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ABSTRACT

We consider geographically dispersed and networked sensors col-
lecting measurements from multiple targets in a surveillance region.
Each sensor node filters the set of cluttered, noisy target measure-
ments it collects in a sensor centric coordinate system and with
imperfect detection rates. The filtered multi-target information is,
then, communicated to the nearest neighbours. We are interested
in network self-localisation in scenarios in which the network is
restricted to use only the multi-target information shared. We pro-
pose an online distributed sensor localisation scheme based on a
pairwise Markov Random Field model of the problem. We first
introduce parameter likelihoods for pairs of sensors -equivalently,
edge potentials- which can be computed using only the incoming
multi-target information and local measurements. Then, we use
belief propagation with the associated posterior model which is
Markov with respect to the underlying communication topology.
We demonstrate the efficacy of our algorithm for cooperative sensor
localisation through an example with complex measurement models.

Index Terms— cooperative localisation, multi-target tracking,
sensor networks, graphical models, Monte Carlo algorithms

1. INTRODUCTION

We consider fusion networks comprised of a moderate number of
sensor platforms positioned at different geographical locations for
surveillance applications in which the trajectories of multiple targets
are estimated. Each platform has moderate sensing, computational
and communication capabilities and collects noisy measurements
from targets with given probability of detection in an environment
of false alarms from clutter and surroundings. In order to exploit
the target information from multiple sensors, the information shared
needs to be registered in a common coordinate system.

In this work, we consider self-localisation of sensor nodes in
such networks. We are interested in scenarios in which a global
positioning system (GPS) is not available (e.g., underwater sensor
networks) or reliable (e.g., presence of a jammer) and the network
is restricted to use only the measurements from the targets for the
purpose of self-localisation.

A centralised processing approach in which a processing centre
collects all sensor measurements is often not viable given the com-
munication bandwidth and computational resource limitations [1].
We resort to a distributed paradigm in which each sensor performs
local filtering of the measurements it collects in its sensor centric
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coordinate system (SCCS). The filtered multi-target information is
transmitted to the neighbouring nodes and the incoming informa-
tion from neighbours are translated to the local SCCS using the re-
spective locations before they are fused to improve upon the myopic
accuracy [2]. Therefore, sensor localisation, which is a sensor reg-
istration and calibration problem, needs to be solved for enabling
distributed fusion.

Sensor registration and calibration has been studied in the con-
text of target tracking in centralised settings considering conven-
tional multi-target trackers (e.g., [3]) and Random Finite Sets (RFS)
based multi-target filtering [4]. Common to these approaches is the
use of a predictive parameter likelihood (see, e.g., [5, Sec.IV]) based
on the measurements from the (hidden) target process. The compu-
tation of this multi-sensor likelihood, however, requires the network
wide collected measurements to be filtered after they are transmitted
to a designated centre (centralised operation), or, to all platforms for
joint filtering in a distributed operation [6], creating a highly unde-
sirable communication cost in either case.

We propose a self-localisation scheme which avoids centralised
or joint filtering. It operates based solely on the locally filtered multi-
target information already being exchanged for distributed fusion
thereby conforming with the communication constraints. We facil-
itate distributed operation by, first, considering a pairwise Markov
Random Field (MRF) model for the localisation posterior which
is Markov with respect to the underlying communication topology.
Such models have proved useful for distributed fusion [9] and tar-
get tracking [10] applications in wireless sensor network as well as
self-localisation using noisy distance measurements [11] through the
use of message passing algorithms for distributed inference such as
Belief Propagation (BP) [7] and its efficient particle realisations [8].

Second, we introduce edge potentials which can be computed
locally based on the multi-target information exchanged between
sensor pairs: The edge potentials of the pairwise MRF model of
our problem setting are predictive likelihoods for the sensor pairs.
Therefore, they have a time-recursive structure —unlike the self-
localisation model in [11] accommodating measurements directly
related to the sensor locations (see, e.g., [12])— and, their computa-
tion requires transmission of sensor measurements between sensor
pairs. We remove this need for local centralisations by introducing a
set of assumptions on the equivalence of the individual measurement
histories and their pairs and obtain node-wise separable potentials.

