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Abstract—We investigate a game-theoretic power allocation
scheme and perform a Nash equilibrium analysis for a multi-
static multiple-input multiple-output (MIMO) radar network. We
consider a network of radars, organized into multiple clusters,
whose primary objective is to minimize their transmission power,
while satisfying a certain detection criterion. Since there is no
communication between the distributed clusters, we incorporate
convex optimization methods and noncooperative game-theoretic
techniques based on the estimate of the signal to interference
plus noise ratio (SINR) to tackle the power adaptation prob-
lem. Therefore, each cluster egotistically determines its optimal
power allocation in a distributed scheme. Furthermore, we prove
that the best response function of each cluster regarding this
generalized Nash game (GNG) belongs to the framework of
standard functions. The standard function property together with
the proof of the existence of the solution for the game guarantees
the uniqueness of the Nash equilibrium. The mathematical
analysis based on Karush-Kuhn-Tucker conditions reveals some
interesting results in terms of the number of active radars and
the number of radars that over satisfy the desired SINRs. Finally,
the simulation results confirm the convergence of the algorithm
to the unique solution and demonstrate the distributed nature of
the system.

Index Terms—MIMO radar, power allocation, game theory,
multistatic radar, Nash equilibrium, noncooperative game

I. INTRODUCTION

RECENT advances in digital signal processing and the
constant development of computational capabilities sug-

gest that it may be feasible for next generation radar sys-
tems to incorporate multiple-input multiple-output (MIMO)
technology. The superiority of a MIMO radar against other
radar schemes lies in its waveform diversity, which in essence
means that a MIMO radar can simultaneously emit several
diverse, possibly linearly independent waveforms via multiple
antennas, in contrast to existing radar systems that transmit
scaled versions of the same, predefined waveform [1]. In
particular, there are two principal types of MIMO radar,
those that incorporate colocated antennas [2] and systems
equipped with widely separated antennas (bistatic, multistatic)
[3]. MIMO radar technology provides direct applicability of
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adaptive beamforming [4], waveform design and power allo-
cation, higher angular resolution, ability to acquire the target’s
geometrical characteristics through the radar cross section
(RCS) and multiple target detection [1]. However, in order
to combat multiple source interference in a radar field, while
achieving high detection performance using minimum power
consumption, the system should adopt an optimal resource al-
location strategy. A centralised approach to resource allocation
is possible using convex optimization techniques for example.
Nevertheless, centralised control may not be desirable or will
have implementation difficulties in a multistatic radar network
and thus it is preferred to consider autonomous decentralised
resource allocation schemes. A natural and efficient tool to
achieve this is game theory, which provides a framework for
analyzing coordination and conflict between rational but selfish
players.

Recently, game-theoretic techniques have been extensively
explored within the radar research community to tackle several
issues and to improve and optimize various radar parameters.
Specifically, the authors in [5] and [6] formulated a non-
cooperative game to address the power optimization problem
with a predefined SINR constraint. Furthermore, to extend the
study in [5], a signal-to-disturbance ratio (SDR) estimation
technique was applied in [7]. Three different game theoretic
techniques were applied in [8] to address a distributed beam-
forming and power allocation problem for a radar system
in the presence of multiple targets. Specifically, a strategic
non-cooperative game, a partially cooperative game and a
Stackelberg game were applied to obtain the optimal resource
allocation strategy, while satisfying a certain SINR criterion
for each of the targets. A two-player, non-cooperative, zero-
sum game was considered in [9] to investigate the interaction
between a radar and a jammer. Non-cooperative MIMO radar
and jammer games were also applied in [10], where the utility
functions were formulated using the mutual information crite-
rion. The authors in [11] studied the problem of polarimetric
waveform design by forming a zero-sum game between a
target and a radar engineer. Moreover, in [12], the power
allocation problem of a distributed MIMO radar was tackled
using a cooperative game approach through maximizing the
Bayesian-Fisher information matrix (B-FIM) and exploiting
the Shapley value solution. Potential game theory techniques
were exploited in [13] for optimal waveform design and maxi-
mization of the detection performance. A proof of the unique-
ness of the Nash equilibrium of a potential game waveform
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design problem was presented in [14]. Finally, the authors
in [15] proposed a water filling method for optimal power
distribution using a Stackelberg game-theoretic framework.

In this paper, motivated by the results in [5] and [7], we re-
visit the power allocation problem of a distributed, multistatic
radar network, where multiple MIMO radars are organized
into clusters. It should be emphasized that this problem is
particularly attractive to tracking radars where we have certain
belief on the approximate location of the target, but we will
require fine detection to retrieve further information regarding
the target’s exact position and characteristics. The primary goal
of each cluster is to secure a certain detection criterion, in
terms of signal-to-interference plus noise (SINR) ratio, while
allocating the minimum possible power to each radar. Hence,
we formulate a generalized Nash game (GNG), where there
is no communication between the clusters of the network,
despite the fact that they belong to the same organization.
Such a scheme could be deployed in a scenario, where the
opponent incorporates electronic warfare methods to intercept
information about the location of the radars. In this case,
in order to apply the game-theoretic algorithm, we require
estimation of the SINR, as there is no coordination between the
clusters and thus no information on the inter-cluster channel
gains.

The main contribution of this work lies in the proof of
the uniqueness of the Nash equilibrium of the game-theoretic
power allocation problem described above. Specifically, we
demonstrate that the best response function of each cluster
in this GNG belongs to the family of standard functions by
using convex optimization techniques and by analyzing the
Lagrangian dual of the initial optimization problem. Moreover,
through the game-theoretic analysis, we have characterized the
behavior of the radars in a cluster. Specifically, the theoretical
results based on Karush-Kuhn-Tucker conditions showed that
in a cluster, the number of radars that exactly achieve the
desired SINR is equal to the number of radars that are
actively transmitting. This powerful result has facilitated the
proof of uniqueness of the Nash equilibrium. Furthermore, the
simulation results confirm the convergence of the algorithm to
the unique Nash equilibrium.

