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Abstract—This paper addresses face ver ification in uncon-
strained settings. For this purpose, first, a nonlinear binary
class-specific kernel discr iminant analysis classifier (CS-KDA)
based on spectral regression kernel discr iminant analysis is
proposed. By vir tue of the two-class formulation, the proposed
CS-KDA approach offers a number of desirable proper ties such
as specificity of the transformation for each subject, computa-
tional efficiency, simplicity of training, isolation of the enrolment
of each client from others and increased speed in probe testing.
Using the proposed CS-KDA approach, a regional discr iminative
face image representation based on a multiscale var iant of
the binar ized statistical image features is proposed next. The
proposed component-based representation when coupled with
the dense pixel-wise alignments provided by a symmetr ic MRF
matching model reduces the sensitivity to misalignments and pose
var iations, gauging the similar ity more effectively. Finally, the
discr iminative representation is combined with two other effective
image descr iptors, namely the multiscale local binary patterns
and the multiscale local phase quantization histograms via a
kernel fusion approach to fur ther enhance system accuracy. The
exper imental evaluation of the proposed methodology on chal-
lenging databases demonstrates its advantage over other methods.

Index Terms—Face ver ification, class-specific kernel
discr iminant analysis, binar ized statistical image features,
descr iptor fusion.

I. INTRODUCTION

WITH the saturation of performance of face recognition
systems on controlled data, the recent focus of research

in this area has been directed more towards recognizing
faces in challenging conditions of real life photos. In these
situations, imaging conditions previously kept under control
in laboratory settings such as pose, illumination, expres-
sion, occlusion, low resolution, etc. may vary uncontrollably,
perturbing image data and subsequently leading to classifi-
cation errors. From a pattern classification point of view,
the problem has been approached in a variety of ways with
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different levels of success. A line of research in this respect
is focused on designing classifiers which can better cope with
the nonlinearities of face manifold [1]–[4]. Complementary to
the design of more effective classifiers in dealing with image
degradations are the attempts to develop or combine robust low
level image representations [4]–[7]. The current work follows
both avenues by proposing a new kernel space regional face
image representation and a class-specific nonlinear classifier
which combines multiple representations in a discriminative
subspace.
The algorithms based on subspace techniques are the most

widely employed methods in face recognition. These methods
usually represent facial images by vectors and then try to find
a projection function by optimising some criterion over these
vectors. PCA [8] and LDA [9] are two prominent examples of
the methods in this category. As LDA seeks to find an optimal
projection such that the separation between different classes is
maximised, it is generally believed that it performs better than
its PCA-based counterpart. However, the performances of lin-
ear classifiers drop as soon as the data to be classified is highly
complex and nonlinear. A suitable alternative in such cases is
offered by nonlinear classification techniques such as kernel
discriminant analysis. In this framework, the data are implicitly
mapped into a very high dimensional space (possibly infinite
dimensional) with the hope that they become linearly separable
in this new space [10]–[12]. Nevertheless, a drawback of these
methods is their high computational complexity which often
requires eigen-analysis of dense matrices. Recently, a spec-
tral regression based kernel discriminant analysis (SR-KDA)
has been proposed which uses spectral regression instead of
costly eigen-analysis computation [13]. The method has been
shown to be orders of magnitude faster than the ordinary
KDA. Drawing on this approach and motivated by similar
works [14], [15], in this paper a client-specific spectral
regression-based KDA approach (CS-KDA) is proposed which
casts a multi-class classification task into a binary-class prob-
lem. Using a spectral regression framework, in contrast to
other class-specific KDA projections, the eigen-analysis com-
putation in the proposed approach is avoided. In addition, by
virtue of the two-class formulation, the individual patterns
mapped onto the feature space are represented as one dimen-
sional data compared to the C− 1 dimensional vectors obtained
in the multi-class scenario (C being the number of classes).
This has significant implications on training, enrolment and
testing stages of a verification system as follows. First of all,
as each client class is represented by a distinct transforma-
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tion, the mapping onto the feature space is subject-specific.
As a result, personal facial characteristics of each subject
are embedded in the transformation function which in turn
enhances system accuracy. Moreover, as the enrolment of
each subject into the verification system is isolated from the
enrolment of others, registering a new user into the system
does not alter the transformation functions of the subjects pre-
viously enrolled. In addition, the proposed CS-KDA approach
is computationally more efficient than the conventional multi-
class SR-KDA in various stages of a face recognition system.
An appealing characteristic of the proposed approach is the
operability in a single sample framework, thus providing a
suitable solution for various applications including image pair
matching [16], passport check, etc.
The CS-KDA method is used to construct a discriminative

face image descriptor using the binarised statistical image
features (BSIF) [17]. Similar to MLBP [18] and MLPQ [19]
representations, the binarised statistical image features encode
local micro-structures of image content into a string of binary
codes. But unlike these approaches, it employs statistics
of images to learn its filters which improves its represen-
tational capacity. Moreover, the employed descriptor is be
able to capture image content at multiple resolutions using
filters of different spatial scales. Motivated by the works
in [20]–[23], for reduced sensitivity of the proposed system to
misalignments and out-of-plane head rotations, two techniques
are employed here. First, the multiscale BSIF filter responses
are summarised regionally as histograms. Second, an MRF
image matching model is employed at the image level to
provide dense pixelwise correspondences between a pair of
images. By symmetrising the MRF matching process, the
similarity of a pair of images in the kernel space is captured
more effectively in two directions. Finally, the MLBP, MLPQ
and MBSIF representations are combined via a kernel fusion
approach to further increase system accuracy.
In summary, the main contributions of the current

work include:

