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Abstract

The focus of this work lies on multi-object estimation techniques, in particular the Probability

Hypothesis Density (PHD) filter and its variations. The PHD filter is a recursive, closed-form esti-

mation technique which tracks a population of objects as a group, hence avoiding the combinatorics

of data association and therefore yielding a powerful alternative to methods like Multi-Hypothesis

Tracking (MHT). Its relatively low computational complexity stems from strong modelling assump-

tions which have been relaxed in the Cardinalized PHD (CPHD) filter to gain more flexibility, but

at a much higher computational cost. We are concerned with the development of two suitable

alternatives which give a compromise between the simplicity and elegance of the PHD filter and

the versatility of the CPHD filter. The first alternative generalises the clutter model of the PHD

filter, leading to more accurate estimation results in the presence of highly variable numbers of false

alarms; the second alternative provides a closed-form recursion of a second-order PHD filter that

propagates variance information along with the target intensity, thus providing more information

than the PHD filter while keeping a much lower computational complexity than the CPHD filter.

The discussed filters are applied on simulated data, furthermore their practicality is demonstrated

on live-cell super-resolution microscopy images to provide powerful techniques for molecule and

cell tracking, stage drift estimation and estimation of background noise.
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Introduction

Multi-object estimation on challenging scenarios

Multi-object estimation and tracking is an active, thriving field of research in the context of signal

processing which has manifold applications in different areas of science and engineering. It was

first inspired by surveillance tasks for both military and civil applications, mainly to track missiles

or vehicles by land, sea and air using radar or sonar systems. Recent emerging fields such as

robotics and computer vision benefit greatly from the findings of the target tracking community:

a few examples are self-localisation of robotic vehicles with respect to their environment (also

referred to as Simultaneous Localisation and Mapping (SLAM), see e.g. Thrun and Leonard [2008]),

surveillance of public spaces for security or commercial applications [Andriluka et al., 2008; Urtasun

et al., 2006], path planning and navigation of autonomous underwater vehicles [Clark et al., 2005]

or even tracking of dolphin chirps [Gruden and White, 2016]. Also in biomedical applications,

automated methods for identifying and tracking specimens of interest have become of increasing

importance since they avoid tedious hand-labelling and linking in the presence of typically hundreds

of objects in a dataset [Wood et al., 2012; McKenna et al., 2015; Wilson et al., 2016; Meijering

et al., 2012].

Unfortunately, any type of sensor system produces imperfect data which raises several issues

for all multi-object estimation techniques alike. First of all, information is usually binned into

resolution cells which is typical for radar but also for digital images whose resolution cells are

pixels; therefore, the precision in the localisation of an object is limited by the size of the resolution

cells. Apart from techniques like track-before-detect [Boers et al., 2006; Rutten et al., 2005] or

active contours [Yokoyama and Poggio, 2005; Sundaramoorthi et al., 2006] which use the full sensor

input for the estimation of the target states, most tracking techniques are based on the assumption

that the objects are reduced to points with no volume in the state space. In the latter case,

detection algorithm is usually included before the actual tracker which extracts reference points

(or bounding boxes) representing the objects as single elements in some measurement coordinate

system. These detection methods of course induce an additional level of uncertainty on the true

state of the objects since the extracted point-like measurements are rarely perfectly aligned with

the actual targets. Apart from uncertainty in the extracted object locations, the data acquired

by the sensors and detection methods is usually corrupted with varying amounts of noise, either

induced by the environment which might have similar properties to the objects of interest and

therefore produces spurious measurements, or induced by the sensor itself due to imperfections

1



of its physics (dead pixels, readout noise, high sensitivity etc.). On the other hand, both sensors

and detectors are prone to missed detections which might be due to a low signal-to-noise ratio,

occlusions in the monitored scene, signal overlap, etc., which makes it even harder for tracking

algorithms to connect information along the time axis. Apart from these challenges, multi-target

tracking techniques also have to cope with appearance and disappearance of objects which are

a priori not distinguishable from false positives and false negatives for the sensor/detector, and

target crossings or targets with close proximity to each other raise the question of data association.

Figure 1 illustrates all these challenges: one can see that the measurement space (1b) rarely shows

the same number of objects that are present in the real world (1a).

x1

x2

x3

x4

x5

x6

(a) Object state space.

z1z2

z3

z4

z5

(b) Measurement space.

Figure 1: Illustration of the data association problem in multi-object filtering. True objects and
their trajectories are marked in green, measurements in red. Dashed lines refer to movement at
previous times, whereas the solid lines show the current movement of the targets.

As demonstrated in Meijering et al. [2012], the interest in target tracking for biomedical re-

search, in particular cell and particle tracking in microscopy image sequences, has been increasing

exponentially since the 1970s. However, it was only very recently that advanced tracking techniques

have been utilised for biomedical applications due to increased collaborations between scientists,

mathematicians and engineers. In fact, many biomedical research labs still rely on rather ad-hoc

heuristic methods in the manner of nearest-neighbour search [Husain et al., 2012; Casuso et al.,

2012; Wilson et al., 2016] which cannot cope well with ambiguities in the data as described above.

Other methods [Coraluppi and Carthel, 2004; Liang et al., 2010] use Multi-Hypothesis Track-

ing (MHT) or Joint Probabilistic Data Association (JPDA) which track each object individually

using a group of single-object Bayesian filters. The problem of measurement-target association

is solved by keeping all hypotheses of possible combinations (in case of the MHT filter, see Reid

[1979]) or by selecting the most likely of those combinations (in case of the JPDA filter, see Fort-

mann et al. [1983]). These techniques can become computationally complex when the number of

objects in the frame is high or there are many ambiguities in the data.

So far, all of the considered techniques focus on the data linking (i.e. associating measurements

with specific objects) without paying much attention to false positives or fluctuating amounts of new

objects in the scene. However, one issue that is particularly prominent in fluorescence microscopy is

the high variability in the number of objects and in the amount of background noise: as explained

in detail in Chapter 3, fluorescence in the samples gets excited repeatedly, i.e. every couple of

2



frames, the number of detections suddenly increases considerably and then slowly decreases again

as more and more fluorescent molecules move to the dark state (cf. the intensity profile of a typical

dataset in Figure 2a). Furthermore, the obtained images usually have a very low signal-to-noise

ratio and hence naturally produce a lot of false positives and false negatives; an example frame is

given in Figure 2b. In order to aid the analysis of such challenging scenarios, it would be therefore

desirable to find a mathematically sound description of true objects and false positives/negatives

alike which allows great flexibility in modelling the observed behaviours.

0 500 1,000 1,500 2,000

2,500

3,000

3,500

(a) Mean intensity in each image over time. (b) A sample frame.

Figure 2: A typcial Photo-Activated Localisation Microscopy dataset (16 bit), showing the activity
of N-type calcium channels on the membrane of PC12 cells.

Tracking groups of objects with the PHD filter

One of the objectives of this thesis is to provide principled methods for multi-object estimation and

tracking, in particular for biomedical applications, which focuses on the problem of high variability

in the number of false alarms and true objects, which is usually not given much attention in the

existing techniques. Mahler [2003] introduced a novel type of multi-target filters in form of the

PHD filter which shall be the focus of this work. This class of filters (including the more general

Cardinalized PHD (CPHD) filter [Mahler, 2007a]) does not regard the set of objects as a collection

of individuals, like in the MHT or JPDA filters, but rather tracks the target population as a

whole. This interpretation makes it possible to avoid direct data association on the one hand

and it gives mathematical tools to model the size of the target and clutter populations on the

other hand. Although the original formulation of the PHD filter was embedded in the Finite Set

Statistics (FISST) framework [Mahler, 2007b] which uses Random Finite Set (RFS)s to describe

the target population, we prefer the more general concept of point processes in this work since

it gives more flexibility to describe interesting phenomena such as regional correlation and it can

recover all results of FISST in a natural way. Note that point processes were also used in Streit

and Stone [2008] to formulate a point process variation of the PHD filter which was coined as the

intensity filter there.