This paper is organized as follows. Section II introduces the
decentralized radar network as the system model. In Section III
we present the game-theoretic formulation of the problem and
the definition of the generalized Nash game (GNG) considered
in this paper. The SDR estimation technique utilized in this
work is demonstrated in Section IV. The analysis on the
existence and uniqueness of the Nash equilibrium is performed
in Section V. Finally, the simulation results and the concluding
remarks are presented in Sections VI and VII, respectively.

Notation: We use bold lower-case letters and bold uppercase
letters to denote column vectors and matrices, respectively.
aH gives the Hermitian of the vector a and aT denotes its
transpose. A(i, j) corresponds to the element located on the
ith row and jth column of matrix A. IM stands for the M ×
M identity matrix. The Euclidean norm is denoted by || · ||.
An N × 1 vector of ones is indicated by 1N . Finally, any
inequalities among vectors are considered element-wise.

II. SYSTEM MODEL

Fig. 1: A distributed MIMO radar network with K clusters and
their corresponding channel gains.

We consider a decentralized, multistatic radar network that
consists of K separate clusters C = {C1, . . . , CK} each
consisting of M radars, i.e. Ck = {Rk1, . . . , RkM} for all
k = 1, . . . ,K. Such a radar network with a possible target
is shown in Fig.1. The primary aim for each radar in every
cluster is to attain a predefined detection criterion, consuming
the minimum possible transmission power. In the considered
framework of noncooperative games, each cluster performs the
power minimization autonomously. There is communication
and coordination among the radars within the same cluster,
whereas there is no coordination between different clusters in
the network. Consequently, each cluster possesses full infor-
mation regarding the channel gains of its respective radars,
whereas it has no knowledge of the inter-cluster cross channel
gains. Nevertheless, this scenario is not competitive and the
radars should avoid causing interference to the rest of the
clusters of the network intentionally, since they belong to the
same organization.

In order to identify the desired target, each one of the M
radars in the kth cluster transmits the respective element of the
predesigned waveform vector ψk(t) = [ψk1(t), . . . , ψkM (t)]T

of size M × 1, which satisfies the orthogonality condition∫
T0
ψk(t)ψ

H
k (t)dt = IM , where T0 is the radar pulse width

and t refers to the time index within the radar pulse. Hence,
we exploit the waveform diversity of the MIMO architecture,
since the waveforms corresponding to different radars of the
same cluster are orthogonal, i.e.,

∫
ψki(t)ψkj(t)dt = 0, where

i 6= j. On the other hand, waveforms emitted from radars
belonging to different clusters may not be orthogonal and
thus could induce considerable inter-cluster interference. We
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assume that each cluster determines the presence of a target,
by applying a binary hypothesis testing on the received signal
based on the generalized likelihood ratio test (GLRT) [5]. The
sampled pulses of the received signal for radar i in cluster
k Rki, under the two hypotheses H0 and H1 of target being
absent and target being present respectively, are written as the
complex N × 1 vectors as:

H0 : xki = iki + dki (no target present) (1)

H1 : xki =
M∑
j=1

αkjiskij + iki + dki (target present) (2)

where skij =
√
pkjψkj(n)�akij denotes the desired received

signal at radar Rki corresponding to the transmission of
radar Rkj , which incorporates the Doppler shift introduced
by the target. The parameter αkji denotes the channel gain,
including the geometrical signature of the target, i.e. its radar
cross section (RCS), from radar Rkj to radar Rki, akij =
[1, ej2πfD,k,i,j , . . . , ej2π(N−1)fD,k,i,j ]T is the Doppler steering
vector, fD,k,i,j denotes the normalized Doppler shift at radar
Rki originating from the target’s movement when reflecting
the transmitted signal from radar Rkj , N is the number of
signal return samples that the radars receive at each time step
of duration T0 and pkj stands for the transmission power of
radar Rkj . The inter-cluster interference experienced by radar
Rki due to the emissions from radars belonging to all other
clusters is denoted as

iki =
K∑
`=1
`6=k

M∑
j=1

β`jki
√
p`jψ`j(n)� 1N+

+
K∑
`=1
`6=k

M∑
j=1

φ`jki
√
p`jψ`j(n)� ai`jki

+

K∑
`=1
`6=k

M∑
j=1

φc`jki
√
p`jψ`j(n)� ac`jki

where β`jki describes the direct cross-channel gain from radar
R`j to radar Rki, which depends on the respective characteris-
tics of the antennas and the distance between the radars. Since
all the radars are considered stationary in the proposed model,
there is no relative Doppler frequency regarding the direct
cross-channel interference, hence the Doppler based steering
vector associated with the waveform vector transmitted from
the radars in clusters other than k is shown as an N×1 vector
of all ones 1N . The term φ`jki stands for the target reflection
gain at radar Rki originating from the signal transmitted from
radar R`j , ai`jki = [1, ej2πf

i
D,`,j,k,i , . . . , ej2π(N−1)f

i
D,`,j,k,i ]T

describes the Doppler steering aspects of the target at radar
Rki arising from the reflected signal from radar R`j and
f iD,`,j,k,i is the corresponding Doppler frequency shift. The
term φc`jki denotes the clutter reflection gain at radar Rki
originating from the signal transmitted from radar R`j ,
ac`jki = [1, ej2πf

c
D,`,j,k,i , . . . , ej2π(N−1)f

c
D,`,j,k,i ]T describes

the Doppler steering vector of the target at radar Rki arising
from the reflected signal from radar R`j and f cD,`,j,k,i is the
corresponding Doppler frequency shift. The last components
of the received signal in (2) are the noise and the clutter intro-
duced by the waveforms transmitted by the radars in cluster
k denoted by the parameter dki =