• A class-specific kernel discriminant analysis approach
(CS-KDA) based on spectral regression;

• A kernelised regional discriminative face image descrip-
tor (kernel MBSIF);

• Combination of the MBSIF, MLBP and MLPQ represen-
tations via the CS-KDA approach;

• Symmetric comparison of a pair of face images in the
kernel space.

The rest of the paper is organised as follows: In Section II,
we review the literature with an emphasis on KDA-based
methods in face recognition. In Section III, after a short
overview of the SR-KDA method of [13], the proposed
CS-KDA approach is introduced. In Section IV, the proposed
discriminative face descriptor based on the CS-KDA approach
and the multiscale BSIF features is discussed. The discussion
is then followed by a component based approach for kernel
fusion of multiple descriptors. An experimental evaluation of
the proposed methodology along with a comparison to other
approaches is provided in Section V. Finally, the paper is
drawn to conclusion in Section VI.

II. RELATED WORK
There are numerous attempts to deal with the complex

patterns of faces employing different variants of kernel
discriminant analysis. While in [24] a kernel discriminant
analysis method is utilised for the classification of faces under
difficult facial expression changes, the authors in [25] propose
a null space-based KDA method. In this approach, samples
are first mapped onto the kernel space through the so-called
cosine kernel. Next, a truncated null space KDA is used
which requires only a single eigenvalue analysis. In [14], the
problem of face verification is cast as a two-class problem and
a class-specific transformation providing a multi-dimensional
projection is derived. The optimisation criterion is defined
so as to maximise the similarities of genuine claims while
minimising the similarity of imposter claims to the mean
of each claimed class. The eigenproblem solution and the
transformation function obtained include more than one kernel
fisher face per class.
In [26], the authors propose to use a bagging technique

to decrease the computational cost of kernel fisher discrim-
inant analysis in the training phase by dividing the training
data into several subsets and training a different classifier
for each subset. A multiple kernel construction method for
kernel based fisher discriminant analysis is proposed in [27].
The proposed kernel is constructed as a linear combination
of several base kernels with a constraint on their weights
which is then used for face recognition. In [28], using the
minimum squared error criterion a new kernel-based nonlinear
discriminant analysis algorithm is proposed. Once the data is
mapped onto a higher-dimensional feature space, the mini-
mum squared errors criterion is employed as the discriminant
rule and the corresponding transformation is derived. As this
solution does not require the scatter matrices to be nonsingu-
lar, the proposed method is applicable to the under-sampled
multi-class problems. In order to improve the heterogeneous
face recognition performance, a coupled discriminant analysis
method is proposed in [29]. The upside of the method is
that all samples from different modalities are employed to
represent the coupled projections. In addition, the locality
information in the kernel space is incorporated into the coupled
discriminant analysis as a constraint to improve the general-
ization capability. The authors in [30] proposed a multi-view
dynamic face model to extract the shape-and-pose-free facial
texture patterns. A kernel discriminant analysis approach is
then developed to extract the significant nonlinear features
maximising the between-class variance while minimising the
within-class variance. In [31], a new kernel fisher discrimi-
nant analysis called complete KFD is developed where the
problem formulation is divided into two phases as the kernel
PCA and Fisher linear discriminant analysis. In [32], authors
proposed an algorithm called KDA/QR, which extends the
LDA/QR algorithm to deal with nonlinear data by using the
kernel operator. Then an efficient approximation of KDA/QR
called AKDA/QR is proposed. In [33], a new kernel direct
discriminant analysis based on the direct linear discriminant
analysis (DLDA) algorithm [34] is proposed. A robust kernel
model with statistical local features for face recognition is
proposed in [35]. In this approach, first, multi-partition max
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pooling is used to enhance the method’s invariance to image
alignment errors. Next, a kernel based representation is pro-
posed to exploit the discriminative information available in the
statistical local features. In [36], a kernel direct discriminant
analysis approach is proposed. The motivating idea is that the
null space of within class scatter can include discriminant
information if the projection of the between-class scatter in
that direction is not zero and that no significant information
is lost if the null space of between class scatter is removed.
In [4], a KDA fusion approach is proposed to combine MLBP
and MLPQ histograms for face recognition. The method is
reported to achieve good performance in challenging condi-
tions on a number of different databases.

