

Mα ¼ KQþKðg�αsÞðg�αsÞH ðB:1Þ
Using the generalisation of Sylvester's identity for matrix
determinants [43] it can be shown that, following from
(B.1)

jMαj ¼ KP jQ jð1þðg�αsÞHQ �1ðg�αsÞÞ ðB:2Þ
Eq. (24) is obtained after minimising (B.2) with respect to
the unknown return amplitude α by solving the partial
derivative

∂
∂αn

jMαj ¼ ∂
∂αn

KP jQ j 1þðg�αsÞHQ �1 g�αsð Þ
� �

¼ �KP jQ jsHQ �1ðg�αsÞ
¼ αKP jQ jsHQ �1s�KP jQ jsHQ �1g ðB:3Þ

It is clear that the solution to (B.3) for α is the same as the
one for the MLED case in (17) but directly adapted to the
SDS detection scenario

bα ¼ sHQ �1g

sHQ �1s
ðB:4Þ

When this solution (B.4) is plugged into (B.2), the resulting
equation is the same as (24). When there is no target in the
radar detection scenario, the amplitude of the returned
waveform is α¼ 0. Plugging this into (B.2) results in
Eq. (25).

Appendix C. Proof of Lindeberg's condition for the
multistatic MLED approximation

In terms of the notation used in this paper, Lindeberg's
condition takes the following form:

lim
MN-1

1
σ2M

XMN

k ¼ 0

Z
jTMðkÞ �μMðkÞ j4 ϵσM

ðTMðkÞ �μMðkÞÞ2f k TMðkÞ
� �

dTMðkÞ ¼ 0 ðC:1Þ

where the subscript (m,n) indicating the path between the
mth transmitter and the nth receiver has been replaced
with the generic subscript k for convenience. The term
TMðkÞ represents the kth component in the sum (21). The
probability density function f kðTMðkÞÞ is associated with the
bistatic MLED random variable (28). If (C.1) holds for any
constant ϵ40, then the condition is sufficient to claim that
the multistatic MLED random variable (31) will converge
to a Gaussian distribution as the number of transmit–
receive pairs M � N goes to infinity. Chebyshev's inequality
for the variance of the bistatic MLED detector states that

P TMðkÞ �μMðkÞ ZϵσM

!
r

σ2MðkÞ
ϵ2σ2M

�����
�����
 

ðC:2Þ
Note that the mean μMðkÞ given in (42) and the variance
σ2MðkÞ from (43), considering a realistic system with finite
time samples K and receive sensors P, both exist and are
finite. This is due to the assumption that λm;n is finite
because the SNR ρm;n is practically finite. The term σM

2
can

be written in the form

σ2M ¼
X
m;n

am;nλ
2
m;nþ

X
m;n

bm;nλm;nþcMN ðC:3Þ

where am;n;bm;n; cAR. The sum in (C.3) goes to infinity as
M � N-1. Therefore, the right-hand side of Chebyshev's
inequality (C.2) goes to 0 since ϵa0 is a constant. There-
fore the left-hand side probability in the inequality is
bounded by 0, which translates to

lim
M�N-1

Z
jTMðkÞ �μMðkÞ j4 ϵσM

f kðTMðkÞÞ dTMðkÞ ¼ 0 ðC:4Þ

Combined with the fact that the mean μMðkÞ is finite, this
proves that each term in the sum (C.1) converges to 0 in
the limit. Therefore the whole sum converges to 0 and
Lindeberg's condition is satisfied, which justifies the
Gaussian approximation of the multistatic MLED threshold
detector.

Appendix D. Proof of Lindeberg's condition for the
multistatic GMLED approximation

The expectation and second moment of the bistatic
GMLED threshold detector given in (53) and (55) respec-
tively are finite due to the assumptions that the para-
meters K, P, and λm;n are practically finite (see Appendix C).
In this proof the following logarithmic inequality will be
used:

log xrx�1 ðD:1Þ
From (D.1) an upper bound for the expectation of the
logarithm of the bistatic GMLED threshold detector can be
obtained

E½log TGðm;nÞ�rE½TGðm;nÞ �1� ðD:2Þ
where the right-hand side of (D.2) is finite. Moreover, due
to the nature of the random variables involved, it can be
concluded that the expectation in the same equation is
bounded from below by the case when the non-centrality
parameter of the F-distribution becomes zero, or λm;n ¼ 0

1
L
rE log TGðm;nÞ

	 
 ðD:3Þ

where the left-hand side of (D.2) is obtained from the
expectation in (62). In a similar manner boundaries for the
second moment of the logarithm of the bistatic GMLED
threshold detector can be derived:

1

L2
rE ðlog TGðm;nÞÞ2

h i
rE ðTGðm;nÞ �1Þ2

h i
ðD:4Þ

The upper boundary in (D.4) comes from (D.1), while the
lower one is derived from the fact that E½x2�ZE½x�2.
Combining (D.3), (D.2), and (D.4), it can be concluded that
the variance of the logarithm of the bistatic GMLED
detector is also bounded from below and above by certain
finite bounds. The exact values of these bounds are not
essential for the current proof and will therefore not be
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calculated

σ2lbrσ2Gðm;nÞrσ2ub ðD:5Þ

The bounds in (D.5) are enough to conclude that for any
arbitrary constant ϵ40

lim
M�N-1

σ2Gðm;nÞ
ϵ2σ2G

¼ 0 ðD:6Þ

since the lower bounds on the total multistatic variance σG
2

tend to infinity as the number of transmitter–receiver
pairs in the system tends to infinity. At this point the
analogical Chebyshev bound to (C.2) for the GMLED
becomes zero which, similar to Appendix C, proves the
validity of Lindeberg's condition.
Appendix E. Supplementary data

Supplementary data associated with this paper can be
found in the online version at http://dx.doi.org/10.1016/j.
sigpro.2015.04.001.
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