∑M
j=1 ckji

√
pkjψkj(n) �

ackij + n, where ckji includes the signal propagation loss and
the geometrical characteristics of the clutter, in other words its
RCS, ackij = [1, ej2πf

c
D,k,i,j , . . . , ej2π(N−1)f

c
D,k,i,j ]T denotes

the Doppler steering vector at radar Rki associated with the
clutter and f cD,k,i,j denotes the normalized Doppler shift at
radar Rki arising from the clutter’s movement when reflecting
the transmitted signal from radar Rkj and each element of n
is white Gaussian noise (WGN) with variance σ2

n.
The received signal xki is subsequently sent to a bank

of matched filters, matching each of the orthogonal wave-
forms and incorporating the Doppler effect as ψki(n)� akij ,
i = 1, . . . ,M . Subsequently, the corresponding energy at
the output of the matched filter is accumulated. Hence, the
expected energy of the signal originating from the target
direction for radar Rki can be given by:

‖yexp(ki)‖2 =
M∑
j=1

E{|αkji|2}pkj =
M∑
j=1

hkjipkj (3)

where αkji ∼ CN (0, hkji), hence hkji denotes the variance
of the desired channel gain, which includes the information
on the target’s RCS. As observed from Fig.1 and equation
(2) the detection of a target is deteriorated by direct inter-
cluster interference, in addition to the clutter effect and the
noise power. Therefore, the expected power of the accumulated
interference and noise for radar Rki can be modeled as:

‖yinterf(ki)‖2 =
M∑
j=1

νkjipkj+ (4)

+

K∑
`=1
`6=k

M∑
j=1

(µ`jki + ε`jki + εc`jki)p`j + σ2
n

where σ2
n denotes the noise power, ckji ∼ CN (0, νkjiξkji)

and νkji defines the variance of the accumulated clutter
channel gains, embedding information on the clutter’s RCS,
ξkji accounts for the correlation factor associated with the
difference of the Doppler frequencies between the target and
the clutter. For the rest of this paper, we include the Doppler
correlation factor ξkji in the term νkji for simplicity. β`jki ∼
CN (0, µ`jki%`jki) and µ`jki%`jki describes the variance of the
accumulated direct cross-channel gain, aggregating a non-zero
correlation factor %`jki between the waveform vector emitted
from radar R`j and the matched filtering waveform at radar
receiver Rki. Without loss of generality, we assimilate the
waveform correlation factor %`jki and consider the whole term
as µ`jki in the sequel. φ`jki ∼ CN (0, ε`jki%̃`jki) and ε`jki is
the variance of the accumulated inter-cluster target reflection
gain, including information on the target’s RCS and %̃`jki is
the correlation factor between the target reflected waveform
emitted from radar R`j and the matched filtering waveform
at radar receiver Rki. φc`jki ∼ CN (0, εc`jki%̃

c
`jki) and εc`jki
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describes the variance of the accumulated inter-cluster clutter
reflection gain and %̃c`jki is the correlation factor between
the clutter reflected waveform emitted from radar R`j and
the matched filtering waveform at radar receiver Rki. We
assume that the variances of the inter-cluster target and clutter
reflection gains are significantly smaller when compared to the
variance of the direct cross-channel gain and hence ε`jki and
εc`jki are neglected for the rest of this work. Also, as we do
not assume any prior knowledge of the interference coming
from radars in other clusters but we only estimate it, these
terms can also be absorbed in µ`jki.

Based on the above definitions, the expected SINR for the
ith radar in the kth cluster is written as

SINRki =

M∑
j=1

hkjipkj

M∑
j=1

νkjipkj +
K∑̀
=1
`6=k

M∑
j=1

µ`jkip`j + σ2
n

. (5)

In order to design an efficient detector for the hypothesis
testing we utilize the GLRT. Assuming the clutter and in-
terference contribution is considered as Gaussian noise, the
probability density functions of xki under hypothesis H0 and
H1 respectively, can be given by:

fH0(xki;σ
2
H0

) =
1

(2π)N/2σNH0

e
− ‖xki‖

2

2σ2
H0 (6)

fH1(xki;aki,σ
2
H1

) =
1

(2π)N/2σNH1

e
−
‖xki−

∑M
j=1 αkjiskij‖

2

2σ2
H1

(7)
where aki = [αk1i, . . . , αkMi]

T . The maximum likelihood
(ML) estimate of noise variance under the hypothesis H0,
when there is no target present, can be obtained by σ̂2

H0
=

‖xki‖2/N . Subsequently, by keeping σ2
H1

fixed and differ-
entiating fH1

with respect to αkji, the ML estimate for
αkji ∀i = 1, . . . ,M is given by α̂kji = sHkijxki/N . After
obtaining the ML estimate for αkji, we substitute it in (7)
and maximize with respect to σ2

H1
to derive the maximum

likelihood estimate for σ2
H1

as:

σ̂2
H1

=
‖xki −

∑M
j=1 α̂kjiskij‖2

N

Let λki ∈ [0, 1] denotes the detection threshold for the
hypothesis testing for each radar i = 1, . . . ,M in cluster k
and thus the GLRT can be reformulated as:

fH1

fH0

=

∑M
j=1 |sHkijxki|2

‖xki‖2N
H1

≷
H0

λki (8)

The performance and efficiency are generally assessed in
terms of the probabilities of detection Pd and false alarm
Pfa for each radar. It is shown in [16] that as the number of
samples approaches infinity, the performance of the GLRT is
similar to that of the Neyman-Pearson detector. Consequently,
the threshold for hypothesis testing λki can be obtained from
the desired probability of false alarm Pfa [6], [17]–[19].
However, the probability of detection will depend on the

threshold and the SINR associated with the received signal.
Hence, for a given Pfa, and a desired Pd, it is possible
to determine the desired SINR γ∗ki [6], [17]–[19]. Hence,
we formulate our game-theoretic resource allocation problem
as optimizing transmission power while achieving a desired
SINR, as presented in the next section.