III. KERNEL DISCRIMINANT ANALYSIS (KDA)

A. Overview
Let us assume that there exist m samples x1, x2, . . . xm
∈ Rn, which belong to C classes and F is a feature space
induced by a nonlinear mapping φ : Rn → F . For a
suitably chosen mapping, an inner product �., .� on F may
be represented as �φ(xi ),φ(xj )� = κ(xi , xj ), where κ(., .)
is a positive semi-definite kernel function. Let Sφb , S

φ
w and

Sφt denote respectively the between-class, within-class and
total scatter matrices in the feature space F . Then we have

Sφb =
C�

k= 1
mk(μkφ − μφ)(μkφ − μφ)� (1)

Sφw =
C�

k= 1

mk�

i= 1
(φ(xki ) − μkφ)(φ(xki ) − μkφ)� (2)

Sφt = Sφb + S
φ
w =

m�

i= 1

�
φ(xi ) − μφ

��
φ(xi ) − μφ

��
(3)

where μkφ and μφ are the centroid of the kth class and
the global centroid in the feature space, respectively. mk is
the number of samples in the kth class and xki denotes the
i th sample in the kth class. KDA seeks to find an optimal
projection function Vopt in the feature space by solving the
following optimisation problem

Vopt = argmax
V

V� Sφb V
V� SφwV

(4)

which is equivalent to [37]

Vopt = argmax
V

V� Sφb V
V� Sφt V

(5)

The columns of Vopt (ν�s) are the generalized eigenvectors
satisfying

Sφb ν = λSφt ν (6)

It is known that ν�s satisfying the preceding problem can be
expressed as linear combinations of all samples [11], [12].
Thus, there exists coefficients αi such that each eigenvector ν
can be represented as ν =

� m
i= 1 αiφ(xi ).

In [11], it is shown that Eq. 5 is equivalent to

Uopt = argmax
U

U� KWKU
U� KKU

(7)

where K is the kernel matrix (Ki j = κ(xi , xj )) and W is a
matrix reflecting the number of samples in each class, defined
as

Wij =
�
1/ mk if xk and xj both belong to the kth class;
0 otherwise.

(8)

In this case, the columns of Uopt (α�s) are given by the eigen-
vectors corresponding to the non-zero eigenvalues satisfying

KWKα = λKKα (9)

The number of α�s satisfying Eq. 9 is bounded by C − 1 as
the rank of Sφb is at most C − 1. Once α�s are found, the
projection of a new sample (x) onto the feature space using
each eigenvector ν (hereafter referred to as kernel fisher face)
is given by

�ν,φ(x)�=
m�

i= 1
αi�φ(xi ),φ(x)�=

m�

i= 1
αiκ(xi , x) = α� K(:, x)

(10)

where K(:, x) = [κ(x1, x), . . . , κ(xm, x)]� .

B. Spectral Regression KDA (SR-KDA)
In [13], an efficient method to solve the eigen-problem

in Eq. 9 via spectral regression is proposed which avoids costly
eigen-analysis computations. The method uses the following
theorem:
Theorem 1: Let y be the eigenvector of the eigen-problem

Wy = λy (11)

with the eigenvalue λ. If Kα = y, then α is the eigenvector
of the eigen-problem in Eq. 9 with the same eigenvalue λ.
See [13] for a proof.
Using Theorem 1, one may, instead of solving the eigen-

problem in Eq. 9 directly, use a two step approach to solve
for α�s as follows:
1) Solve Wy = λy for y;
2) Find α satisfying Kα = y.

If K is positive-definite, then there exists a unique solution
for α. If K is singular, it may be approximated by the positive
definite matrix K + δI where I is the identity matrix and
δ> 0 is a regularisation parameter. In this paper, a Gaussian
RBF is used for the kernel function, i.e. Ki j = κ(xi , xj ) =
exp(− �xi − x j�2/M), resulting in a positive definite kernel
matrix [12], [13]. Solving for α may then be performed using
the Cholesky factorisation and forward-back substitution as
follows. If K = R� R, then α may be found by first solving
R�θ = y for θ using forward substitution and then solving
Rα = θ for α using back substitution.
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C. Incremental SR-KDA

As the Cholesky decomposition has the largest computa-
tional cost in the SR-KDA method, in [13] it is proposed
to perform this step more efficiently using an incremental
approach. In the incremental scheme, the goal is to find
the Cholesky decomposition of an m × m matrix given the
Cholesky decomposition of its (m − 1) × (m − 1) submatrix.
Hence, given the Cholesky decomposition of the kernel matrix
Km− 1 of m − 1 samples we want to compute the Cholesky
factorisation of the kernel matrix Km for the augmented
training set where a single sample (xm) is injected into the
system. The incremental Cholesky decomposition technique
may be applied via the Sherman’s March algorithm [38] for
Km as

Km =
�
Km− 1 k1m
k�1m kmm

�
=
�
R�m− 1 0
r�1m rmm

� �
Rm− 1 r 1m
0 rmm

�
(12)

where k1m is an (m − 1) × 1 vector given by k1m =
[κ(x1, xm), . . . , κ(xm− 1, xm)]� and kmm = κ(xm, xm). Eq. 12
reads

Km− 1 = R�m− 1Rm− 1
k1m = R�m− 1r 1m

rmm =
�
kmm − r�1mr1m (13)

Thus, one first solves k1m = R�m− 1r 1m for r 1m using forward
substitution and then computes rmm. The employed incremen-
tal technique reduces the computational cost of the SR-KDA
approach from cubic in number of training samples in the
batch mode to quadratic in the incremental mode [13].