While the chosen class of filters already provides the ideal basis for the task of modelling

changes in the number of objects properly, the PHD filter can be very restrictive in its modelling
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assumptions since it assumes that the number of true objects and false alarms is Poisson distributed.

The Poisson assumption is problematic since it has equal mean and variance, which means that if,

for example, the estimated number of targets is low, the filter also assumes a low variance in the

number of targets; consequently, a spontaneous burst of new objects is not covered by the model

and is therefore miss-interpreted as clutter. If, on the other hand, the estimated number of targets

is reasonably high and there is an unexpected burst of false positives, the filter tends to assign high

weight to these false detections very easily since the variance in the number of targets is assumed

to be high as well. The existing alternative, the CPHD filter, does not make any assumption on the

probability mass function (pmf) of the number of targets and false alarms, hence it offers maximum

flexibility to circumvent the described issues of the PHD filter. Unfortunately, it has a significantly

higher computational complexity since the whole cardinality distribution of the target group is

propagated over time which involves a lot of additional calculations in every set of incoming data.

Furthermore, it has been noticed by Fränken et al. [2009] that the CPHD filter produces the so-

called “spooky effect at a distance” which causes a shift of probability mass from miss-detected

objects in the scene to the detected ones, disregarding their mutual distance.

For all those reasons, we felt the need of an alternative filter whose modelling assumptions are

more general than that of the PHD filter while still being fully described using only a small set

of parameters to avoid the long runtimes that occur with the CPHD filter. Taking the Poisson

distribution as a starting point, a suitable generalisation is found in the well-known negative

binomial distribution whose variance is always greater than its mean [Daley and Vere-Jones, 2003].

Further research on the Poisson and the negative binomial distributions brought our attention

to Harry H. Panjer’s discovery of a unified distribution which encompasses the Poisson, binomial

and negative binomial distributions in one single mathematical formulation [Panjer, 1981]. By

taking the binomial distribution on board, the Panjer distribution admits also the case where the

variance is less than the mean, hence giving full flexibility in the description of groups of objects

in terms of the mean and variance in their cardinality (cf. Figure 2.1 in Chapter 2). Moreover, the

binomial, negative binomial and Panjer distributions depend on only two parameters which stand

in one-to-one correspondence with their mean and variance, a property which will be exploited in

the techniques introduced in this work.

Key contributions

Our first attempt to generalise the PHD filter, published in Schlangen et al. [2016a] and presented

below in Section 2.2.1, replaces the Poisson assumption on the population of false alarms by a

negative binomial model. This PHD filter with negative binomial clutter proved to show a more

robust performance in the presence of bursts of false alarms than the original PHD filter as shown

in Figure 3; while the PHD filter assigns high weight to all received measurements alike, the new

technique only gives significance to the already confirmed targets while downweighting the false

measurements.

After these encouraging results, the more general Panjer distribution appeared to be the perfect

candidate for a modelling assumption that yields a generalisation of the PHD filter while keeping
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(a) PHD filter assuming Poisson clutter. (b) PHD filter assuming NB clutter.

Figure 3: The PHD filter with Poisson and negative binomial clutter model in comparison. The
ground truth is plotted in green, the measurements in red. The underlying map shows the proba-
bility distribution of the target population, where yellow hues represent a high probability of target
presence, whereas blue hues represent a low probability.

the complexity reasonably low in contrast to the CPHD filter. Using the Panjer assumption

for both the group of targets and false alarms resulted in the formulation of the Second-Order

PHD (SO-PHD) filter, which is published in Schlangen et al. [2017c] and presented in Section

2.2.4. It is a second-order filter since the nature of the Panjer distribution makes it possible to

propagate the variance in the number of objects along with the mean; since the Poisson, binomial

and negative binomial cases are covered, the filter is able to choose the appropriate distributions

on the fly which represents the observed behaviour most accurately.

Since the SO-PHD filter exploits variance information on the number of objects, it felt natural

to study covariance and correlation as well. Even though none of the considered filters propagates

those statistics directly, it is still possible to find the respective filter-specific formulae to extract

this information after every iteration. Using point processes instead of RFSs, any statistics on

specific regions in the surveillance scene can be explicitly formulated, thus we could study the

spooky effect mentioned above [Fränken et al., 2009] by computing the regional correlation for the

PHD, CPHD and SO-PHD filters (see Schlangen et al. [2017c] and Section 2.4 below). Thanks to

regional correlation, it is possible to quantify the spooky effect, showing that the PHD filter is not

affected when the objects are far away from each other, in contrast to the CPHD which shows a

strong (mostly negative) correlation. The proposed SO-PHD filter, on the other hand, tends to

have a much weaker correlation.

In addition to basic filtering, this work also explores the use of the PHD, CPHD and SO-PHD

filters in a single-cluster framework which makes it possible to estimate filter parameters simultane-

ously with the target population. Based on the idea of the single-cluster PHD filter [Swain, 2013],

the CPHD filter and the proposed SO-PHD filter were also embedded in a hierarchical algorithm

in the same manner, see Schlangen et al. [2017b] and Section 2.3. First results on simulated data

show that the obtained algorithms are capable alternatives to the single-cluster PHD filter which

outperform other state-of-the-art techniques like Leung et al. [2016].

Regarding fluorescence microscopy applications, the discussed techniques also showed promising
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results when run on real data. In Section 3.2.1, first studies on real data show that the proposed

SO-PHD filter provides a capable low-complexity alternative to the CPHD filter which is more

flexible in its modelling assumptions than the PHD filter. Moreover, the single-cluster PHD filter

has been successfully utilised to eliminate stage drift in super-resolution microscopy videos (see

Schlangen et al. [2016b] and Section 3.2.2) and to estimate unknown clutter rates (see Schlangen

et al. [2017a] and Section 3.2.3).

This work is organised as follows: Chapter 1 gives a comprehensive introduction to point pro-

cesses and it describes the PHD, CPHD and single-cluster PHD filters in this framework. Chapter 2

introduces the Panjer distribution and point process with their interesting properties, and provides

the formulation and derivation of the PHD filter with Panjer clutter and the full SO-PHD filter.

After that, the CPHD and SO-PHD filters are embedded in a single-cluster framework and com-

pared with the single-cluster PHD filter in simulations. Furthermore, correlation and covariance

of the PHD, CPHD and SO-PHD filters are presented in the same chapter, alongside the study on

the spooky effect. Finally, Chapter 3 describes the technique of PALM and provides studies of the

filters of interest on real microscopy data. Details on implementation are given in the appendix.
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Chapter 1

Multi-object filtering using point

processes

This chapter gives a summary about the state of the art concerning multi-object estimation using

point processes. Its findings will lay the foundation for Chapter 2 which presents generalisations

of the concepts introduced here. The notations closely follow Schlangen et al. [2016a], Schlangen

et al. [2017c] and Schlangen et al. [2017b].

1.1 Probabilistic methods for representing groups of objects

In many applications where it is required to monitor multiple objects simultaneously, not only are

their states unknown and time-varying, but also their number. For this reason, this section focuses

on the concept of point processes, assuming that the targets can be represented by point states

in a suitable state space. It will be shown in Chapter 3 how to extract point-like detections from

single-molecule fluorescence microscopy images which represent the molecules of interest, but the

following theory equally applies to other multi-object scenarios that can be described in this way.