III. GAME-THEORETIC FORMULATION

As described in the previous sections, the main goal for
each cluster is to decide the optimal power allocation for its
respective radars, while attaining a specific detection criterion.
As we observe from the SINR equation (5), although increased
power allocation at a specific cluster improves the detection
performance, it induces higher interference to the environment
and consequently to the remaining radars of the network.
Therefore, by exploiting noncooperative game-theoretic tech-
niques, we model this interaction as a generalized Nash game.
The set of clusters C = {C1, . . . , CK} are considered to be
the players of the game. The action set of the kth player is
Pk = Pk1 × . . .× PkM with

Pki = {pki ∈ R+}, ∀i ∈ {1, . . . ,M}

The acceptable strategy set of the GNG depends both on the
action of the kth player Pk and the actions of all other players
P−k and is defined as

Sk(p−k) = {pk ∈ Pk | SINRki ≥ γ∗k , ∀i = 1, . . . ,M} (9)

where p−k denotes the power allocation adopted by all
other players except player k. Let us also define pk =
[pk1, . . . , pkM ]T as the power allocation vector of cluster k. It
is evident from equation (5), that the SINR is a function of the
power allocation of all K players. Thus, the interdependency
of the admissible strategies is clearly stated through the con-
straints in (9). The game model is completed by defining the
utility function as uk(p−k,pk) =

∑M
i=1 pki, which represents

the total transmission power of cluster k. At this point, we can
summarize the game as:

G =< C, (Pk)k∈{1,...,K}, (Sk)k∈{1,...,K}, (uk)k∈{1,...,K} >

In this GNG, player k greedily minimizes its transmission
power, while all radars belonging to cluster k attain the target
SINR, given the power allocation strategies of all the other
players. Therefore, the best action for the kth player is given
by the following set, denoted by BRk:

BRk(p−k) = {p∗k ∈ Pk |

uk(p−k,p
∗
k) ≤ uk(p−k,pk),∀pk ∈ Sk(p−k)}

Recalling the action set of player k, the above set can be
determined by solving the following convex optimization
problem:

min
pk∈Pk

uk(p−k,pk) (10)

s.t. SINRki ≥ γ∗ki, ∀i = 1, . . . ,M
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pk ≥ 0

It is apparent that for any cluster of radars, if the optimiza-
tion problem in the absence of inter-cluster interference and
noise is infeasible, then the optimization in the presence of the
inter-cluster interference and noise is also infeasible. Hence, it
is important to ensure that the SINR targets are set such that
the following signal-to-intra-cluster interference ratio (SICIR)
is achievable:

SICIRki =

M∑
j=1

hkjipkj

M∑
j=1

νkjipkj

≥ γ∗ki, ∀i = 1, . . . ,M (11)

It can be deduced from (11) that for certain values of hkji and
νkji, (10) could become infeasible for high SINR targets. In
such cases, when low SINR targets are required for ensuring
feasibility, we could rely on increasing the dwell time of the
radar on the target. In other words, by increasing the number
of signal return samples N , a lower SINR target γ∗ki can be
used for detection, as shown in [6]. Hence, in this work,
we assume that the SINR targets are appropriately chosen,
such that for the given target and clutter channel realizations,
namely hkji and νkji, the constraints in (11) are achievable,
i.e. the convex optimization problem (10) is feasible in the
absence of inter-cluster interference and noise. However, if the
problem is feasible in the absence of inter-cluster interference
and noise, then the problem is also feasible in the presence of
inter-cluster interference and noise as stated by the following
proposition.

Proposition 1: If the convex optimization problem in (10) in
the absence of inter-cluster interference and noise is feasible,
then the problem is also feasible in the presence of inter-cluster
interference and noise.

Proof. The proof is based on showing that there exists a
positive scaling factor for the power allocation such that the
SICIRs and the SINRs asymptotically approach the same
values as demonstrated in [20]. Let the inter-cluster plus noise
term be denoted as r−ki =

∑K
`=1
`6=k

∑M
j=1 µ`jkip`j + σ2

n. Since

r−ki is strictly positive by definition, the SINRs of the general
case model are strictly lower than the SICIRs in the absence
of r−ki, namely

M∑
j=1

hkjipkj

M∑
j=1

νkjipkj + r−ki

<

M∑
j=1

hkjipkj

M∑
j=1

νkjipkj

for every radar in the system. However, by scaling the power
allocation pk to βpk for appropriately large β > 0 and divid-
ing both the numerator and the denominator of the left hand
side of the above inequality, then as the term r−ki/β approaches
zero for arbitrarily large β, the SINRs approach the SICIRs
within a required accuracy. Since the optimization problem
with SICIR constraints is feasible, the power allocation vector
pk is non-negative. Hence, there exists a scaled non-negative
power allocation vector that also renders the problem in the
presence of inter-cluster interference and noise feasible.

A crucial part of a game-theoretic analysis is to investigate
whether the game G converges to a stable solution, where no
player can benefit by unilaterally deviating its power allocation
strategy. Such a solution defines the Nash Equilibrium and for
the game G describes the strategy profile (p∗−k,p

∗
k) when:

uk(p
∗
−k,p

∗
k) ≤ uk(p∗−k,pk), ∀pk ∈ Sk(p∗−k),∀k ∈ C.

It is evident from the constraints of (10) and the definition
of SINR (5), that each radar in cluster k requires knowledge
of the inter-cluster interference plus noise term, r−ki, in order
to determine its optimal power allocation. However, since we
assume no communication between the clusters, it is difficult
to obtain the required information and thus we overcome this
deficiency by using the estimate of the instantaneous SINR
γ̂ki using a similar approach as discussed in [6]. Section
V describes the power allocation optimization based on the
estimate of SINR.

IV. EXISTENCE AND UNIQUENESS OF THE NASH
EQUILIBRIUM

A. Existence

The existence of a generalized Nash equilibrium (GNE) fol-
lows from the result in [21] on abstract economies. According
to this result, a GNE exists if the following hold: for all players
k = 1, . . . ,K the set Pk is compact and convex, the utility
function uk(p−k, pk) is continuous on P and quasi-convex in
pk. For every p−k the set-valued function Sk is continuous
with closed graph and for every p−k the set Sk(p−k) is non-
empty and convex. For our problem, these requirements can
be straightforwardly established using analytic notions, hence
there exists a GNE for our game.