D. Class-Specific SR-KDA (CS-KDA)

Class-specific projections have been considered previously
for face recognition and shown to provide advantages over
their multi-class alternatives. Inspired by similar approaches
in LDA [15] and KDA [14], in this section a class-specific
kernel discriminant analysis based on the SR-KDA approach is
proposed. In the proposed framework, a C-class classification
problem is recast into a set of two-class problems, i.e. a
probe either belongs to a claimed genuine class or to a fixed
class represented by imposters. The new CS-KDA approach
contrasts with the conventional KDA representation involving
multiple shared kernel fisher faces in having only one class-
specific kernel fisher face per class. Hence, a distinguishing
characteristic of the proposed technique is the specificity of
the transformation for each subject. Some other features
of the proposed approach are simplicity of training, isolation
of the enrolment of each client from others and computational
efficiency discussed next.
Let us assume that there is one sample of the client class ω

(xm ∈ ω) and a fixed set of m − 1 imposter samples {xi |i =
1, . . . ,m − 1} (the extension to the case where more than
one instance of each client are available is straightforward).
The approach in this two-class problem starts by building

the m × m matrix W as

W =

⎛
｜｜｜⎝

1
m− 1 . . . 1

m− 1 0
... . . . ...

...
1

m− 1 . . . 1
m− 1 0

0 . . . 0 1

⎞
｜｜｜⎠ (14)

Since the imposter set is fixed and the number of training
samples for each client is assumed to be one, matrix W would
be common to all classes. Moreover, matrix W would have
exactly two eigenvectors corresponding to the same eigenvalue
of 1 [38] as

y1 = [
m− 1� �� �

1, . . . , 1, 0]�

y2 = [
m− 1� �� �

0, . . . , 0, 1]� (15)

As 1 is a repeated eigenvalue of W, any linear combination of
the corresponding eigenvectors is also an eigenvector of W.
A vector of all ones of size m (e) would clearly be an
eigenvector. Hence, following [13], we consider e as the first
eigenvector and the second eigenvector (y2) is orthogonalised
with respect to e using the Gram-Schmidt process [38] to
produce y�. The Gram-Schmidt process to orthogonalise y2
with respect to e is as follows:

y�= y2 −
e� y2
e� e

e = y2 −
1
m
e = [

m− 1� �� �
− 1
m
, . . . , − 1

m
, m − 1

m
]� (16)

In order to obtain a unit norm eigenvector, y�is divided by its
norm:

y��= y��
y�� y�

= y��
m− 1
m

= [

m− 1� �� �
− 1√

m(m − 1)
, . . . , − 1√

m(m − 1)
,

�
m − 1
m

]� (17)

Discarding vector e, we are left with only a single eigenvector,
i.e. y��.
After computing Km using the new sample xm ∈ ω, the

next step is to find αω satisfying Kmαω = y��. A procedure
that performs this task can be summarised as follows. Given
the kernel matrix Km− 1 of the fixed imposter set, its Cholesky
decomposition is computed offline. For the enrolment of a
new sample, after computing the augmented kernel matrix
Km, the Cholesky factorisation of Km only includes the
computation of the vector r 1m and scalar rmm. Once the
Cholesky decomposition of Km is obtained, αω can be found
using the forward-back substitution. Note that since in the
proposed CS-KDA approach there is only one eigenvector
associated with the equation Kmαω = y��, only a single vector
of size m, i.e. αω, should be computed. This is in contrast
to the multi-class scenario where a projection matrix of size
m× (C − 1) should be estimated each time a single sample is
injected into the system.
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E. Decision Strategy for CS-KDA
If a probe subject asserts class ω as his/her identity, the

features of that person (z) is mapped onto the subspace
represented by νω to form a discriminative representation as

pz = �νω,φ(z)�=
m�

i= 1
αωi�φ(xi ), φ(z)� (18)

where νω is the kernel fisherface for class ω. For decision
making, pz can be compared against the mean of the imposter
set (η) in the same discriminative subspace of νω. The projec-
tion of η onto νω is obtained as

pη = �νω,φ(η)�=
m�

i= 1
αωi�φ(xi ), φ(η)� (19)

In this case, one would expect the projected probe of a genuine
claimant to be far from the projected imposter mean, resulting
in the following decision criterion:

|pz − pη| ≤ tω reject claim
|pz − pη| > tω accept claim

where tω is the threshold for class ω to accept/reject a claim.
|pz − pη| can be rewritten as

|pz− pη| = |�νω,φ(z)�− �νω,φ(η)�|

= |
m�

i= 1
αωi�φ(xi ),φ(z)�−

m�

i= 1
αωi�φ(xi ),φ(η)�|

= |
m�

i= 1
αωiκ(xi , z)−

m�

i= 1
αωiκ(xi , η)|

= |
m�

i= 1
αωi [κ(xi , z)− κ(xi , η)]| = |α�ωK−

ω | (20)

K−
ω = [κ(x1, z) − κ(x1, η), . . . , κ(xm, z) − κ(xm, η)]� . Since,

the imposter set and as a result the mean is fixed, the terms
κ(xi , η) (for i = 1, . . . ,m) can be computed during training
and enrolment phases and used in the verification phase to
speed up probe testing.