For the remainder of this work, let us assume that a scene of interest is monitored with one or

multiple sensors that produce measurements in some dz-dimensional measurement space Z ⊆ Rdz

at discrete points in time, henceforth indexed by the natural numbers k ∈ N. Targets are described

in a dx-dimensional topological state space X ⊆ Rdx which is equipped with the Borel σ-algebra

B(X ). Recall that the Borel σ-algebra is the algebra generated by all open sets in X which respects

the whole space X , complements, and infinite unions of sets. The elements of B(X ) are called Borel

sets in X .

1.1.1 Point processes

One convenient way to describe a group of objects probabilistically in X ⊆ Rdx is by using a random

variable Φ whose states and cardinality are both random; if the realisations of Φ are considered to

be finite sets, Φ is called a Random Finite Set (RFS), and if they are considered to be sequences,

Φ is called a point process on X . More formally, we can write:
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Definition 1.1.1 (Random Finite Sets). A Random Finite Set (RFS) X taking values in X

is a random variable on the collection of all finite subsets in X . A realisation of X is a set

x = {x1, . . . , xn} ⊂ X , describing a group of n objects with states xi ∈ X where both n and all xi

are random.

Definition 1.1.2 (Point processes). A point process Φ on X is a random variable on the space

X =
⋃
n≥0 Xn of finite sequences in X . A realisation of Φ is a sequence ϕ = (x1, . . . , xn) ∈ Xn,

describing a group of n objects with states xi ∈ X where both n and all xi are random.1

The necessary theory to handle common statistics about RFSs is given in Mahler’s Finite Set

Statistics (FISST) framework [Mahler, 2007b]. This framework uses exclusively probability densities

which are more commonly adopted in the engineering community. A major drawback of densities,

however, is their inability to describe statistics on whole regions instead of single points. Since

the main findings of this work involve regional statistics, it is reasonable to move from densities

to measures and, consequently, to abandon the set-based formulation in favour of (unordered)

sequences. Every probability density admits a probability measure by definition such that all

findings within FISST can be easily recovered using measures. Note, however, that the reverse is

not necessarily true; only probability measures that are absolutely continuous with respect to some

reference measure λ admit a density according to the theorem of Radon and Nikodym [Nikodym,

1930]; this density is then called Radon-Nikodym derivative.

A probability measure PΦ can be defined on the measurable space (X,B(X)) through the pro-

jection measures P (n)
Φ which define probability measures on the product spaces Xn for all n ≥ 0,

i.e. on the space of sequences of length n [Stoyan et al., 1997]. The order of the sequences is

implicitly removed by assuming that the probability of permutations of the same sequence ϕ is

equal, i.e.

P
(n)
Φ

(
(x1, . . . , xn)

)
= P

(n)
Φ

(
(xπ(1), . . . , xπ(n))

)
(1.1)

for any permutation π of the index set {1, . . . , n}.

For handling discrete values, in particular the set of acquired measurements at a given time,

it will be natural to exploit the notion of densities when necessary. Therefore, let us assume that

the probability distribution PΦ admits a density pΦ with respect to a suitable reference measure

λ. The Radon-Nikodym derivatives of the projection measures P (n)
Φ will be denoted by p(n)

Φ .

A point process is called simple if all elements xi of a realisation ϕ are distinct. In this sense, a

RFS is a simple point process since sets do not allow repetition by definition. In classical tracking

scenarios with a continuous state space, two objects almost surely do not share the same state,

therefore it will be assumed in the following that the considered point processes are simple.2

1Note that as an abuse of notation, the formulation “x ∈ ϕ” will be used in this work to indicate that the element
x ∈ X is a part of the sequence ϕ.

2It was argued in [Mahler, 2007b] that repetition does not have a physical meaning and is therefore "unneccessary"
[Mahler, 2007b, p.710], but it is of utmost relevance for experiments with discrete outcomes and should therefore
not be discarded in the general case.
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1.1.2 Statistical moments

Just like for real-valued random variables, it is possible to formulate statistical moments for a point

process Φ in the following way:

Definition 1.1.3 (Factorial and non-factorial moment measures [Stoyan et al., 1997]). .

(a) The n-th order (non-factorial) moment measure µ(n)
Φ of a point process Φ is a measure on Xn

such that

∫
fn(x1:n)µ

(n)
Φ (d(x1:n)) = E

[ ∑
(x1,...,xn)∈Φ

fn(x1:n)

]
(1.2a)

=

∫ [ ∑
(x1,...,xn)∈Φ

fn(x1:n)

]
PΦ(dϕ) (1.2b)

for any bounded measurable n-variate function fn on Xn, where x1:n := (x1, . . . , xn).

(b) The n-th order factorial moment measure ν(n)
Φ of a point process Φ is a measure on Xn such

that

∫
fn(x1:n)ν

(n)
Φ (d(x1:n)) = E

[ ∑6=

(x1,...,xn)∈Φ

fn(x1:n)

]
(1.3a)

=

∫ [ ∑6=

(x1,...,xn)∈Φ

fn(x1:n)

]
PΦ(dϕ) (1.3b)

for any bounded measurable n-variate function fn on Xn, where Σ 6= indicates that the points

x1, . . . , xn are all pairwise distinct.

This definition is also known as Campbell’s theorem in the literature [Stoyan et al., 1997].

Based on Definition 1.1.3, it is possible to describe the expectation of an event where the points

x1, . . . , xn fall in the regions B1, . . . , Bn simultaneously: As a consequence of the definition of the

indicator function

1B(x) =

1 for x ∈ B,

0 otherwise,
(1.4)

it follows that

µ
(n)
Φ (B1× · · · ×Bn) = E

[ ∑
x1,...,xn∈Φ

1B1
(x1) . . .1Bn(xn)

]
, (1.5)

ν
(n)
Φ (B1× · · · ×Bn) = E

[ ∑ 6=

x1,...,xn∈Φ

1B1(x1) . . .1Bn(xn)

]
, (1.6)

for any regions Bi ∈ B(X ), 1 ≤ i ≤ n. Note that Eq. (1.5) allows for repetitions in the sequence

x1, . . . , xn, whereas Eq. (1.6) does not.

It is easy to see from the definition that the first-order factorial and non-factorial measures

coincide, i.e. µ(1)
Φ (·) = ν

(1)
Φ (·); this quantity is also known as the intensity measure of Φ. Both

the intensity measure and its associated density will be denoted by µΦ in this work, dropping

the superscript “(1)” where it is unambiguous. In the context of RFS, µΦ is also known as the
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Probability Hypothesis Density [Mahler, 2003], which inspired the name of the class of Bayesian

filters which is studied below. Note that for any regions B,B′ ∈ B(X ) [Stoyan et al., 1997] the

second-order moment measure can be decomposed into

µ
(2)
Φ (B ×B′) = µΦ(B ∩B′) + ν

(2)
Φ (B ×B′). (1.7)

Since they will play a fundamental role in this work, let us define the following second-order

statistics.

Definition 1.1.4 (Covariance, variance and correlation of Φ [Stoyan et al., 1997; Illian et al.,

2008]). The covariance, variance, and correlation of a point process Φ are defined with

covΦ(B,B′) = µ
(2)
Φ (B ×B′)− µΦ(B)µΦ(B′), (1.8)

varΦ(B) = µ
(2)
Φ (B ×B)− [µΦ(B)]

2
, (1.9)

corrΦ(B,B′) =
covΦ(B,B′)√

varΦ(B)
√

varΦ(B′)
, (1.10)

for any regions B,B′ ∈ B(X ).

All three of these quantities yield scalar values in R. While the intensity µΦ(B) describes the

expected number of objects in B, the variance varΦ(B) stands for the variability of the target

number in B around the expected value [Delande et al., 2014].3 Formally, the variance is a spe-

cial case of the more abstract covariance covΦ(B,B′) for B = B′. Furthermore, the correlation

corrΦ(B,B′), yielding a scalar in the interval [−1, 1], describes the relation between the estimated

number of targets in B and B′, where positive/negative values stand for positive/negative propor-

tionality, respectively. The correlation will be exploited in the simulations presented in Section

2.4 below to quantify a filtering effect known as the “spooky effect” of multi-object filters [Fränken

et al., 2009].