In the resulting algorithm, upon exchanging multi-target poste-
riors (for the purpose of fusion), each pair of neighbouring nodes
updates the time-recursive likelihood of the respective location —
equivalently, their edge potential- based on the incoming posteri-
ors and local target measurements. Then, all the nodes iterate BP
message passings with these potentials leading to decentralised and



collaborative estimation of sensor locations. We benefit from the
rich source of multi-target information using RFS models [14]. This
enables us to handle cluttered and noisy target measurements with
imperfect detection rates by building upon local multi-target filtering
and avoid having to explicitly find target-measurement associations.

We provide the problem statement and review the centralised
solution in Section 2. We introduce node-wise separable likeli-
hoods,and, the collaborative localisation scheme in Sections 4 and 3,
respectively. We demonstrate our algorithm through an example in
Section 5, and conclude in Section 6.

2. PROBLEM STATEMENT
2.1. Network Coordinate System

We consider the sensor platforms V = {1, ..., N}. The communica-
tion links available between sensor pairs constitute the edge set
& = {(i,7)|i and j are linked}. We assume bidirectional links and

hence the network is represented by the undirected graph G = (V, £).

We are interested in estimating the sensor locations in a network
coordinate system: Three nodes are selected as anchors specifying
the origin, first axis and the first quadrant of the coordinate system.
The first node is located at the origin and denoted by 6; = [0, 0]%.
The position of the second node is on the x—axis and the third node
is located in the first quadrant, i.c., f2 = [a,0]” and 83 = [b, c]”
where a, b and c are positive random variables [11]. The concate-
nation of all unknown location variables is denoted by 6 and is the
random vector subject to estimation based on the measurements in-
duced by the target process which we discuss next.

2.2. Multi-target process and the sensor measurement model

Each sensor node receives multi-object posteriors from its neigh-
bours. We assume that a Poisson model for the multi-target scene
can be obtained from any of these posteriors, without loss of gen-
erality'. Therefore, an unknown number of M targets each corre-
sponding to a point in some state space X’ are represented with a
Poisson RES X}, = {x}, ..., z2} which is characterised by the ex-
pected number of targets Ak, a spatial density si(z) over X, and a
probability density given by [14]

F(Xk) = exp(=M)A" [ ] sv()- (1)
The right hand side (RHS) of the equality above will be denoted by
Pois(Xk; Ak, sk(z)) throughout.

A target with state x generates a measurement z in a measure-
ment space Z according to the likelihood model I(z|z) with prob-
ability of detection Pp(z). Let the set of such measurements be
denoted by Z &, then,

Zy = Uzex, 2(z)

() = {z}, with prob. Pp(z)
e &,  with. prob. 1 — Pp(z)

and z is a random vector with density I(z|z) [14].

‘We model the false alarms with a Possion RFS, as well, with rate
Ac and point density sc(z) over Z. Therefore, the false alarms are
modelled with a random set Cj, ~ Pois(.; Ac, sc(z)).

The set of measurements collected by a sensor at time k£ and
denoted by Zj, is, then, given by

Zy = Zy, U Cy, 2)

'Such a model can directly be provided by using local PHD filtering [13]
at all nodes. If the multi-target posterior received is produced by another
multi-target filtering algorithm, a Poisson approximation can be found, for
example, through its first order statistical moment [14].

2.3. Sensor localisation problem and the centralised solution

Let us denote the measurement history of sensor ¢ € V) up to time k
by Zi.,.. We assume that the sensor locations 6 (Sec. 2.1) is a random
vector with a prior distribution po(@). Without any further consid-
eration on the network resource constraints, the sensor localisation
problem can be treated as finding the posterior