F. Discussion
Let us assume that the verification system is in the operation

phase (after training and enrolment of C − 1 users) and an
additional user is to be enrolled into the system. In this case, in
the common multi-class SR-KDA approach, matrix W should
be updated and its C − 1 eigenvectors would have to be
found using the Gram-Schmidt method. In contrast, in the
CS-KDA approach as W remains constant and common to
all classes, the requirement to resolve for its eigenvectors is
circumvented. As the main computational cost in this step
is the cost of Gram-Schmidt process, the proposed CS-KDA
approach saves mC2 − 1

3C
3 compound arithmetic operations

(flams) each consisting of one multiplication and one addition
compared to the multi-class approach. Next, in the multi-class
scenario, after computing the Cholesky decomposition of the
new augmented kernel matrix (Km), C − 1 linear equations
of the form Kmα = y need to be solved to form the new
transformation function. In contrast, in the proposed CS-KDA
approach only one linear equation corresponding to the new

Algor ithm 1 Training
� Offline computations

1: procedure

2: Set y��= [

m− 1� �� �
− 1√

m(m − 1)
, . . . , − 1√

m(m − 1)
,
�
m− 1
m ]�

3: Calculate the kernel matrix Km− 1
4: Find Rm− 1 satisfying Km− 1 = R�m− 1Rm− 1
5: Estimate mean of the imposter set (η)
6: Calculate κ(xi , η) for i = 1, . . . ,m − 1
7: Save Rm− 1, κ(xi , η)�s and y��
8: end procedure

Algor ithm 2 Enrolling Class ω by Sample xm
� Online computations

1: procedure
2: Calculate k1m = [κ(x1, xm), . . . , κ(xm− 1, xm)]� and

kmm = κ(xm, xm)
3: Find r1m satisfying k1m = R�m− 1r 1m
4: Calculate rmm =

�
kmm − r�1mr1m

5: Form the Cholesky decomposition of Km as

Km = R�mRm =
�
R�m− 1 0
r�1m rmm

� �
Rm− 1 r 1m
0 rmm

�

6: Solve R�mθ = y�� for θ
7: Solve Rmαω = θ for αω
8: Calculate κ(xm, η)
9: Save αω and κ(xm, η)
10: end procedure

user should be solved and the projection functions of the
classes previously enrolled remains unaltered. This results in
a computational saving of Cm2 flams.
During the verification (test) phase, the computational

advantages of the proposed CS-KDA approach are as follows.
Commonly, in a multi-class scenario, the KDA representation
spans a subspace of the order of C − 1 dimensions. The
employed one dimensional representation in the proposed
CS-KDA approach in this case results in a computational
saving of mC flams compared with the multidimensional
representation often employed.
An interesting property of the proposed CS-KDA approach

is the operability in an unseen pair matching paradigm [16].
In this scenario, two images which were not available before
are presented to the system and a decision must be made
whether they belong to the same subject or not. In this case,
one can construct a binary classifier using a fixed imposter
set and one of the images and then measure the likelihood
of the second image belonging to the first class and not to
the class represented by imposters. The general procedures for
training (offline), enrolment (online) and testing (online) stages
of the CS-KDA approach are summarised in the Algorithms 1,
2 and 3.
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Algor ithm 3 Testing Probe z for Class ω
� Online computations

1: procedure
2: Set K−

ω = [κ(x1, z) − κ(x1, η), . . . , κ(xm, z) −
κ(xm, η)]�

3: if |α�ωK−
ω | ≤ tω then

4: Reject claim
5: else
6: Accept claim
7: end if
8: end procedure

IV. FACE REPRESENTATION USING MULTISCALE
BSIF IN THE KERNEL SPACE

A. Multiscale BSIF Image Representation
The underlying principle of the binarised statistical image

features in [17] is to model the local micro-structures of image
content using a set of linear filters in a neighbourhood of a
pixel. The BSIF filters are applied to individual patches of
an image centred at a pixel. Given an image patch p of size
d × d pixels and a linear filter fn of the same size, the filter
response rn is given by

rn =
�

j,k
fn( j, k) p( j, k) = f�n p (21)

where vectors fn and p include elements of fn and pixels
of p, respectively. The operation of applying N different linear
filters to the same patch can be represented by stacking all
fn filters into a single matrix F of size N× d2 which generates
the responses by a single matrix multiplication as

r = Fp (22)

