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Abstract— Fast back-projection algorithms are required for
new modalities of SAR, such as UWB SAR. In this paper we
propose a novel algorithm which we call the fast decimation-in-
image back-projection algorithm due to its relation to decimation-
in-time FFT algorithms. It is the natural dual of existing fast
back-projection algorithms which are related to decimation-in-
frequency FFT algorithms. The proposed algorithm provides
similar speed up to existing algorithms, however, it has additional
advantages. The advantages relate to the way in which the
algorithm manifests errors. The size and nature of the errors
introduced in the proposed algorithm are more desirable than
that of existing algorithms.

I. INTRODUCTION

The Synthetic Aperture Radar (SAR) imaging methodology
was developed as a more effective means of producing radar
images than real-aperture imaging methods. Unlike a real-
aperture imaging system, a SAR system does not require a
large cross-range antenna aperture in order to produce a high
cross-range resolution image. It instead uses a smaller physical
aperture antenna mounted to a moving platform (typically an
aircraft or a satellite) to synthesise a larger aperture.

The goal of SAR imaging is to form an image, which will
be an approximation of the scene reflectivities. This image will
consist of a finite number of complex samples. The majority
of SAR image formation algorithms, can be consider to be an
approximation of a two-dimensional match filter, where each
pixel in the resulting image is the result of a correlation of
the phase history with the expected signal for a target at that
location.

For airborne SAR, arguably the most commonly used image
formation algorithms are the back-projection (BP) algorithm,
the range migration algorithm (RMA) and the polar format
algorithm (PFA). Each algorithm has its advantages and disad-
vantages, which are based around the trade off between image
quality and computational complexity. The most accurate
approximation to the true match filter solution is achieved
by the BP algorithm. The BP algorithm can be used for all
types of synthetic apertures, chirp bandwidths, beamwidths
and scene terrains. In contrast, the RMA is only suitable
for flat terrain and synthetic apertures that are linear. While,
the PFA is only suitable for far-field imaging. Unfortunately,
the complexity of the BP algorithm is much greater than the
complexity of the other algorithms and therefore it has seldom
been used operationally.

New modalities of SAR, in particular ultra-
wideband (UWB) SAR, have renewed interest in the
BP algorithm. In these applications the synthetic aperture
can be very long which makes maintaining a linear aperture
challenging. Also, at large wavelengths, the antenna beam
width is usually large, making the imaging near-field. In these
scenarios, the BP algorithm is the only match filter based
algorithm suitable for image formation.

These types of applications have led many researchers to
develop algorithms, which are as versatile as the BP algorithm,
but have a reduced complexity [1], [2], [3]. Fast BP algorithms
have been proposed which require O

(
N2 logN

)
operations

for an N×N pixel image which is formed from a phase history
with N aperture positions. This is a reduce order of operations,
when compared to the BP algorithm which requires O

(
N3
)

operations. The reduce complexity order is usually achieved
by recursively splitting the image grid and correspondingly
decimating the phase history before performing the BP algo-
rithm. In [1], the image grid is recursively split in a quad tree
structure and the phase history is decimated by combining
close aperture positions at each stage of recursion, with a
beamforming like procedure in a polar co-ordinate system.
In [2], [3], the image is also recursively split in a quad tree
structure, however, the phase history is decimated at each stage
of recursion in a different manner to the previous algorithms.
The phase history is instead decimated independently in fast-
time and slow-time. The algorithm presented in [3] was
motivated by [4], which appeared in the tomography literature,
but is virtually identical to the algorithm presented in [2].
More recently, in [5], another algorithm has been proposed
which has a different strategy for achieving the same order of
complexity. The authors state that their “butterfly” algorithm
is a generalisation of the fast multipole method (FMM) [6].
The FMM has previously been used to compute fast matrix
vector products, for example the FMM based non-uniform FFT
(NFFT) [7].