B. Uniqueness of the Solution through Duality Analysis

The main contribution of this paper lies in the analysis
and the derivation of the proof of the uniqueness of the
Nash equilibrium for the strategic noncooperative game G.
According to the result in [22] and since the existence of a
GNE is secured, our primary objective is to prove that the
best response of each cluster is a standard function, which
is a sufficient condition for the uniqueness of the solution.
By exploiting the convexity of the optimization problem (10)
we derive the respective Lagrangian, the Karush-Kuhn-Tucker
(KKT) conditions and the Lagrangian dual problem. The
analysis of the KKT conditions is necessary for the equilibrium
analysis as some of the radars may achieve the desired SINR
with inequality, i.e. could over satisfy the SINR requirement.
First, we reproduce the definition of a standard function [22]
as follows:

A function F(x) is standard if for all x ≥ 0, the following
properties hold:
• Positivity: F(x) > 0
• Monotonicity: If x ≥ x′, then F(x) ≥ F(x′)
• Scalability: ∀a ≥ 1, aF(x) ≥ F(ax)
In order to prove that the best response function of each

cluster is a standard function, we will consider the opti-
mization problem of the kth cluster as defined in (10). By
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rearranging the constraints in matrix form and explicitly im-
posing constraints for non negative radar power, we have the
following minimization problem for the kth cluster:

min
pk∈Pk

M∑
i=1

pki (12)

s.t. Gpk + r−k ≤ 0

−pk ≤ 0

where r−k = [r−k1, . . . , r−kM ]T is the inter-cluster inter-
ference plus noise vector, which can be written as r−k =∑K
`6=kM`p` + 1σ2

n, where the cross-channel matrix Mi is
given by:

M` =

 µ`1k1 . . . µ`Mk1

...
. . .

...
µ`1kM . . . µ`MkM


and M ×M matrix G is written as:

G = −


hk11
γ∗k1
− νk11 . . . hkM1

γ∗k1
− νkM1

...
. . .

...
hk1M
γ∗kM

− νk1M . . . hkMM
γ∗kM

− νkMM


For the multi-static scenario considered in this paper, it is

possible that some of the radars in a cluster may not illuminate
any signals, however, they may use the signals generated
by other peer radars (within the same cluster) as signals
of opportunity to achieve the desired SINR and to detect
the target. When all radars are active, it is straightforward
to establish uniqueness of the GNE as will be shown in
the forthcoming analysis, however, when at least one of the
radars in a cluster is inactive, the establishment of the Nash
equilibrium requires further analysis in terms of the KKT
conditions, as presented later in the section. Hence, we define
the Lagrangian L associated with the problem (12) as:

L(pk,λa,λb) =
M∑
i=1

pki+λ1(G11pk1+. . .+G1MpkM+r−k1)+

. . .

+λM (GM1pk1 + . . .+GMMpkM + r−kM )

−m1pk1 −m2pk2 − . . .−mMpkM

= λTa r−k + (1+GTλa − λb)Tpk (13)

where λa = [λ1, . . . , λM ]T and λb = [m1, . . . ,mM ]T are the
Lagrange multipliers associated with the inequality constraints
of (12). Let (p∗k,λ

∗
a,λ

∗
b) be the primal and dual optimal points

of (12). Then, the KKT conditions on convexity must be
satisfied [23]. In particular we have:

∂L
∂pk1

= 1 + λ1G11 + . . .+ λMGM1 −m1 = 0

. . .

∂L
∂pkM

= 1 + λ1G1M + . . .+ λMGMM −mM = 0

 (14)

λ1(G11pk1 + . . .+ G1MpkM + r−k1) = 0

. . .

λM (GM1pk1 + . . .+GMMpkM + r−kM ) = 0

 (15)

m1pk1 = 0, . . . ,mMpkM = 0 (16)

In order to investigate all of the potential outcomes of the
game G, we consider three different cases with respect to the
values of the Lagrange multipliers λa, associated with the
SINR constraints. In particular, firstly we study the case when
all of the radars achieve the SINR target with equality. In this
case, all of the corresponding Lagrangian multipliers are non
zero and the uniqueness is proved straightforwardly using the
definition of the standard function. The second case is when all
of the Lagrangian multipliers are zero. It is shown that this case
is impossible. The final case is when certain radars achieve the
desired SINR with equality while the remaining radars in the
cluster over satisfy the SINR target. In this case, we have both
zero and non-zero Lagrangian multipliers. For this case, we
resort to the analysis of the Lagrange dual problem and the
derivation of the Lagrangian function and the KKT conditions
to establish the GNE. The mathematical analysis of the proof
of the uniqueness of the solution considering all possible cases
is presented below:

Case 1: λi 6= 0,∀i = 1, . . . ,M . In this case, the set of
equalities (15) from the KKT conditions implies that all of
the SINR inequality constraints are active and must be satisfied
with equality. Hence, by reformulating (15) in a matrix form
we have Gp∗k = −r−k. Following Proposition 1, we assume
that the optimization problem (12) is always feasible ∀r−k >
0, hence G must be invertible and p∗k = −G−1r−k > 0. This
case corresponds to the scenario when all of the radars are
active and actually transmit signals. As a result, by replacing
the interference vector, the best response function can be stated
as:

BRk(p−k) = p∗k = −G−1
 K∑
`6=k

M`p` + 1σ2
n

 (17)

Lemma 1: The best response function (17) is a standard
function.

Proof. Following [24], the best response strategy (17) satisfies
the following necessary properties for all p−k ≥ 0:

a) Positivity: The best response of the kth cluster p∗k is
always positive, as r−k =

∑K
`6=kM`p` + 1σ2

n > 0 and p∗k =

−G−1r−k > 0 is feasible ∀rk > 0.
b) Monotonicity: Let p−k,p

′

−k ∈ Pk with p−k ≥ p
′

−k,
then:

BRk(p−k)−BRk(p
′

−k) = −G−1
 K∑
`6=k

M`(p` − p′`)

 ≥ 0

c) Scalability: For all a > 1, aBRk(p−k) > BRk(ap−k).
Indeed:
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aBRk(p−k)−BRk(ap−k) = −(a− 1)G−11Mσ
2
n > 0.