In the BSIF representation, the statistical dependencies of r �ns
are minimised via independent component analysis (ICA). For
this purpose, the filter matrix F is decomposed into two parts
as

r = Fp = UVp = Uz (23)

where z = Vp, and U is an N × N square matrix which is
estimated using ICA. Matrix V applies a whitening transfor-
mation to the data. The dimensionality of each patch in this
step is reduced using N < d2 principal eigenvectors of the
covariance matrix of randomly chosen image patches. Next,
given the whitened data samples z, the independent component
analysis is employed to estimate an orthogonal matrix U. The
filter matrix F is then derived as

F = UV (24)

Finally, the response of each filter is binarised via thresholding
at zero to produce a binarised feature bn

bn =
�
1 rn > 0,
0 otherwise. (25)

The number of BSIF filters in each scale is controlled by
the number of the eigenvectors retained after the whitening
transform. In this work, the first 8 principal eigenvectors of the

Fig. 1. (a) Original image, (b) normalised and cropped image, (c)-(j) BSIF
images at different scales.

whitening transformation are used, giving rise to eight filters
in each scale. Moreover, the sizes of the filters can be varied
in order to capture image content at multiple resolutions.
While larger filters can better handle low frequency content
and blurring effects, smaller filters are able to capture high
frequency variations of image texture. By varying the filter
sizes and combining BSIF descriptors in different scales,
a multiresolution representation (MBSIF) is derived. The num-
ber of scales we use for the multi-scale BSIF is eight. As such,
in total 64 filters are learned. Finally, the responses of filters
are summarised regionally via histograms. The construction
of MBSIF descriptors may be described as follows. We first
apply MBSIF operators at Z scales to each face image after
photometric normalisation using the method of [39]. The
result is a grey level code for each pixel at each resolution,
Fig. 1. After cropping the resultant code images to the same
size, they are divided into non-overlapping rectangular regions
G0,G1,. . . ,G J × J − 1. The BSIF pattern histogram for region j
in the scale of s, h j,s , is computed as

h j,s = [h0j,s , h1j,s , . . . , hL− 1j,s ]

hij,s =
�

pc∈G j

{BSIFs( pc) = i }

j ∈ [0, 1, . . . , J × J − 1],
s ∈ [1, 2, . . . , Z], L = 256 (26)

where {.} is an indicator function indicating whether its
argument is true/false. L represents the number of histogram
bins and pc denotes the centre pixel where the filter is applied.
The size of the BSIF filter at scale s is set to d × d where
d = 2 × s + 1. By concatenating all the histograms for each
region computed at different scales into a single vector, the
multiresolution MBSIF regional descriptor is formed

q j = [h j,1, h j,2, . . . , h j,Z]� (27)

Experimentally it has been found that eight scales (Z = 8) are
enough to capture a wide range of image frequency content.

B. MBSIF in the Kernel Space
Once the MBSIF histograms are extracted from each region,

a regional kernel matrix (K j ) is constructed using a fixed set
of imposters and an instance of the subject to be recognised.
Following the preceding method, a class-specific regional



2106 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 12, DECEMBER 2014

kernel fisherface may be estimated and used to project an
MBSIF histogram onto a discriminative subspace to form the
MBSIF representation in the kernel space. In order to fuse all
regional information we follow the approach advocated in [4]
and form a combined kernel matrix G as

G =
�

j
K j (28)

G can be used to estimate a kernel fisherface for the whole
face. In order to boost the efficacy of the system, one may
combine the MLBP, MLPQ and MBSIF representations in
the kernel space. When multiple image representations are
employed, the information from different channels is fused
in the CS-KDA approach by adding all regional kernels K j,r
corresponding to different regions j = 0, . . . , J × J − 1 and
different image representations r ∈ {MLBP,MLPQ,MBSIF}

Kc =
�

j,r
K j,r (29)

As a result, in order to find the class-specific multiple kernel
fisher face for class ω, the equation Kcαω = y�� is solved for
αω with the Kc given by Eq. 29 and y�� by Eq. 17. In the
test phase, the vector K−

ω is formed as K−
ω =

�
j [κ(x

j
1 , z j )−

κ(x j1 , ηj ), . . . , κ(x
j
m, z j )− κ(x jm, ηj )]� , where x ji denotes the

j th region of i th training sample and z j stands for the j th
region of the probe.

C. Symmetric Image Matching
In order to reduce the sensitivity of the system to misalign-

ment and out of plane head rotations, we employ the dense
MRF matching approach proposed in [20]. In [20], an effi-
cient MRF-based method for dense image registration based
on [21], [40], and [41] is proposed. The method matches a
block of pixels of the template to a block of pixels in the target
image. The correspondences are achieved in a multiresolution
framework down to the pixel level. In order to symmetrise
the process, following [20], we initially match the template
to the target and then exchange the roles of the two images.
We repeat the procedure for the horizontally mirrored versions
of both images. The regional histograms are finally constructed
using the correspondences thus obtained. Once the similarity
between each pair of images is computed, the final similarity
score is formed by averaging the similarity scores of all pairs
of matches. This way, the similarity between a pair of images
is gauged symmetrically in the kernel space.