1.1.3 Probability generating functionals

It is possible to study point processes in an alternative representation, i.e. via the Probability

Generating Functional (PGFL) and the Laplace functional. They play a similar role to the Fourier

transform in signal processing and the probability generating function for discrete, real-valued

random variables. The notation of PGFLs was already previously exploited in Streit [2013] to

write down the Probability Hypothesis Density (PHD) and intensity filter equations, and in Streit

et al. [2015] to formulate various other multi-object filters in the same framework.

Definition 1.1.5 (Probability generating functional and Laplace functional). Let f : X → R+ and

h : X → [0, 1] be two test functions. The Laplace functional LΦ and the Probability Generating
3In general, varΦ is non-additive and does not admit a density, which is one of the reasons why a measure-theoretic

approach was chosen for this work; see also Section 2.4.
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Functional (PGFL) GΦ of a point process Φ are defined by

LΦ(f) =
∑
n≥0

∫
exp

(
−

n∑
i=1

f(xi)

)
P

(n)
Φ (dx1:n), (1.11)

GΦ(h) =
∑
n≥0

∫ [ n∏
i=1

h(xi)

]
P

(n)
Φ (dx1:n). (1.12)

From the definitions (1.11) and (1.12), one easily verifies the relation

GΦ(h) = LΦ(− lnh). (1.13)

Functional differentiation is an important tool to work with PGFLs and Laplace functionals as

we will see below. There are different operators available, e.g. the Gâteaux, the Fréchet and the

chain differential [Bernhard, 2005]. In this work, the chain differential is exploited which admits a

general higher-order product and chain rule [Clark and Houssineau, 2013; Clark et al., 2015].

Definition 1.1.6 (Chain differential [Bernhard, 2005]). Let (ηn : X → R+)n∈N be a sequence of

positive, bounded functions converging pointwise to a function η : X → R+, and let (εn)n∈N be

a sequence of positive real values converging to 0. The chain differential of a functional G with

respect to its functional argument h : X → R+ in the direction of η is defined as

δG(h; η) = lim
n→∞

G(h+ εnηn)−G(h)

εn
. (1.14)

If the limit exists, it is unique for any sequence (εn)n∈N and (ηn : X → R+)n∈N with the above

properties.

It can be shown that the projection measures P (n)
Φ and the nth order non-factorial and factorial

moments µ(n)
Φ and ν(n)

Φ can be recovered from the PGFL or the Laplace functional of Φ through

differentiation with

P
(n)
Φ (B1× · · · ×Bn) =

1

n!
δnGΦ(h;1B1

, . . . ,1Bn)|h=0, (1.15)

µ
(n)
Φ (B1× · · · ×Bn) = (−1)nδnLΦ(f ;1B1 , . . . ,1Bn)|f=0, (1.16)

ν
(n)
Φ (B1× · · · ×Bn) = δnGΦ(h;1B1

, . . . ,1Bn)|h=1, (1.17)

for any set of regions Bi ∈ B(X ), 1 ≤ i ≤ n [Stoyan et al., 1997]. As mentioned before, the chain

differential admits a product rule!first order [Bernhard, 2005]

δ(F ·G)(h; η) = δF (h; η)G(h) + F (h)δG(h; η), (1.18)

and a chain rule [Bernhard, 2005]

δ(F ◦G)(h; η) = δF (G(h); δG(h; η)). (1.19)
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Similarly, one can show the n-fold product rule [Clark et al., 2015]

δn(F ·G)(h; η1, . . . , ηn) =
∑

ω⊆{1,...,n}

δ|ω|F
(
h; (ηi)i∈ω

)
δ|ω̄|G

(
h; (ηj)j∈ω̄

)
, (1.20)

where ω̄ = {1, . . . , n} \ ω, and the n-fold chain rule [Clark and Houssineau, 2013; Clark et al.,

2015]

δn(F ◦G)(h; η1, . . . , ηn) =
∑
π∈Πn

δ|π|F

(
G(h);

(
δ|ω|G(h; (ηi)i∈ω)

)
ω∈π

)
, (1.21)

where Πn is the set of partitions of the index set {1, . . . , n}. Eq. (1.21) is also known as Faà di

Bruno’s formula for chain differentials, and it has recently been exploited in different contexts,

see e.g. [Clark and Houssineau, 2013, 2014; Bryant et al., 2016; Schlangen et al., 2016a]. The

generalised product rule for set derivatives [Mahler, 2007b, p. 389] can be seen as the RFS equivalent

of Eq. (1.20).

Remark 1.1.7. Linear and continuous differential operators are commonly referred to as deriva-

tives; therefore, the chain differential will be called chain derivative or simply derivative for the

remainder of this work since in the cases of interest, it behaves as such as we will see below.

Remark 1.1.8. As mentioned earlier, only measures which are absolutely continuous with re-

spect to some reference measure admit a density, namely their Radon-Nikodym derivative. In

that sense, the notation δG(f, δx) is defined as the Radon-Nikodym derivative of the measure

µ′ : B 7→ δG(f,1B) evaluated at point x, i.e.

δG(f, δx) :=
dµ′

dλ
(x), (1.22)

for any suitable function f on X and any point x ∈ X . The PGFL and the Laplace functional of

any point process Φ hold this property since the probability distribution PΦ is assumed to admit a

density with respect to the reference measure λ. The following notation will be extensively used in

the derivations shown later on:

p
(n)
Φ (x1, . . . , xn) =

1

n!
δnGΦ(h; δx1

, . . . , δxn)|h=0, (1.23)

for any xi ∈ X , 1 ≤ i ≤ n. Again, there is an equivalent formulation for RFSs, found in Eq. (52)

in [Mahler, 2003].

1.1.4 Examples of point processes

Three different point processes are discussed below to illustrate the formulation of point processes

on specific examples. All of them will be used later on to model different phenomena, resulting in

different multi-object filters.

Definition 1.1.9 (The i.i.d. cluster process). An independent and identically distributed (i.i.d.)

cluster process with cardinality distribution ρ on N and spatial distribution s on X describes a
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group of objects whose size is described by ρ, and whose states are i.i.d. according to s. Its PGFL

is given by

Gi.i.d.(h) =
∑
n≥0

ρ(n)

[∫
h(x)s(dx)

]n
. (1.24)

The formulation i.i.d. cluster process is quite general since it does not make any assumptions

on the cardinality distribution ρ. The Cardinalized PHD (CPHD) filter (see Section 1.3.3 and

[Mahler, 2007a]) is constructed with the assumption that the predicted target process Φk|k−1 is an

i.i.d. cluster process, i.e. this filter allows a great flexibility to describe the cardinality distribution

of the target process.

Definition 1.1.10 (The Bernoulli process). A Bernoulli point process with parameter 0 ≤ p ≤ 1

and spatial distribution s is an i.i.d. cluster process with spatial distribution s, whose size is 1 with

probability p and 0 with probability (1− p). Its PGFL is given by

GBernoulli(h) = (1− p) + p

∫
h(x)s(dx). (1.25)

Binary events like the detection or the survival process of a target are commonly modelled

using a Bernoulli point process.

Definition 1.1.11 (The Poisson process). A Poisson process with parameter λ and spatial distri-

bution s is an i.i.d. cluster process with spatial distribution s whose size is Poisson distributed with

rate λ. Its PGFL is given by

GPoisson(h) = exp

(∫
[h(x)− 1]µ(dx)

)
, (1.26)

where the intensity measure µ of the process is such that µ(dx) = λs(dx).