This concludes the proof on the uniqueness for Case 1,
where all of the SINR constraints are satisfied with equality.

Case 2: The Lagrangian multipliers corresponding to the
SINR constraints are zero, i.e. λ1 = λ2 = . . . = λM = 0. We
prove this case does not exist, as follows.

Assuming λ1 = λ2 = . . . = λM = 0, then from (14) we
have that m1 = . . . = mM = 1. By substituting in (16), we
obtain pk1 = . . . = pkM = 0 which indicates that all the
radars in cluster k are inactive. Consequently, the constraints
of the optimization problem (12) can be restated as:

r−k1, . . . , r−kM ≤ 0

which is a contradiction, since the inter-cluster interference
plus noise terms are always positive, i.e. r−k1, . . . , r−kM > 0.
As a result, at least one of the radars in the cluster must be
active in order for the optimization problem (12) to be feasible.

Case 3: Here, we investigate the case when at least one
of the radars in the kth cluster achieves the SINR target with
equality and the remaining radars with inequality. Without loss
of generality, suppose that the first n radars satisfy the SINR
constraint with equality. Hence from (15) λ1, . . . , λn > 0 and
λn+1 = . . . = λM = 0. The Lagrangian function in this case
becomes:

L̃(pk,λa,λb) =
M∑
i=1

pki+λ1(G11pk1+. . .+G1MpkM+r−k1)

. . .

+λn(Gn1pk1 + . . .+GnMpkM + r−kn)

−m1pk1 −m2pk2 − . . .−mMpkM

= λ̃
T

a r̃−k + (1+GT λ̃a − λb)Tpk (18)

where λ̃a = [λ1, . . . , λn, 0, . . . , 0]
T , r̃−k = [r−k1, . . . , r−kn,

0, . . . , 0]T and λb is the same as that in (13).
Theorem 1: In the case when exactly n radars in cluster

k achieve the SINR constraints with equality, then at least
M −n radars in cluster k remain inactive and do not generate
any signals.

Proof. In order to investigate the interdependence among the
number of radars that satisfy the SINR constraint with equality
and the number of the radars that are active and actually
generate illuminating waveforms in cluster k, a critical analysis
on the Lagrange multipliers λb is essential. Hence, we obtain
the Lagrange dual function g as:

g(λ̃a,λb) = inf
pk
L̃(pk,λa,λb) = (19)

= λ̃
T

a r̃−k + inf
pk

(1+GT λ̃a − λb)Tpk

It is straightforward from (18) that the Lagrangian is an affine
function of pk and is bounded below only when 1+GT λ̃a−
λb = 0. Thus, it follows

g(λ̃a,λb) =

{
λ̃
T

a r̃−k, if 1+GT λ̃a − λb = 0
−∞, otherwise

(20)
Next, we formulate the Lagrange dual problem as:

max g(λ̃a,λb)

s.t. λ̃a ≥ 0

λb ≥ 0

By excluding the case when g is infinite and changing the
sign of the objective function and by exploiting the fact that
from (20), λb = 1+GT λ̃a, we can rewrite the aforementioned
maximization problem as the following minimization problem:

min −λ̃
T

a r̃−k (21)

s.t. 1+GT λ̃a ≥ 0

λ̃a ≥ 0

Proposition 2: For any feasible optimization problem (12),
at least one of the elements in each row of matrix G must be
negative.

Proof. If every element in any row of G is positive, the left
hand side of the corresponding SINR constraint Gpk+r−k ≤
0 in (12) will always be positive, since pk ≥ 0 and r−k is
strictly positive. Hence, the constraints Gpk + r−k ≤ 0 are
violated and the convex problem (12) is rendered infeasible.

The overall aim of the dual problem (21) is to obtain
the largest possible λ̃a in order to minimize the cost, while
satisfying λb = 1 + GT λ̃a ≥ 0. However, λ̃a can not
grow unbounded, because this will violate the constraint
1 + GT λ̃a ≥ 0, since at least one element per row of G
(or column of GT ) is negative. Consequently, in order to
minimize the objective (i.e. maximize λ̃

T

a r̃−k), λ̃
T

a will grow
until exactly n elements of the vector 1+GT λ̃a are equal to
zero. In other words, due to n degrees of freedom (i.e. number
of non-zero elements of the Lagrangian multipliers vector λ̃a),
it is possible to obtain λ̃a such that exactly n rows of the
constraints 1+GT λ̃a ≥ 0 will be satisfied with equality and
the rest with strict inequality (there are n linear combinations
to constitute n constraints equal to zero). Subsequently, from
(20), one has:

λb = 1M +GT λ̃a (22)

It is evident from (22) that exactly n elements of the La-
grangian multipliers vector λb are equal to zero and the
remaining M − n elements are positive. Due to the comple-
mentary slackness condition denoted in (16), at least M − n
values of vector pk are zero, i.e. at least M − n radars in the
respective cluster would opt to remain silent and would not
transmit any signals.
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Corollary 1: The indices of the radars that are inactive in
a cluster are determined only by the target and clutter channel
characteristics of the corresponding cluster and the target
SINR, and are independent of the actions of the other clusters
and the corresponding cross-clutter channel interference.

Proof. It comes straightforwardly from the proof of Theorem
1 and equation (22) that the indices of the radars that remain
silent in a cluster depend solely on the matrix G, whose
elements are functions of the channel gains and the target
SINR of the corresponding cluster.

The finding in Corollary 1 is very important for the Nash
equilibrium analysis. When a subset of radars is inactive in
a cluster, the action set in terms of the power allocation of
a cluster is reduced to the power allocation of those radars
that will eventually be active. In other words, determining
indices of radars that are inactive is not part of the action
set of the game as it will not be influenced by the action of
other clusters. Hence the best response function for standard
function analysis should include only the power allocation of
active radars. Furthermore, the distributed nature of Corollary
1 strengthens the decentralized approach of the considered
model.