V. EXPERIMENTS
A. Experiments in Unseen Pair Matching: LFW
The labelled faces in the wild (LFW) dataset is a large

database including real world variations of facial images such
as pose, illumination, expression, occlusion, low resolution,
blur, etc. It contains 13,233 images of 5,749 subjects. Evalua-
tion of a method on this dataset is performed by determining
whether a pair of images belongs to the same person or not.
We evaluate the proposed approach on the “View 2” of the
dataset consisting of 3,000 matched and 3,000 mismatched
pairs divided into 10 sets. The evaluation is performed in

a leave-one-out cross validation scheme on the entire test
sets. The overall performance of the method over ten folds
is then reported as the mean accuracy and the standard error
of the mean. Different evaluation settings on this database
are the image “restricted”, “unrestricted” and “unsupervised”
settings. The restricted setting provides training data for the
image pairs as “same” or “not same”. The image unrestricted
setting in addition provides the identities of the subjects in
each pair. In the “unsupervised” setting, no training data in
the form of same/not same pairs is provided. We evaluate the
proposed approach on the most “restricted” protocol where
strictly LFW data is used, i.e. without any outside training
data. In addition, as we do not use any training data in the
form of “same” or “not same”, our method is “unsupervised”
and is equally comparable with the results in this setting.
In an ideal case, the imposter set should not contain images of
the subjects in a pair being compared. This might cause the
false intuition that the method is operating in a supervised
mode. However, if the number of images in the imposter
set (m) is sufficiently large then inclusion of a few samples
of either one of the subjects in a pair being compared in
the imposter set has negligible effects. Similar observations
have been made in [15] in the case of linear discriminant
analysis. As the inclusion of a few samples of either one of the
subjects in a pair in the imposter set does affect the model,
the imposter set can be considered as a random collection
of face images and as a result the method is unsupervised
since neither class labels nor pair labels (same/not same) are
used in the construction of the model or its training data.
In each of the ten experiments on the LFW data set, one
out of ten subsets is used as the test set and the remaining
as the training data. We use one of the 9 training subsets
as the imposter set. Two separate subsets are used to learn
filters for the MBSIF descriptor. Filters are learned in eight
scales and in each scale eight filters are learned giving rise to
an 8-bit BSIF code for a pixel in each scale. The remaining
training subsets are used to set a global acceptance/rejection
threshold. We use the funnelled version of the LFW data set
and after computing the MLBP, the MLPQ or MBSIF code
images, crop the images and keep an area of 80 × 96 pixels
in the centre of the coded image. The number of regions is
set to 64 (J = 8). The kernel function κ(xi , xj ) is defined as
κ(xi , xj ) = exp(− �xi − x j�2/M). Following [42], M is set
to the average squared Euclidean distance between all training
samples. In all experiments, once the MRF correspondences
are established, the template image is considered as the model
and a CS-KDA space is constructed using the model image
and the fixed imposter set. Eight systems are evaluated in this
experiment:

1) MRF-MLBP-LDA
2) MRF-MLPQ-LDA
3) MRF-MBSIF-LDA
4) MRF-Fusion-LDA
5) MRF-MLBP-CSKDA
6) MRF-MLPQ-CSKDA
7) MRF-MBSIF-CSKDA
8) MRF-Fusion-CSKDA
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TABLE I
COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO

THE STATE-OF-THE-ARTMETHODS ON THE LFW DATABASE
IN THE MOST RESTRICTED SETTING (STRICT LFW,

NO OUTSIDE TRAINING DATA USED)

The results obtained in the most restricted protocol are
reported in Table I. We have tested four variants of the
CS-KDA approach. These are the CS-KDA approach on the
MLBP, MLPQ, MBSIF histograms and a combined kernel
using all three descriptors. Reported in the table are also the
systems employing a linear discriminant analysis rather than a
kernel approach. When using linear discriminant analysis, the
similarities of two corresponding regions in a pair of images
are measured in the LDA space using cosine similarity and all
the regional similarities obtained using different descriptors are
combined via a sum rule. A number of observations from the
table are in order. First of all, the proposed MBSIF descriptor
is shown to perform better than the two other commonly
used texture representations, namely the MLBP [18] and
MLPQ [19]. This is illustrated both in the kernel and LDA
subspaces. The improved representational capacity achieved
in the new descriptor can be attributed to different facts.
First, the filters employed in the construction of the MBSIF
descriptor are based on statistical analysis of facial images
in contrast to other ad hoc design schemes such as those
used in LBP. Second, the redundancy in the input data is
minimised via a whitening transform before applying the
filters. Finally, by using an independent component analysis
in the BSIF filter design, the filter responses become statisti-
cally independent, thus suitable for further processing under
independence assumptions. Another observation is that the
CS-KDA versions of all four systems consistently perform bet-
ter than their LDA variants, thanks to the nonlinear nature of
the CS-KDA method. In comparison to other approaches, our
single descriptor system using MBSIF in the CS-KDA space
(MRF-MBSIF-CSKDA) achieves an impressive performance
of 93.63%, more than 6% better than the previous best
result in this setting. Combination of the three different