The Poisson point process has convenient properties that made it an attractive modelling choice

for the PHD filter (see Section 1.3.2 and [Mahler, 2003]): First of all, the Poisson model is prevalent

in many applications and therefore highly relevant; furthermore, it is completely described by only

one parameter λ. Its mean and variance are equal and depend directly on λ, i.e. µPoisson(B) =

varPoisson(B) = λs(B) for any B ∈ B(X ). Moreover, convenient differentiation rules exist to

handle exponential functionals (see Proposition 1.1.13 below in Section 1.1.5), i.e. the Poisson

point process (1.26) is easy to manipulate.

1.1.5 Derivation rules for exponential functionals

Let us find the first- and nth order differentiation rules for the exponential functional exp(·) which

will be helpful for the formulation of the results in the subsequent chapters.

Lemma 1.1.12 ([Clark et al., 2015]). The first-order derivative of the exponential functional exp

in composition with a general functional G(h) is the functional chain derivative4

δ(exp ◦G)(h; η) = exp(G(h))δG(h; η). (1.27)
4Note that this differential can indeed be called derivative since it is linear and continuous, cf. Remark 1.1.7.
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Proof. Choose a series of functions (ηn)n∈N which converges pointwise to δG(h; η) for n→∞, and

a series (εn)n∈N which converges to 0. Then

δ(exp ◦G)(h; η)
(1.19)

= δ exp(G(h); δG(h; η))

= lim
n→∞

1

εn
[exp(G(h) + εnηn)− exp(G(h))]

= exp(G(h)) lim
n→∞

1

εn
[exp(εnηn)− 1]

= exp(G(h)) lim
n→∞

1

εn

∑
j≥0

(εnηn)j

j!
− 1


= exp(G(h)) lim

n→∞

1

εn

[
εnηn +

∑
j≥2

(εnηn)j

j!

]

= exp(G(h)) lim
n→∞

[
ηn +

∑
j≥2

εj−1
n ηjn
j!︸ ︷︷ ︸

=0(n→∞)

]

= exp(G(h))δG(h; η).

Proposition 1.1.13. Let G be a linear functional. The nth-order chain derivative of the compo-

sition exp(G(h)) is found to be

δn(exp ◦G)(h; η1, . . . , ηn) = exp(G(h))

n∏
i=1

δG(h; ηi). (1.28)

Proof. The nth-order derivative of exp(G(h)) can be easily seen from Faà di Bruno’s formula (1.21):

since δ(2)G = 0 due to the linearity of G, the only partition that leads to a non-zero term is the set

of singletons such that one factor δG(h; ηi) is drawn from the exponential term for all directions

η1, . . . , ηn.

1.2 The Bayes filter

In biomedical applications, it is still very common to use heuristic nearest-neighbour techniques for

target tracking5 [Chenouard et al., 2014], despite the fact that biomedical images often suffer from

a low signal-to-noise ratio (SNR) and therefore, data association ambiguities, missed detections and

false positives are extremely common (see the discussion in Chapter 3). Allowing for uncertainty in

the analysis generally leads to more robust tracking results by incorporating statistics on the spatial

distribution of the objects, the detection and survival rates, birth and clutter models, expected

motion behaviour, etc. For this reason, the Bayes recursion provides a useful framework since it

accommodates a probabilistic solution to the state estimation problem. It can be formulated for a

single object or multiple objects jointly.
5In biomedical literature, target tracking is usually referred to as data linking.
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1.2.1 Single-object Bayes filter

In the single-object scenario, let us assume that the monitored object exists with probability 1 at

all times and produces at most one measurement per time scan. Furthermore, it is assumed that

the sensor does not produce false alarms. For the multi-object case below, the existence assumption

will be released to account for a time-varying number of objects.

Let xk−1 ∈ X be the hidden target state at time k−1, which is described through the probability

measure

pk−1(dxk−1|z0, . . . , zk−1) (1.29)

depending on all measurements z0, . . . , zk−1 ∈ Z. The Bayes recursion first predicts the next target

state xk at time k using an appropriate dynamical model, e.g. Brownian motion or a near constant

velocity (n.c.v.) model and then corrects this belief based on the measurement model describing

the sensor. Usually, the dynamical model tk|k−1 is assumed to be Markovian, i.e.

tk|k−1(dxk|x0 . . . xk−1) = tk|k−1(dxk|xk−1). (1.30)

Using the prior pk−1 and the Markov transition tk|k−1, the prediction step is performed with the

Chapman-Kolmogorov equation

pk|k−1(dxk|z0, . . . , zk−1) =

∫
tk|k−1(dxk|x)pk−1(dx|z0, . . . , zk−1). (1.31)

The Chapman-Kolmogorov equation propagates the object state from time k − 1 to time k by

marginalising over all possible previous states xk−1 ∈ X .

Assume that the sensor detects the object at time k, producing a measurement zk ∈ Z. Un-

certainty about the sensor accuracy is incorporated using a likelihood function lk(xk|zk) that

determines how likely measurement zk was produced by the target state xk. Using lk and the

predicted distribution pk|k−1, the Bayes update is given by

pk(dxk|z0, . . . , zk) =
lk(xk|zk)pk|k−1(dxk|z0, . . . , zk−1)∫
lk(zk|x)pk|k−1(x|z0, . . . , zk−1)dx

, (1.32)

which is also known as Bayes’ rule.

Fig. 1.1 gives a visual description of the Bayesian recursion, representing uncertainty by ellipses.

While the prediction usually increases the uncertainty of the object state, the update decreases

the uncertainty again by involving new information. This behaviour is very intuitive and makes it

possible to recover the object position even after some time of no detections since the increasing

uncertainty gives credit to a wider area where the object might have travelled.

In general, the Bayes filter is computationally intractable without further assumptions. How-

ever, if the state transition tk|k−1 is a linear operator and furthermore, the likelihood function

lk and the prior and predicted probability densities are Gaussian, the single-object Bayes filter

becomes the well-known Kalman filter [Kalman, 1960] (given in Appendix A.1) which is widely

used in single- and multi-object tracking applications since it provides an optimal solution to
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the single-target estimation problem. If the transition is non-linear but can be locally described

by a linear transformation, the Extended Kalman Filter (EKF) provides a useful approximation

[Anderson and Moore, 1979, Ch. 8], and for highly non-linear problems the Unscented Kalman Fil-

ter (UKF) is a non-optimal alternative [Julier and Uhlmann, 1997]. Increasingly cheap processing

power has facilitated the development of Sequential Monte Carlo (SMC) techniques which draw

and propagate random samples from the probability density [Del Moral, 1996]. This approach has

the advantage that it does not rely on any modelling assumptions, however the samples have to

be drawn carefully to avoid divergence, and increasing the accuracy by using more particles comes

with an increase of computational time.

xk−1

(a) Prior belief xk−1 of the target position.

xk|k−1

xk−1

(b) Prediction of state xk−1 to state xk|k−1 using
a suitable dynamical model.

xk
xk|k−1

xk−1

zk

(c) Update of predicted state xk|k−1 to xk with
measurement zk.

xk

(d) New belief xk of the current target position.

Figure 1.1: Single-target Bayesian filtering.

1.2.2 Multi-object Bayes filter

A measure-theoretic formulation of the multi-target Bayesian recursion can be found via

Pk|k−1(dξ) =

∫
Tk|k−1(dξ|ϕ)Pk−1(dϕ), (1.33)

Pk(dξ|Zk) =
Lk(Zk|ξ)Pk|k−1(dξ)∫
Lk(Zk|ϕ)Pk|k−1(dϕ)

, (1.34)

where P• is the probability distribution describing the multi-target state, Tk|k−1 is the multi-target

Markov transition kernel from time k−1 to time k, and Lk is the multi-target/multi-measurement
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likelihood at time k.6 Note that Eqns (1.33) and (1.34) are based on the RFS-based formulation

in [Mahler, 2007b], where set integrals are used in favour of using densities rather than measures.