In this paper, a novel fast BP algorithm will be proposed,
which is coined, the fast decimation-in-image BP algorithm.
The name was selected due to its relation to decimation-in-
time FFT algorithms. It is the natural dual of the other fast BP
algorithms [2], [3] which we coin as fast decimation-in-phase-
history BP algorithms, due to their relation to decimation-
in-frequency FFT algorithms. The performance of the fast
decimation-in-image BP algorithm in terms of its image qual-
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ity and computational speed will demonstrated.

II. IMAGE FORMATION

Standard SAR image formation algorithms are based on
approximations of a two-dimensional match filter. To compute
this match filter we must first define the forward observational
model of the SAR system. An observational model for a mono-
static SAR system after it has been dechirped and deskewed
is given by

Y = h (X)

=

{
K∑
k=1

L∑
l=1

bθ (~ykl, ~xn)bφ (~ykl, ~xn)aklnxkl

exp (−juklnkm)

}
mn

,

(1)

where,
• Y ∈ CM×N is the fast-time by slow-time phase history,
• X ∈ CK×L are the reflectivities of scene elements,
• ~xn =

[
x1
n, x

2
n, x

3
n

]T
is the position of the platform at the

nth aperture location,
• ~ykl =

[
y1
kl, y

2
kl, y

3
kl

]T
is the position of each of the scene

elements,
• bθ (~ykl, ~xn) models the antenna beam pattern in the polar

angle direction,
• bφ (~ykl, ~xn) models the antenna beam pattern in the

azimuth angle direction,
• ukln = ‖~ykl − ~xn‖ − u0 (~xn) is the distance between

the platform and an element in the scene, relative to the
dechirp point u0 (~xn),

• akln = (4π (u0 (~xn) + ukln))−2 models the RF wave
energy loss due to spreading in three-dimensional space,

• km = 2
(
ω0 + 2α

(
(m− 1)Ts − T

2

))
/c0,

• c0 is the speed of light in vacuum,
• ω0 is the carrier frequency,
• 2α is the chirp rate,
• Ts is fast-time sample rate and
• T is the chirp period.
The match filter for this forward observational model h (·)

is given by its adjoint hH (·). The direct computation of hH (·)
can be written as

X̂ =

{
N∑
n=1

bθ (~ykl, ~xn)bφ (~ykl, ~xn)akln

M∑
m=1

ymn exp (jkmukln)

}
kl

.

(2)

The formed image, X̂, can be computed in this direct man-
ner in O (KLMN) operations. This order of operations is
much too high for any realistically sized problems. Therefore,
reduced complexity algorithms are used to approximate the
adjoint.

A. Back-projection Algorithm

The BP algorithm reduces the complexity of computing the
adjoint by first observing that the summation in Eq. 2 can be
written as

X̂ =

{
N∑
n=1

bθ (~ykl, ~xn)bφ (~ykl, ~xn)aklnpkln

}
kl

, (3)

where,

pkln =
M∑
m=1

ymn exp (jkmukln). (4)

The reduce complexity is then achieved by approximating
the elements {pkln}kl. This approximation is possible be-
cause the summation in Eq. 4 is a non-uniform DFT. There-
fore, the elements of the matrix Pn = {pkln}kl can be
approximated using a NFFT algorithm. Traditionally, zero
padding and linear interpolation has been used to approxi-
mate Pn in O (M log (M) +KL) operations. Modern NFFT
algorithms can also be used to approximate Pn [8]. They
have a complexity order which dependents on the approxi-
mation error. To compute Pn with these algorithms requires
O (M log (M) +KL log (1/ε)) operations, where ε is the
approximation error. Using this approximation for Pn, X̂ can
be approximated in O (KLN log (1/ε)) operations.

B. Fast Back-projection Algorithms

The fast BP algorithms in [2], [3] recursively decimate
the phase history and split the image grid at each stage of
recursion. At the final stage of recursion, the BP algorithm
is performed on a number of decimated phase histories to
produce each segment of the final image. This is visualised
in Fig. 1(a). This can be seen to be analogous with the
decimation-in-frequency FFT algorithms. In this section we
will show how an equivalent fast decimation-in-image BP
algorithm can be used which is analogous with the decimation-
in-time FFT algorithms.