PO Z1 1, s Z1k ) opo (0)1 (Z11:k7 ~--7Z{Yk‘0) 3)

where [ (Z1.4, ..., Z1\x|0) is the parameter likelihood. The sensor
locations can be found, then, by using the minimum mean squared
error (MMSE) or the maximum a posteriori (MAP) estimation rules.
The parameter likelihood [ (le: oy eees Zf\’k\e) based on all the
measurement histories across the network is given by [5, Sec.IV]

k—1
l (lezka 7Z{Vk|0) = Hp (Ztl+1a "'7Z£1‘Z11:t7'“,2i7\ft79)

(C))
where the factorisation follows from the chain rule. Each factor on
the RHS is an instantaneous likelihood at time step ¢ and admits
the interpretation of being due to an independent observation of 6.
Furthermore, the current sensor measurements and the recent history
are conditionally independent given the current value of the target
process. Let us denote this by Z7,; AL Z{,|X:y1. As aresult, the
instantaneous likelihood at time step ¢ is given by [5]

p (Ztl+17 L] Zt]\-r%—l‘le:h 7ZiNt76) =
f P(Zi 1 oo Z051 | X a1, Op(Xei1| 2ty ooy Z, 0)d X e41,  (5)

where the first term inside the integral is the measurement likelihood
and the second term is a prediction distribution for the target process
at time ¢ + 1, based on the observation histories of all the nodes in the
network until ¢. This distribution is output by the prediction stage
of a “centralised” Bayesian recursive filter, which is not a feasible
processing strategy in a distributed setting.

For a Poisson RFS X1, the integral in (5) becomes a set in-
tegral (see, e.g., [14, Eq.(11.96)]) and a closed form expression is
given in [13, Eq.(116)] which will be introduced later in Section 3.

3. A MRF MODEL BASED ON TARGET MEASUREMENTS

The nearest neighbour information exchanges in our distributed
paradigm motivates the use of likelihoods local to the neighbouring
pairs of nodes. In other words, we approximate to the parameter
posterior (3) using a pairwise MRF which is Markov with respect to
the communication topology G:

PO Ziges oy Zi)oc | [0u(0s) [ i5(60:,0)), ©
9% (4,5)€€
Vi) = pi(0:),  55(05,05) = UZL, 214105, 05),
where the decomposition of the prior distribution follows from the
assumption that the local variables (sensor locations, for the case)
are independent. The edge potential for the pair (7, j) € £ is a pair-
wise predictive likelihood and has a time-recursive structure (differ-
ent from the model in [11]):
k—1
$50:,05) = [ [ p(Zi41, 2111 21, 71,4, 0:,05) @
t=0

=5 (0:,0,)p(Zk, ZL| ZY b1, Z 1, 03,05). (8)



3.1. Node-wise separable edge potentials

The edge potential in (7) requires pairwise centralisation as its com-
putation needs access to the measurement histories of both nodes.
We introduce a set of assumptions under which the instantaneous
likelihood terms in the RHS of (7) can be computed using only the
multi-target posteriors already received from the neighbours for dis-
tributed fusion and local measurements:

Assumption 1. The measurements of sensors ¢ and j are condi-
tionally independent given the unknown parameters 6;, 6; and their
measurement histories, i.e., Z{, 1L Z7,,|Z1.;, 21 ,,0:,0;.
Assumption 2. The current observation of sensor ¢ and its mea-
surement history are conditionally independent given the unknown
parameters and the measurement history of its neighbour 7, i.e.,
Zf+1 A Zl f|Z1 B2 9170

Assumption 3. Assumption 2 symmetrically holds for both nodes,
and, hence, Z] ., 1L Z{,|Z1.+,0:,0;.

Under Assumptions 1-3, it can easily be shown that the instan-
taneous likelihoods are multiplicatively separable into node-wise
terms each depending on a single sensor measurement history, and,
the edge potential in (7) becomes

U (0:,05) = 15 (0:,0,)15 (0:,0) )
k—1
0:,0,) = [ [, p(Zi1|2].4,6:,6)) (10)
k—1 i
l§(01797) = Ht:l p(Zg+1‘Z1:t70i79j)

where the node-wise terms also have the time-recursive structure

15 (0:,0;) = 1571(0:,0,)p(Z0|Z0 1., 0:,05). (11)
Assumptions 1-3 imply that, given the correct values for 6; and 6;,
the predictability of the local measurements do not change with the
selection of the individual measurement history or the pair to condi-
tion on. The connection with the principle of maximising the mutual
information of Z¢ and Zj is beyond the scope of this work.