By revisiting equation (15) from the KKT conditions of
the convex optimization problem (12), the SINR constraints
corresponding to λ1, . . . , λn 6= 0, are satisfied with equality.
All other SINR constraints will be satisfied with inequality.
Hence, the optimal power allocation can be obtained only
by using the SINR equations that achieve equality. At this
setting, other radar receivers will automatically satisfy the
SINR constraints with inequalities. Therefore, we consider
only the active antennas and the receivers that achieve the
SINR target with equality and obtain the following reduced
dimensional matrix equation:

Gredq
∗
k = −rred

−k (23)

where q∗k = [p11, . . . , p1n]
T , rred

−k = [r−k1, . . . , r−kn]
T and

the reduced square n× n matrix Gred is defined as:

Gred =

G11 . . . G1n

...
. . .

...
Gn1 . . . Gnn


It is straightforward that the solution of this set of n equations
solely depends on matrix Gred, which is determined from
the channel gains regarding cluster k and from the target
SINR. Hence, as the problem is always feasible (Proposition
1) ∀rred

−k > 0, Gred must be invertible and the best response
function of cluster k in this case can be defined as:

BRk(p−k) = q∗k = −G−1red r
red
−k (24)

When Gred from (24) is full rank and when n radars in
cluster k attain the SINR with equality, then exactly n radars
in cluster k will be active and actually transmitting, whereas
the remaining (M − n) radars will remain inactive. However,
it is possible theoretically to have certain channel gains, clutter
gains and target SINR such that n radars could attain SINR

with equality but with fewer than n radars being active. This
happens when Gred is rank deficient or when any column of
Gred is co-linear with rred

−k. In the latter case for example, we
may have all n radars achieving SINR with equality, however,
only one radar will be transmitting. Although this may happen
with almost zero probability, the following Lemma is still
applicable to this scenario as well with a reduced size Gred.
Hence, without loss of generality, we consider the case of full
rank Gred.

Lemma 2: The best response function (24) is a standard
function.

Proof. Following Lemma 1, the best response strategy (24)
satisfies the following necessary properties for all p−k ≥ 0:

a) Positivity: The best response of the kth cluster q∗k is
always positive, as rred

−k > 0 and q∗k = −G−1red r
red
−k is feasible

∀rred
−k > 0.
b) Monotonicity: for p−k ≥ p′−k, we have from Lemma

1 that r−k ≥ r
′

−k element wise and consequently rred
−k ≥ r

′red
−k .

As a result:

BRk(p−k)−BRk(p′−k) = −G−1red

(
rred
−k − r

′red
−k

)
≥ 0

c) Scalability: Using the same approach as Lemma 1, for
all a > 1, we must show that aBRk(p−k) > BRk(ap−k).
Indeed:

aBRk(p−k)−BRk(ap−k) = −(a− 1)G−1red 1nσ
2
n > 0.

Lemma 2 completes the uniqueness of the Nash equilibrium
of the GNG G, considering all possible cases.

V. SINR ESTIMATION

In order to obtain the power allocation values, each radar
needs to perform the optimization as in (12). This requires
estimation of the inter-cluster interference plus noise variance
r̂k. However, using (17), we could write the estimate of inter-
cluster interference plus noise variance in terms of the estimate
of SINR as follows:

r̂−ki = −Ĝpk (25)

where the matrix Ĝ is constructed as:

Ĝ = −


hk11
γ̂k1
− νk11 . . . hkM1

γ̂k1
− νkM1

...
. . .

...
hk1M
γ̂kM

− νk1M . . . hkMM
γ̂kM

− νkMM


where γ̂ki is the estimate of instantaneous value of SINR,
which was obtained using a similar approach as in [6]:

γ̂ki =

M∑
j=1

|sHkjxki|
2

N − ||xki||
2

N

||xki||2 −

M∑
j=1

|sHkjxki|
2

N

(26)
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Hence, by replacing the estimated inter-cluster interference
plus noise term into the constraints of (12), the power mini-
mization problem for cluster k at time t can be reformulated
as:

min
pk∈Pk

M∑
i=1

p
(t)
ki (27)

s.t. Gp
(t)
k ≤ Ĝp

(t−1)
k

−p(t)
k ≤ 0

where p
(t−1)
k is the power allocation vector at the previous

iteration (t − 1), and p
(t)
k is the power allocation at the cur-

rent iteration provided by the optimization problem (27). By
utilizing the SINR estimation (26), the proposed system can
perform power minimization in a totally distributed manner,
without the need for any communication among the clusters.
It should be highlighted that this power allocation problem is
particularly attractive for tracking radars where we have certain
belief on the approximate location of the target, but we will
require fine detection to track the exact location. In this case,
we aim to obtain optimum power allocation to maintain par-
ticular SINR hence probability detection. However, in the case
there is no target, (26) will provide on average approximately
− 1
N as the estimated SINR. This is because the waveform is

matched to a particular delay and Doppler corresponding to
approximate location and velocity of the target. Hence, in the
absence of a target,

∑M
j=1 |sHkjxki|2 goes to a small value, thus

the dominant term ||xki||2 in the numerator and denominator
will cancel each other and we will obtain − 1

N . As this is a
negative number, the optimization problem will be indicated
as infeasible and as a result we will have to resort to a standard
power allocation, where each radar will be allocated to some
minimum level of power to perform general surveillance. In
the next section, we present simulation results to support the
mathematical analysis.