1) Fast Decimation-in-image Back-Projection Algorithm:
The decomposition strategy used in the fast decimation-in-
image BP algorithm using a quad-tree structure is visualised
in Fig. 1(b). At the top of the figure we have the original
phase history and its corresponding image grid. At the first
stage of decomposition, seen on the second line of the figure,
the phase history is split into four even segments and the
image is decimated into four new phase histories, with each
corresponding to one of the four image segments. At the
second stage, this decomposition is repeated so there are now
16 phase history grid segments and there are 16 corresponding
decimated images. At the final stage of decomposition, the BP
algorithm is used to compute an image for each segment of the
phase history. The images can then be recursively upsampled
and combined to produce a single image.

Decimating in the image domain is possible because the
sampling rate of the scene is dependent on the period of
the slow and fast times. In order to provide an analytic
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phase history SAR image

(a)

phase history SAR image

(b)

Fig. 1. Decomposition in the fast BP Algorithms. (a) Decomposition in the decimation-in-phase-history algorithm. (b) Decomposition in the decimation-in-
image algorithm.

expression, we will make some approximations to simplify this
relationship. It is important to note that these approximation
are only used to simplify the analysis of the algorithm and
are not required in order to use the algorithm in practice.
We will first assume that the scene elements lie on the plane
~y =

[
y1, y2, 0

]T
. We will also make a far-field approximation

and assume that aperture is in the y2 direction. Finally we will
assume that the slow and fast times are small enough such that
wavenumber spectral support of the image is approximately
rectangular. Under these approximations we can provide a
bounds for the minimum sampling rates for the image grid,
which are given by,

fy1min ≤
2α
πc0

sin (θ0)T (5a)

fy2min ≤
‖~v‖ω0

πc0u0
sin (θ0)Tt̂, (5b)

where, ‖~v‖ is the platform velocity, Tt̂ is slow-time period
and θ0 is the polar angle of the antenna beam centre. In
this scenario both sampling rates are linearly dependent on
the SAR image radius. For the more general case where
these approximations do not apply we do not have a linear
dependency, however, it is still possible to have a practical
decomposition strategy. This is demonstrated in Fig. 2 using a
simulated phase history. In this simulation, the phase history
has been split into four segments. The BP algorithm was used
to generate four images, one from each of the phase histories.
An image was also created from the full phase history. For
the complete phase history, the required sampling rates are
approximately 1.75 samples per metre in the y1 direction and
2.2 samples per metre in the y2 direction. For the phase history
segments in Fig. 2(c) and Fig. 2(e), the required sampling rates
are approximately 0.9 and 0.7 samples per metre in each of
the directions. For the phase history segments in Fig. 2(d)
and Fig. 2(f), the required sampling rates are approximately
1 and 1.1 samples per metre in each of the directions. This
simulation shows that the required sampling rates for the

image grid, approximately increases linearly with the period
of the slow and fast times.

This property is used in the fast decimation-in-image BP
algorithm. When the phase history is split into four image
segments, the required sampling rates of the image are approx-
imately halved. Therefore the image grid can be decimated.
If the phase history is recursively split, such that each phase
history segment contains just a single element, the number
of operations required to perform the BP algorithm for all
the images will be O (MN). The next stage of the fast
decimation-in-image BP algorithm is to combine the images.
This combination can be done recursively. At each stage,
groups of four images, which were formed from adjacent
phase history segments, are combined. To do this each image
must first be upsampled by a factor of two in each direction.
This can be done, for all decimated images, with O (KL)
operations. The images can then be combined. This procedure
is repeated until there is just a single image. The number of
operations required to combine all images into a single image
will be O (MN log (max {M,N})) operations. Therefore the
complexity of the fast decimation-in-image BP algorithm is
O (MN log (max {M,N})).