Again, the general Bayes filter formulation is computationally intractable without any addi-

tional assumptions, even more so because the combinatorial problem of data association has to

be solved. The oldest approaches such as the well-established Multi-Hypothesis Tracking (MHT)

[Reid, 1979] and Joint Probabilistic Data Association (JPDA) [Fortmann et al., 1983] perform

single-target tracking on each individual and create multiple hypotheses for possible associations be-

tween measurements and targets. A more recent development is the Multi-Bernoulli filter [Mahler,

2007b] and its derivatives [Vo et al., 2009; Williams, 2012, 2015] which incorporate a probability of

existence in the target state and describe every object with a Bernoulli experiment on its existence.

A completely different philosophy lies behind the PHD filter [Mahler, 2003] and its derivatives since

the association problem is eliminated by tracking the target population as a whole without caring

about individual trajectories.7 While the RFS framework was used traditionally to formulate the

PHD filter, it is possible to find an equivalent formulation with point processes as demonstrated

in Section 1.3 below.

1.3 Multi-object estimation using point processes

This section presents the PHD and CPHD filters in the mathematical framework of point processes.

These methods do not consider the full probability distribution of the process they describe, but

they propagate first-order moment information instead which makes it possible to find closed-form

solutions.

The oldest recursion propagating a point process through its first-order moment, recalled in

Section 1.3.2, is the well-established PHD filter [Mahler, 2003], which will be referred to with

the superscript [. Based on the assumption that the cardinalities of both the predicted target

process and the clutter process follow a Poisson model, this filter provides an elegant closed-

form solution to the multi-object estimation problem which propagates the first-order moment

of the underlying target process, which gave the filter its name. After the need for higher-order

information was expressed in [Erdinc et al., 2005], Mahler derived the CPHD filter [Mahler, 2007a]

which propagates the full cardinality distribution instead of choosing a particular one like in the

PHD filter (see Section 1.3.3). This method is very flexible in the description of the population

cardinality, but it also comes with a much greater computational cost since the full cardinality

distribution has to be computed in every iteration of the algorithm. The notation ] will be used

below to mark terms specific to the CPHD filter.

Before stating the filtering equations, let us define some useful notation which will be used for

the remainder of this work.
6For two measures µ, µ′ on some space X, the notation µ(dx) = µ′(dx) for x ∈ X will be used to indicate that∫
f(x)µ(dx) =

∫
f(x)µ′(dx) for any bounded measurable function f on X.

7Note that although it is not a natural output of the algorithm, capable track extraction methods exist nonethe-
less, see Appendix A.2.
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1.3.1 Useful notations

In the single-target case, the monitored object was assumed to exist with probability 1 at all times.

In most multi-object scenarios, however, the number of objects is generally unknown and time-

varying, i.e. objects might randomly leave or enter the scene. Therefore, let us introduce a function

ps(·) describing the state-dependent probability of survival and a birth process Φb
k with intensity

µb,k that models new incoming targets. The single-target Markov transition will be denoted by

tk|k−1.

Regarding the incoming sensor data, let us denote by Zk ⊂ Z the set of measurements obtained

at time k, and let z ∈ Zk denote a single measurement. Since the information obtained by the

sensor is never flawless, let us incorporate a probability of detection for the targets, denoted by

pd(·), and a clutter process Φc
k with intensity µc,k that describes the occurrence of false positives

over time. The function `k will denote the likelihood of associating a single measurement with a

specific target at time k.

Finally, let us define some specific terms which will be common to all filters described below,

up to the specific prior and predicted intensities µ•k−1 and µ•k|k−1 with • ∈ {[, ]}.8 The survival

term is defined with

µs,k(B) =

∫
X
ps,k(x)tk|k−1(B|x)µ•k−1(dx). (1.35)

and the missed detection and association terms with

µφk(B) =

∫
B

(1− pd,k(x))µ•k|k−1(dx) (1.36)

µzk(B) =

∫
B

pd,k(x)`k(x|z)µ•k|k−1(dx), (1.37)

for any measurement z ∈ Zk on any region B ∈ B(X ).

1.3.2 The PHD filter [Mahler, 2003]

Proposition 1.3.1 (PHD recursion [Mahler, 2003]). (a) The predicted first-order moment mea-

sure is given by

µ[k|k−1(B) = µb,k(B) + µs,k(B) (1.38)

with survival intensity (1.35), where • = [.

(b) The updated first-order moment measure with Poisson distributed prediction and clutter model

is derived as

µ[k(B) = µφk(B) +
∑
z∈Zk

µzk(B)

µc,k(z) + µzk(X ) (1.39)

with missed detection term (1.36) and association term (1.37), where • = [.
8In Chapter 2, this notation will also be used in the formulation of two new PHD-like methods, where • ∈ {5, \}.
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1.3.3 The CPHD filter [Mahler, 2007a]

As mentioned before, the CPHD filter recursion propagates both the intensity and the cardinality

distribution of the target process. Therefore, define ρk to be the cardinality distribution of the

target population at time k and let ρb and ρc be the birth and clutter cardinality distributions,

respectively.

Let us denote the discrete and continuous inner product by

〈f, g〉 =

∫
f(x)g(x)d(x) (continuous case), (1.40)

〈f, g〉 =
∑
n≥0

f(n)g(n) (discrete case). (1.41)

Furthermore, define the terms Υd[µ,Z] with [Vo et al., 2007]

Υd[µ,Z](n) =

min(|Z|,n−d)∑
j=0

n!(|Z| − j)!
(n− (j + d))!

ρc(|Z| − j)
µφk(X )n−(j+d)

µ]k|k−1(X )n
ej(Z), (1.42)

where ej(Z) denote the elementary symmetric functions defined by

ej(Z) :=
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X )

sc,k(z)
. (1.43)

These terms are used to define the factors l]1(φ) and l]1(z) as

l]1(φ) =
〈Υ1[µ,Z], ρk|k−1〉
〈Υ0[µ,Z], ρk|k−1〉

, (1.44)

l]1(z) =
〈Υ1[µ,Z \ {z}], ρk|k−1〉
〈Υ0[µ,Z], ρk|k−1〉

. (1.45)

Proposition 1.3.2 (CPHD recursion [Mahler, 2007a]). (a) In the manner of (1.38), the predicted

first-order moment measure is found to be

µ]k|k−1(B) = µb,k(B) + µs,k(B), (1.46)

with • = ] in (1.35). The predicted target cardinality distribution is given by

ρk|k−1(n) =

n∑
j=0

ρb(n− j)S[µ]k−1, ρk−1](j) (1.47)

for any n ∈ N with

S[µ, ρ](j) =

∞∑
l=j

(
l

j

)
〈ps,k, µ〉j〈(1− ps,k), µ〉l−j

〈1, µ〉l
ρ(l). (1.48)
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(b) The updated first-order moment measure is found to be

µ]k(B) = µφk(B)l]1(φ) +
∑
z∈Zk

µzk(B)

sc,k(z)
l]1(z) (1.49)

with missed detection term (1.36) and association term (1.37) setting • = ]. For any n ∈ N,

the updated target cardinality distribution is given by

ρk(n) =
Υ0[µ]k|k−1, Z](n)ρk|k−1(n)

〈Υ0[µ]k|k−1, Z], ρk|k−1〉
. (1.50)

1.4 Joint parameter and multi-object estimation with hier-

archical processes

In many situations, not all filtering parameters are known a priori, especially if the sensor specifi-

cations are unknown, e.g. if the sensor is physically moving or if it has to be calibrated in terms of

noise level or of its relative position to other sensors. Applications where sensor-specific parame-

ters are unknown include sensor calibration [Houssineau et al., 2016; Ristic and Clark, 2012; Ristic

et al., 2012, 2013], drift estimation [Hagen et al., 2016; Schlangen et al., 2016b], Simultaneous

Localisation and Mapping (SLAM) [Lee et al., 2013], or clutter rate estimation [Schlangen et al.,

2017a]. Instead of estimating the unknown parameters separately, it is possible to formulate a

framework that performs the sensor state estimation and the state estimation of the monitored

targets in a joint manner by regarding the sensor parameter as common behaviour amongst the

target group [Swain, 2013].