4. THE COOPERATIVE SELF-LOCALISATION SCHEME

In this section, we first detail the computation of the update term
in the RHS of (11) for localisation, and, then describe the pro-
posed algorithm. Under the assumption that X is generated from
Pois(Agjk—1, Sk|k—1(x)), the update term can be found as

p(Zi1 2, 1,0i,0-)ocexp{ijD (@) A1 5k k1 (3 03, 05)d}

x 1 ()\osc J-PD

ZGZ’

|.’L‘ )\k\k 15k|k 1([E 91,0 )dl‘)(lz)
where Pp(x) is the detection probability of a target with state x,
and, A¢ and sc(z) characterise the Poisson clutter (see, e.g., [13,
Eq.(116)] and [4], considering the difference that our likelihoods
evaluate measurements of the ith sensor at k£ given the measurement

history of the jth sensor until £ — 1). This term lead by the Pois-
son assumption features linear complexity with the number of target

measurements. The prediction distribution Pois(.; Agjk—1, Skjk—1(2)),

is based on the posterior from sensor j at time k — 1, and the density
of targets that first appear at time k [13]. We ignore target births at
k and modify the original formulae accordingly:

OCJ-PS 7Tlc|k 1(33|.12 )Sk— 1k— 1(z )da:/
Aklk—1 = Ao—1]k— 1JPS

Sk|k— 1
)sk—1jk—1(z)dz’

where 7,1 (z|2") is the state transition density and Ps(z') is the
probability that a target with state 2" at k — 1 continues to exist at k.

For the localisation problem, the likelihood term I;(z|z) in (12)
takes the target measurement argument z in the SCCS of sensor i.
Sensor 7 receives from sensor j, however, si_l‘ 1 () that takes its
state variable argument x in the SCCS of sensor j. Let us denote the
state z in the jth SCCS by [z];. Then, [z]; can be found by

T([x];30:,05) = [z]; — 05 + 0i = []s. (13)
Therefore, before computing the node-wise update of the edge po-
tential (12) at node 4, for its location respective to sensor j, sensor ¢
constructs Sg|,—1(-; 04, 0;) in (12) in its local SCCS through

Skik—1([zk]s; 04, 05) = JPS([fEk—l]i)ﬂ'klk—l ([zx]il[zr=1]4)
X sty (T ([on-1]i300,05)) dlzia]i. (14)

Using the node-wise term update given by (11)—(14), the nodes
update the edge potentials (9) of the pairwise MRF model (6) us-
ing only the incoming fusion information from the neighbours and
local target measurements without any need for transmitting target
measurements and with a linear computational complexity with the
number of measurements. This model enables us to use Belief Prop-
agation (BP) [7] message passings for finding the marginal distribu-
tions of (6). The location of the ith sensor can, then, be estimated
using, e.g., the MMSE rule with the ith posterior marginal.

BP is an iterative algorithm in each step of which nodes pass
messages to their neighbours and update their states — which are es-
timates for the marginals of the associated variables— based on the
messages they receive:

pi(0:) o ¢¢(9¢)Hjene(i)
myi(0:) Jw” (0:,6,)

As (6) is Markov with respect to the underlying network G, the
BP messages directly map to transmissions over the links providing
a collaborative estimation mechanism.

Our self-localisation algorithm starts with non-informative loca-
tion priors po(6;) in the network coordinate system. The nodes ex-
change their location distributions with their neigbours and start fil-
tering target measurements using, e.g., a PHD filter. They exchange
the filtered distributions at each time step and for a time window of
length L, and, each node ¢ computes its instantaneous update terms
using (12)—(14) for all the edges it shares with its neighbours. At
the Lth step, nodes exchange the node-wise components I (6;, 6;)s
defined in (10) with their neighbours and compute the edge poten-
tials using (9). Then, BP message passings are iterated using (16)
and (15) for S steps. At the end of the Sth message passings, the
posterior marginals are estimated as the updated node states which
are used to estimate the sensor locations using, e.g., the MMSE rule.
The same procedure is repeated after node states are evolved with a
random walk-like dynamic [5] and exchanged with the neighbours.