A detailed description of the proposed algorithm, with a
single stage of decomposition, is given in Algorithm 1, where,
h ∈ CMh×Nh is a two-dimensional low pass filter and

nfftn
(
Y′
)
≈

M∑
m=1

y′mn exp (jku (tm)ukln) (6)

is an approximation of the nonuniform DFT.
There are errors which are introduced by approximating the

adjoint with a fast BP algorithm. In both algorithms, the main
source of error is due to the decimation or upsampling of finite
length data with finite length filters. Since the data (the phase
history or the image) is finite length, any decimating filter or
upsampling filter will have “border effects” which will produce
errors. Also, since in practise a filter will be finite length, the
filter will have associated stopband and passband ripples and
a transition bandwidth, which will introduce errors.
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Algorithm 1 fast decimation-in-image BP algorithm
X̂ = gfbp(Y)
Input: Y
Output: X̂

Y ← Y
X̂← 0K,L
for a = 0, 1 do

for b = 0, 1 do
{SPLIT PHASE-HISTORY}
Y′ ←

{
y(aM/2+m)(bN/2+n)

}M/2,N/2

m=1,n=1

~x′ ←
{
~xbN/2+n

}N/2
n=1

{BACK-PROJECTION ALGORITHM}
for n = 1, · · · , N/2 do

X̂
′
← 0K/2,L/2

P← nfftn
(
Y′
)

for k = 1, · · ·K/2 do
for l = 1, · · · , L/2 do
~y′ ← ~y(2k−1)(2l−1)

x̂′kl ← x̂kl + a(2k−1)(2l−1)npkl×
bθ

(
~y(2k−1)(2l−1), ~xn

)
×

bφ

(
~y(2k−1)(2l−1), ~xn

)
end for

end for
end for
{CENTRE IMAGE’S SPECTRAL SUPPORT}
~x0 ← ~xdN/2e+1

t0 ← tdM/2e+1

X̂
′
←
{
x̂′kl exp

(
−jku (t0)×(∥∥∥~y(2k−1)(2l−1) − ~x0

∥∥∥−
‖~y0 − ~xn‖

))}K/2,L/2
k=1,n=l

{UPSAMPLING}
X̂
′
← {if k ∧ l are odd then x′(k/2+1/2)(l/2+1/2),

else 0}K,Lk=1,n=l

X̂
′
←
{∑2Mh+1

k′=1

∑2Nh+1
l′=1

hk′l′ x̂
′
(2k−1−Mh+k′)(2l−1−Nh+l′)

}K,L
k=1,l=1

{COMBINE IMAGES}
X̂
′
←
{
x̂′kl exp

(
jku (t0)

(‖~ykl − ~x0‖ − ‖~y0 − ~xn‖)
)}K,L

k=1,n=l

X̂ = X̂ + X̂
′

end for
end for
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Fig. 2. Images formed using the BP algorithm from a simulated phase
history which was generated using four targets located at [25, 25, 0]T m,
[−25, 25, 0]T m, [25,−25, 0]T m and [−25,−25, 0]T m (relative to the
scene centre). The system parameter are: carrier frequency ω0/2π = 308
MHz, chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic
aperture [7,−3.5, 7]T km to [7, 3.5, 7]T km (relative to the scene centre) and
platform velocity 100 m/s. (a) is the resulting image and (b) is its spectrum.
(c), (d), (e) and (f) are the spectra of images formed using four evenly sized
segments of the full phase history.

In the decimation-in-phase-history algorithm, since the dec-
imation is performed on the phase history, the border effects
and finite filter length errors will occur in the phase history
domain. For the decimation-in-image algorithm, because up-
sampling is performed on the image, the border effects and
finite filter length errors will occur in the image domain.

III. EXPERIMENTS

To demonstrate the numerical performance of the proposed
fast decimation-in-image BP algorithm, 4◦ of the GOTCHA
data set was used to form three images [9]. One using the BP
algorithm and two others using the two fast BP algorithms
with three stages of decomposition. The BP algorithm used
the NFFT algorithm in [10], with an interpolation kernel
length of 24 samples which is what was suggested for double
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TABLE I
IMAGE FORMATION TIMES (SECONDS)

N BP fast BP fast BP PFA
(dec.-in-image) (dec.-in-phase-history)

256 18.26 4.75 4.64 0.90
512 140.22 18.77 18.74 3.24
1024 1120.96 77.18 76.98 13.15
2048 9052.47 318.43 317.36 69.15

precision numerical accuracy. The filter used for decimating
and upsampling, in both of the fast algorithms, was a 41
sample length low-pass Chebyshev filter with 100dB side-lobe
attenuation.