More formally, let us denote by Ψ the point process describing the hidden parameter y in a

suitable space Y with probability distribution PΨ; similarly let Φ be the point process on the

space X describing the multi-target configuration via the probability distributions P (n)
Φ for every

cardinality n of the target population. Their individual PGFLs can be written as

GΨ(h) =

∫
h(y)PΨ(dy), (1.51)

GΦ(g) =
∑
n≥0

∫ [ n∏
i=1

g(xi)

]
P

(n)
Φ (dx1:n), (1.52)

and hence, the joint PGFL of the processes Ψ and Φ is found to be the composition

GΦ,Ψ(g, h) = GΨ(hGΦ(g|·)) =

∫
h(y)

∑
n≥0

∫ [ n∏
i=1

g(xi|y)

]
P

(n)
Φ (dx1:n|y)

PΨ(dy). (1.53)

This formulation suggests to estimate the distribution PΨ of the sensor process and the conditional

distribution PΦ|Ψ, i.e. the distribution of the multi-target configuration conditioned on the sensor

state. Hence, the formulation (1.53) imposes a hierarchy on the joint multi-target and single-

parameter process, where the process Ψ is called the high-level or parent process, and the process

Φ is referred to as the low-level or daughter process. A graphical description is given in Figure 1.2.
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s1

s2

S

X

Figure 1.2: Visual description of the structure of the hierarchical filter. Based on the state of the
sensor in S, the multi-object configuration is affected accordingly.

1.4.1 The parent process

In the following, the notation ·̂ will be used to refer to the parent process unless stated otherwise.

The functions t̂k|k−1 and ˆ̀
k denote the Markov transition of the sensor state y ∈ Y and the multi-

object likelihood based on the underlying filter-specific multi-object estimation, respectively. The

probability density P̂k at time k is propagated in time with the Bayes recursion

P̂k|k−1(dy) =

∫
t̂k|k−1(dy|y′)P̂k−1(dy′), (1.54)

P̂k(dy) =
ˆ̀
k(y|Zk)P̂k|k−1(dy)∫
ˆ̀
k(y′|Zk)P̂k|k−1(dy′)

. (1.55)

1.4.2 The daughter process

For the daughter process, the Markov transition and single-object likelihood functions are denoted

by tk|k−1 and `k, respectively. With those, the density Pk of the multi-object state ϕ ∈ Xnk at

time k is propagated over time with Bayes recursion

Pk|k−1(dϕ|y) =

∫
tk|k−1(dϕ|ϕ′, y)Pk−1(dϕ′|y), (1.56)

Pk(dϕ|y) =
`k(ϕ|Zk, y)Pk|k−1(dϕ|y)∫
`k(ϕ′|Zk, y)Pk|k−1(dϕ′|y)

. (1.57)

It is possible to use the recursion of the PHD filter for the daughter process, conditioned on the

sensor state s like in (1.56) and (1.57) [Swain, 2013]; the only missing link between the parent

and the daughter processes is the multi-object likelihood function ˆ̀
k that describes the likelihood

profile of the sensor state. This function is specific to the daughter process, i.e. it stems from the

same assumptions that are used to derive the filter.

1.4.3 The single-cluster PHD filter [Swain, 2013]

In context of parameter estimation, the PHD filter can be easily utilised for multi-object estimation

using the following multi-object likelihood function [Swain, 2013].

Proposition 1.4.1 (Multi-object likelihood of the PHD filter [Swain, 2013]). The likelihood func-
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tion of the PHD filter for a given sensor state y is found to be

ˆ̀[
k(y|Z) =

∏
z∈Z

[
µc,k(z|y) + µzk|k−1(X|y)

]
exp

[∫
Z µc,k(z|y)dz +

∫
X pd,k(x|y)µ[k|k−1(dx|y)

]. (1.58)
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Chapter 2

Beyond the PHD filter: generalising

the modelling assumptions

The findings of Chapter 1 have described two powerful state-of-the-art multi-object filtering meth-

ods, namely the PHD and the CPHD filter, which work well in many real-life scenarios. In terms

of computational complexity, the PHD filter is a low-cost method whose complexity depends lin-

early on the number of measurements; the CPHD filter, on the other hand, has a computational

complexity of O(ncard · (|Zk|2 log2 |Zk|)) [Delande et al., 2014], i.e. it is dependent on the maximum

cardinality ncard which is always chosen considerably greater than the average number of measure-

ments. Out of runtime considerations, the PHD filter is therefore the preferred choice; however,

the Poisson assumption can be quite restrictive as it will be shown below; here, the CPHD filter

gives much greater flexibility in the modelling since it does not pose any assumptions on the form

of the cardinality distributions of the target and clutter populations.

In this dissertation, we seek to find an alternative PHD filter recursion that is computationally

less demanding than the CPHD filter but whose modelling assumptions are more general than

those of the PHD filter. The following section presents the so-called Panjer distribution which

encompasses the Poisson, binomial and negative binomial distributions in one single mathematical

description [Fackler, 2009]. This distribution accounts for all ratios of mean and variance, which

makes it a much more flexible choice than the Poisson distribution whose variance always equals

its mean. Moreover, the Panjer distribution depends on two parameters which stand in one-to-

one correspondence with the mean and variance. This fact makes it natural to formulate a PHD

recursion which not only propagates the first-order moment, but also the variance of the target

process as requested by Erdinc et al. [2005]. The considerations about the variance further inspire

the exploitation of other second-order information for the analysis of filter properties; we will see

in Section 2.4 that statistics like regional correlation and covariance can help to understand a

certain weight shift effect called the spooky effect which was first noticed on the CPHD filter by

Fränken et al. [2009]. Finally, the new filter, as well as the CPHD filter, will be embedded in the

single-cluster filtering framework described in Section 1.4.
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2.1 Generalising the Poisson process

2.1.1 The Panjer distribution

Before working with the Panjer distribution, let us recall the definitions of the rising and falling

factorials, which can be seen as a generalised factorial, and the generalised binomial coefficient for

any real value x ∈ R and any non-negative integer n ∈ N.

Definition 2.1.1 (Generalised factorial and binomial coefficient). Consider a real number x ∈ R

and a non-negative integer n ∈ N.

(i) The Pochhammer symbol or rising factorial xn↑ is given by

xn↑ :=

n−1∏
i=0

(x+ i), x0↑ := 1. (2.1)

(ii) In the same manner, the falling factorial xn↓ is given by

xn↓ :=

n−1∏
i=0

(x− i), x0↓ := 1. (2.2)

(iii) Using (2.2), the generalised binomial coefficient
(
x
n

)
is defined as

(
x

n

)
=
xn↓
n!

. (2.3)

The Panjer process was recently formulated in Schlangen et al. [2017c], inspired by the close

relation between the Poisson, binomial and negative binomial distributions found by Panjer [1981].

In the following, let us consider the following definition of the Panjer probability mass function

(pmf).

Definition 2.1.2 (Panjer distribution). For any n ∈ N, the Panjer distribution is defined via its

pmf

ρPanjer(n) =

(
−α
n

)(
1 +

1

β

)−α( −1

β + 1

)n
, (2.4)

where either α, β ∈ R>0 or α ∈ Z<0 and β ∈ R<0. Note that negative, non-integer values of α

could result in complex values, therefore they are excluded here.