VI. SIMULATION RESULTS

In this section, we present simulation and numerical results
to illustrate the convergence of the algorithm to the unique
solution and to demonstrate the distributed structure of the
network. Initially, we consider a network consisting of two
clusters, each with six radars. In every time step, each radar
receives N = 32 signal samples. We also set the maximum
number of iterations at T = 30 to investigate the convergence
of the game. For a predefined target channel gain hkji,
we set the values of the cross-channel and clutter gain as
µljki = hkji/20 and νkji = hkji/10. The channel gains for
the simulations were chosen following a uniform distribution
in the range [0, 1]. Finally, the Doppler shift is considered to
be fD,k,i,j = 0.1 for all k = 1, . . . ,K, i = 1, . . . ,M and the
noise power is set to σ2

n = 0.01.
Before the initialization of the game, we should first decide

the detection criterion for all radars, namely the desired SINR
γ∗ki. We consider that the covariance matrix of the intercluster
plus clutter plus noise interference at radar Rki is denoted
as E[n̂n̂H ] = B, where n̂ = iki + dki and is positive

definite. For a given B, we may use (15) and (16) of [19] to
determine the desired SINR for specific probabilities of false
alarm and detection, Pfa and Pd. In the considered model,
we set the desired probabilities of false alarm and detection
at Pfa = 0.0099 and Pd = 0.999, respectively, and we
obtain the corresponding detection threshold and SINR target,
λki = 0.001 and γ∗ki = 2.1599, respectively, for every radar.

In order to study the convergence of the GNG, Figures
2 and 3 demonstrate the power allocation update of all the
radars in the network for two different initial power allocations
in cluster 2. The channel gains remain the same in both
simulations. First, it is evident that the number of active radars
in both clusters is the same in both examples, regardless
of the initial power allocation. Furthermore, power values in
both simulations converge to the same Nash equilibrium, as
expected. The efficiency of the algorithm is evident, as the
process converges to the optimal power allocation within 6
iterations. This result confirms Theorem 1, suggesting conver-
gence to the unique Nash equilibrium regardless of the initial
strategy.

Fig. 2: Power allocation of the network when K = 2 and
M = 6 (p1 = 0.01× 1M , p2 = 0.02× 1M )

Fig. 3: Power allocation of the network when K = 2 and
M = 6 (p1 = 0.01× 1M , p2 = 0.05× 1M )

In the second example we consider a network of four
clusters. Each cluster consists of three radars. Figure 4 depicts
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the convergence to the optimal solution for player 1 for
seven different initial strategies, when the rest of the players
initialize the game with p2 = [0.2855, 0.6874, 0.8295], p3 =
[0.3217, 0.4094, 0.4947] and p4 = [0.7034, 0.0840, 0.2690].
Similarly to this, in Figure 5 we consider the same setup, with
the difference that the rest of the players begin the game with
p2 = [0.8080, 0.5531, 0.7784], p3 = [0.8942, 0.7354, 0.9214]
and p4 = [0.7888, 0.6853, 0.7785]. The results highlight that
regardless of the starting point of the players, the game
converges to the unique Nash equilibrium.

Fig. 4: Convergence of power allocation of player 1 for
different starting strategies when K = 4 and M = 3, first
simulation (different linestyles correspond to different initial
strategies for player 1).

Fig. 5: Convergence of power allocation of player 1 for
different starting strategies when K = 4 and M = 3, second
simulation (different linestyles correspond to different initial
strategies for player 1).

In order to assess the efficiency of the proposed power

allocation technique, we compare the results of the proposed
method with the case when uniform power allocation is
considered among the radars of the same cluster. Uniform
power allocation has been studied in [25], [26] when a fixed
system power budget is considered. By imposing an additional
constraint in the optimization problem (10), which allocates
uniformly the power among the radars in the same cluster, we
obtain the resource allocation for the uniform power allocation
GNG. To facilitate a fair comparison, we set the same SINR
target in both cases and we simulated three different radar
system scenarios, the first consisting of two clusters each with
two radars, the second consisting of two clusters each with
six radars and the last one considering three clusters each
consisting of three radars. Table I presents the total power
consumption in each cluster for each scenario comparing the
proposed GNG to the uniform resource allocation case. It is
apparent that the proposed game-theoretic technique outper-
forms the uniform power allocation in all cases, in terms of
the total power consumption in each of the clusters. In order to
illustrate the aforementioned result, Fig.6 presents a histogram
of the total power consumption at cluster 1, comparing the
two methods for the three different radar network cases. It
is yet again evident, that the total power consumption for
the proposed scheme is much lower than the uniform power
allocation to achieve the same set of SINRs for all system
scenarios simulated.

Fig. 6: Total power consumption at cluster 1, comparing the
proposed GNG with the uniform power allocation GNG, for
different system scenarios.

Final example considers a scenario where we used estimates
of interference arising from other clusters (instead of the
true values) for the game-theoretic algorithm. We assume a
network of two clusters, each consisting of four radars. Figure
7 shows the power allocation of the radars in the first cluster
throughout the convergence process using the true and the
estimated SINR from (26). It is evident that the estimation
is sufficiently accurate and the convergence based on the
estimation of the SINR follows the convergence trajectories
of the power allocation game obtained using the true SINR
values.
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TABLE I: Total power consumption in each cluster for three different system realizations.

K=2, M=2 K=2, M=6 K=3, M=3

Proposed GNG 0.0763 0.0418 0.1382 0.1398 0.0641 0.1190 0.0895

GNG with uniform power allocation 0.1186 0.0762 0.5993 0.6351 0.2918 0.3854 0.2375

Fig. 7: Power allocation in the second cluster using the true
and the estimated value of the SINR when K = 2 and M = 4.

VII. CONCLUSION

We have studied game-theoretic power allocation for a
distributed MIMO radar system. By defining a GNG and
exploiting convex optimization techniques and duality prop-
erties, we presented an extended Nash equilibrium analysis,
concluding with the proof of the existence and uniqueness of
the solution. Through this analysis, we also derived important
properties of the system. In particular, we proved that the
number of active radars in a cluster that actually transmit
signals is exactly the same as the number of radars in the
same cluster that satisfy the SINR constraint with equality. In
addition, the number of active radars and the optimal strategy
of a cluster are dependent only upon the channel gains and
the target SINR and are totally independent of the other
players’ power allocation. This contribution strengthens the
decentralized and distributed nature of the system. Finally, the
simulation results support the mathematical analysis of the
convergence and the study of the existence and uniqueness of
the Nash equilibrium.
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