We realise our self-localisation scheme using particle repre-
sentations for the distributions involved and Monte Carlo (MC)
computations. We compute BP messages in (16) and sample from
the posterior marginals (15) using Nonparametric Belief Propaga-
tion [8]. We estimate the likelihoods in (12) using MC integration
methods [16] given particles representing the filtered distributions.
It is worth noting that, for the case, the transform in (13) becomes
simply the translation of the particles.

mi(0:), 15)

kene(j)\i mkj (Gj)dej (16)

5. EXAMPLE

We demonstrate our cooperative self-localisation scheme by an ex-
ample in which five range-bearing sensors collect mesaurements
from two targets as illustrated in Fig. 1(a). Target states are given
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Fig. 1. (a) Illustration of the example scenario. (b) Typical particles from localisation marginals. (c) Box-plot of the max. localisation errors
versus BP steps for 200 trials. The boxes are centred at the median (red) with edges (blue) at the 25th and 75th percentiles.

by their position and velocity [[x, y], [#,5]]7. Targets are initiated
at k = 0 and k = 25, and, at [1100.0, 1000.0, 0.0, 10.0]" and
[150.0, 1600.0, 9.0, 72.0]T, respectively, and, move with a con-
stant velocity model with slight white Gaussian process noise.

The sensors can communicate with their first degree neigbours
in the network graph G = (V, &) (blue line segments) in Fig. 1(a).

The probability of detecting each target is Pp = 0.97 and the
standard deviations in range and bearing are selected as 5m and 1°,
respectively, for all sensors. The clutter is uniformly distributed over
the surveillance region with Poisson rate Ac = 3. Each sensor col-
lects its measurements in its SCCS with the sensor at the origin and
and y axes aligned with North and West, respectively. Local filtering
of these measurements are performed using a Sequential MC reali-
sation of the PHD filter described in [15], from which target states
can be estimated using clustering techniques.

We use the proposed self-localisation algorithm described in
Section 4 alongside local filtering of target measurements and near-
est neighbour posterior exchanges. We use 300 particles for each
sensor location and start with noninformative priors. We compute
the node-wise separable edge potentials for L = 5 time steps fol-
lowed by S = 5 iterations of BP messaging. Therefore, once in
every five steps of filtering, we update location estimates and repeat
this until £ = 150. Equivalently, we update the edge potentials of
BP once in every five messaging iterations. In Fig. 1(b), we present
the localisation particles at k = 10, 20, 30 and 150 for a typical run®.
We repeat this example with 200 Monte Carlo realisations of the
sensor measurement sequences and present a box-plot of the maxi-
mum (max.) estimation errors obtained for BP iterations in Fig. (c).
Note that convergence occurs in less than 100 time steps. The high-
est of the max. errors between k = 100 and £ = 150 over all runs
(peak of the upper envelope drawn by the whiskers in Fig. (c)) is
24.1m which is a reasonably small error bound. The average for
the maximum error at k = 150 is 7.8m which is less than 0.02 of
the 430.1m distance between the closest sensors in G, and, close in
value to the uncertainties related to the target measurements.

6. CONCLUSION

We proposed a cooperative self-localisation scheme for networks of
sensors tracking targets. For sensor localisation based on target mea-
surements in distributed fusion, we introduced a MRF model with
node-wise separable edge potentials which can be computed locally.
The proposed scheme consecutively updates these time recursive po-
tentials and uses BP for decentralised estimation. It is capable of
incorporating information from multiple targets and handle cluttered
noisy measurements with a given detection probability. We demon-
strated the efficacy of our algorithm through an example.

2Results comparing the tracking performances of individual and fused
target estimates are not presented due to lack of space. Obtaining the latter is
made possible by the use of sensor location estimates from our algorithm.
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