TABLE II
COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO

THE STATE-OF-THE-ART METHODS ON THE LFW DATABASE
IN THE UNSUPERVISED SETTING

TABLE III
COMPARISON OF THE PERFORMANCE OF THE MRF-FUSION-CSKDA
APPROACH TO THE STATE-OF-THE-ART METHODS ON THE LFW

DATABASE IN THE UNRESTRICTED SETTING

descriptors results in an improved accuracy both in the kernel
and linear subspaces. Comparing our best performing system
(MRF-Fusion-CSKDA) against other approaches in this
setting, it can be observed that the proposed approach outper-
forms the previous best result by 8.42% on average. As men-
tioned earlier, our method is unsupervised and hence it can
be compared to other methods under this protocol. The results
are provided in Table II. It can be observed that the proposed
system improves the best result in this setting by more than 8%
margin on average. The proposed system is even comparable to
other approaches in the “unrestricted” protocol. The results in
this setting are provided in Table III. It can be observed that the
MRF-Fusion-CSKDA approach achieves the best performance
in this protocol despite following a restricted protocol.

B. Experiments in Verification: XM2VTS
Next, we evaluate the proposed system on the rotation

shots of the XM2VTS database [58] in a verification scenario.
This experiment is designed to explore the capabilities of
the proposed approach subject to severe head rotations. The
XM2VTS rotation data set [58] is comprised of 295 subjects
consisting of 200 clients, 25 evaluation imposters and 70 test
imposters. The performance of the system is stated in Equal
Error Rate (EER) where the False Acceptance and False
Rejection rates are equal and the threshold for acceptance or
rejection of a claimant is set using the true identities of test
subjects. We crop the frontal training images using manually
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TABLE IV
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD TO THE

STATE-OF-THE-ART METHODS ON THE XM2VTS DATABASE

annotated eye coordinates to a size of 128× 144 pixels so that
the distance between the eyes is 70 pixels. The parameter J is
set to 8 as before. The test images are detected using the
Viola-Jones face detection method [59]. It has been observed
that the detection method failed to detect faces in ~ 2% of the
images where there were a severe head rotation. In these cases,
we roughly crop out the face area from the image manually.
After detection, each face image is scaled in a way that the face
area corresponds roughly to an area of 128× 144 pixels. As a
result, the system is evaluated in the presence of misalignment
and moderate scale deviations in addition to pose changes.
In this experiment, we compare the proposed method to other
pose-invariant approaches on this data set. The results are
reported in Table IV. From the table, it can be observed
that the MRF-Fusion-CSKDA approach outperforms the
MRF-Fusion-LDA and other competitors on this data set.
It can be concluded that when dense pixelwise correspon-
dences are available, the combination of the MLBP, MLPQ
and MBSIF descriptors via the CS-KDA approach can provide
a robust representation for face recognition across pose.

VI. CONCLUSION
Face verification in unconstrained settings was addressed in

this paper. In order to cope better with the complex nonlinear
face patterns, first, a nonlinear binary class-specific classifier
(CS-KDA) based on spectral regression kernel discriminant
analysis was proposed. The proposed approach offered a
number of desirable characteristics such as specificity of
the transformation for each subject, computational efficiency,
simplicity of training, isolation of the enrolment of each client
from others. Using the proposed nonlinear method, a regional
discriminative face image descriptor using the multiscale bina-
rised statistical image features (MBSIF) in the kernel space
was proposed next. The component-based representation was
coupled with the dense pixelwise alignments provided by
an MRF matching model in order to reduce the sensitivity
to misalignments and pose variations. Finally, the descrip-
tor was combined with the multiscale local binary patterns
(MLBP) and the multiscale local phase quantisation (MLPQ)
histograms via a kernel fusion approach which resulted in
improved performance. In conclusion, the main contributions
of the current work can be summarised as follows:

• a class-specific kernel discriminant analysis approach
based on spectral regression was proposed which avoided
costly eigen-analysis computation and high dimensional
feature projections;

• An effective multiscale regional discriminative face image
descriptor (kernel MBSIF) in the kernel space was pro-
posed. The descriptor enjoyed better representational

capacity by employing filters learnt via statistical analysis
of images and the nonlinear nature of the projection
function;

• A class-specific KDA fusion approach for the combina-
tion of MBSIF, MLBP and MLPQ representations was
proposed. The combination was demonstrated to enhance
system performance compared to either one of the single
descriptor systems;

• The sensitivity to pose variations was minimised by
employing an MRF model at the heart of the system to
provide dense symmetric alignment between a pair of face
images;

• The similarity between a pair of images was gauged more
effectively via a symmetric approach in the kernel space.
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