The BP image is shown in Fig. 3. Visually, there is very little
difference between the three images. Therefore, we show the
relative errors between the fast BP algorithm images and the
BP algorithm image in Fig. 4. Due to the source of the errors,
the relative errors are displayed in the wavenumber domain
for the decimation-in-phase-history image and in the image
domain for the decimation-in-image image. The relative error
‖x̂− x‖2 / ‖x‖2 is computed for each element in the images,
where, x is an element from the reference BP image and x̂ is
the corresponding element from fast BP algorithm image.

The results in Fig. 4(a), demonstrate the errors in the images
formed using the fast decimation-in-image BP algorithm. With
three stages of decomposition, the errors within the centre
of the image are approximately −90 dB. There are also
observable border effects.

For the fast decimation-in-phase-history BP algorithm, the
results in Fig. 4(b) demonstrate the errors in the formed
images. With three stages of decomposition, the errors within
the spectral support of the image are approximately −40 dB
and the edge effects are also observable. The errors associated
with border effects, unlike in the decimation-in-image images,
are not concentrated on the edges of the spectral support of the
image. This is because targets have a spatially varying spectral
support in an image formed using the BP algorithm.

To demonstrate the computational advantages of the fast
BP algorithms, the computational times for image formation
were measured for different size phase histories and images.
Images were formed using the BP algorithm, the PFA and
the fast decimation-in-phase-history and decimation-in-image
BP algorithms. Both the BP algorithm and the PFA made
use a NFFT algorithm with an interpolation kernel length
of 24 samples. The image formation times were measured
on a single core of a 2.5 GHz Intel Xeon processor with
N2 element images and N2 element phase histories. The
number of decomposition stages in the fast BP algorithms was
log2N − log2 64. This number of stages was selected because
through numerical simulation it was found to be a good trade
off between algorithm “speed up” and approximation error.
Table I shows the resulting image formation times in seconds.

For small images and phase histories the fast BP algorithms
only provide modest speed up when compared to the BP
algorithm. However, as the problem size grows, the speed up
becomes more significant. It is also interesting to note that

the ratio of the image formation times for the PFA and the
fast BP algorithms is approximately constant for all problem
sizes. Since both algorithms have the same theoretical order
of operations, this is an expected result.

It is also worth noting that the BP algorithm and the
PFA were implemented in C code while the decimation and
upsampling code of the fast BP algorithms were implemented
in Matlab script. If this code was ported to C code, one
would expect some additional speed up.

IV. CONCLUSION

In this paper we have proposed a novel fast BP algorithm.
Fast BP algorithms are important for new modalities of
SAR, such as UWB SAR. The fast decimation-in-image BP
algorithm provides a similar level of speed up to existing
algorithms, however, it has other advantages. Firstly, the
errors introduced by the algorithm are concentrated on the
edges of the image. This region usually contains the smallest
amount of energy in the image due to the antenna beam
pattern. Therefore, making the errors less significant. Also,
since decimation and upsampling is most easily performed
on a uniform grid, if the aperture is irregularly sampled,
decimation-in-phase-history algorithms must first interpolate
onto a uniform grid before decimation. This is not required in
the decimation-in-image algorithm because the image grid is
defined to be uniform. This could be a significant advantage
for the decimation-in-image algorithm. This is because, like
the standard BP algorithm, the algorithm naturally accounts
for non-ideal platform motion.

Like other fast BP algorithms, an equivalent fast observa-
tional model (a fast re-projection algorithm) could be produce
and the two algorithms could be used in an iterative image for-
mation algorithm [11]. Also Graphical Processing Units (GPU)
could be used for additional speed up since the algorithms are
inherently parallelisable.

Further work could investigate decimation and upsampling
strategies that reduce the border effects. This would include
investigating the design of improved finite length filters and
possibly non-uniform sample grids. For example, the butterfly
algorithm in [5] uses Chebyshev nodes.
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