Remark 2.1.3. A different definition is given in form of the probability mass function (1) in

Fackler [2009] which takes the form

ρ(n) =

(
1 +

λ

α

)−α
λn

n!

n−1∏
i=0

α+ i

α+ λ
. (2.5)
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To show that the two formulations are in fact equivalent, substitute λ with α
β :

ρ(n) =

(
1 +

1

β

)−α
αn

βn(α+ α
β )n

∏n−1
i=0 (α+ i)

n!
(−1)2n (2.6a)

=

(
1 +

1

β

)−α ( −α
αβ + α

)n ∏n−1
i=0 (−α− i)

n!
(2.6b)

=

(
1 +

1

β

)−α( −1

β + 1

)n(−α
n

)
. (2.6c)

In (2.6a), a factor (−1)2n = 1 was added to produce the negative values in the terms of Equation

(2.4); the equality (2.6c) follows from the definition of the generalised binomial coefficient (2.3).

As mentioned above, this definition encompasses three special cases:

Proposition 2.1.4. .

1. If α, β ∈ R>0, the pmf ρPanjer represents the negative binomial distribution.

2. If α ∈ Z<0 and β ∈ R<0, the pmf ρPanjer represents the binomial distribution.

3. If α→∞ with constant λ = α
β , expression (2.4) converges to the Poisson pmf

ρPoisson(n) = e−λ
λn

n!
. (2.7)

Proof. The first two special cases follow directly from the definition of the Panjer pmf, see Fackler

[2009]. For the limit case, assume that λ = α
β is constant and let α grow to ∞:

lim
α→∞

ρPanjer(n) = lim
α→∞

(
−α
n

)(
1 +

1

β

)−α( −1

β + 1

)n
= lim
α→∞

−αn↓
n!

exp

(
−α ln

(
1 +

λ

α

))(
− λ

α+ λ

)n
= lim
α→∞

1

n!

λnαn↑
(α+ λ)n

exp

(
−α ln

(
1 +

λ

α

))
= lim
α→∞

λn

n!

α

α+ λ

α+ 1

α+ λ
. . .

α+ n− 1

α+ λ︸ ︷︷ ︸
=1 for α→∞

exp
(
− α ln

(
1 +

λ

α

)
︸ ︷︷ ︸
≡ λα for λ

α→0

)

=
λn

n!
exp(−λ).

As shown in Fackler [2009], mean and variance of the Panjer distribution are given by

µPanjer =
α

β
, (2.8)

varPanjer = µPanjer

(
1 +

1

β

)
. (2.9)

It is easy to see from Equation (2.9) that the variance is always greater than the mean if 0 < β <∞

(which corresponds to the negative binomial case) and less than the mean if −∞ < β < 0 (which

is the binomial case). Together with the Poisson limit where the mean equals the variance, the

Panjer distribution makes it therefore possible to describe any ratio of mean and variance which

25



makes it a convenient modelling choice. The following table summarises the special cases of the

Panjer distribution at a glance.

negative binomial α, β ∈ R>0 µPanjer < varPanjer

binomial α ∈ Z<0 and β ∈ R<0 µPanjer > varPanjer

Poisson λ := α
β = const. and α→∞ µPanjer = varPanjer

Table 2.1: Recovering the Poisson, binomial and negative binomial distributions from the Panjer
distribution [Panjer, 1981; Fackler, 2009; Klugman et al., 2012].

In order to demonstrate the different parametrisations visually, Figure 2.1 shows plots of all

three cases for the same mean value µPanjer = 5. It can be seen that the binomial distribution,

having the smallest variance, has the lightest tail, i.e. probabilities of values away from the mean

become 0 very quickly and the probability mass highly concentrates around the mean. The negative

binomial distribution, on the other hand, has the largest tail, i.e. values far away from the mean

still have considerable probability mass, and it has no peak when the variance is very different

from the mean. The Poisson distribution builds the intermediate case since it is the limit of both

the binomial and negative binomial distributions when varPanjer → µPanjer.
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Figure 2.1: The Poisson, binomial and negative binomial distributions with identical mean in
comparison. Here, we use the short-hand notation µ := µPanjer and var := varPanjer.

2.1.2 Derivation rules for the potentiation of functionals

In order to define and work with a point process whose cardinality is Panjer distributed, it will be

convenient to define some basic differentiation rules in the manner of Equations (1.27) and (1.28),

but for the exponentiation of a functional G with a parameter α.

Lemma 2.1.5. The first-order derivative of the power functional ( · )α in composition with a

general functional G(h) is the functional

δ(Gα)(h; η) = αG(h)α−1δG(h; η). (2.10)

Proof. For the proof of the lemma, the binomial theorem for general exponents α ∈ R is used:

(x+ y)α =
∑
k≥0

(
α

k

)
xα−kyk. (2.11)

with the generalised binomial coefficient
(
α
k

)
as defined in (2.3).
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In analogy to Lemma 1.1.12, consider a series of functions (ηn)n∈N converging pointwise to

δG(h; η) for n→∞ and a series (εn)n∈N converging to 0. Therefore,

δ(Gα)(h; η)
(1.19)

= δ (( · )α) (G(h); δG(h; η))

= lim
n→∞

1

εn
[(G(h) + εnηn)α − (G(h))α]

(2.11)
= lim

n→∞

1

εn

∑
j≥0

(
α

j

)
G(h)α−j(εnηn)j −G(h)α


= lim

n→∞

1

εn

∑
j≥1

(
α

j

)
G(h)α−j(εnηn)j


= lim

n→∞

[
αG(h)α−1ηn + εn

∑
j≥2

(
α

j

)
G(h)α−jεj−2

n ηjn︸ ︷︷ ︸
=0(n→∞)

]

= αG(h)α−1δG(h; η).

Proposition 2.1.6. For any linear functional G, the nth-order derivative of the composition G(h)α

can be expressed as

δn(Gα)(h; η1, . . . , ηn) = αn↓ G(h)α−n
n∏
i=1

δG(h; ηi). (2.12)

Proof. Thanks to the structure of (2.10), the nth-order differential of Gα can again be obtained

inductively in analogy to Prop. 1.1.13, based on the assumption that G is linear. The derivative

of the outer function creates a factor (α− i+ 1) for each differentiation step.

2.1.3 The Panjer point process

With the findings of the previous sections, it is now possible to formulate the PGFL of a point

process whose cardinality is Panjer distributed.

Proposition 2.1.7 (The Panjer process [Daley and Vere-Jones, 2003; Panjer, 1981; Fackler, 2009;

Klugman et al., 2012; Schlangen et al., 2017c]). A Panjer point process with parameters α and

β and spatial distribution s is an i.i.d. cluster process with spatial distribution s and cardinality

distribution ρPanjer (2.4) with parameters α and β. Its PGFL is of the form

GPanjer(h) =

(
1 +

1

β

∫
[1− h(x)]s(dx)

)−α
. (2.13)
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Proof. Substitute (2.4) for ρ in the definition of an i.i.d. point process (1.24):

GPanjer(h)
(1.24)

=
∑
n≥0

(
−α
n

)(
1 +

1

β

)−α( −1

β + 1

)n [∫
h(x)s(dx)

]n
(2.14a)

=

(
1 +

1

β

)−α∑
n≥0

(
−α
n

)[
−1

β + 1

∫
h(x)s(dx)

]n
(2.14b)

=

(
1 +

1

β

)−α [
1− 1

β + 1

∫
h(x)s(dx)

]−α
(2.14c)

=

[
1 +

1

β
− 1

β

∫
h(x)s(dx)

]−α
(2.14d)

=

[
1 +

1

β

∫
[1− h(x)]s(dx)

]−α
. (2.14e)

Equality (2.14c) follows from the binomial theorem (2.11).

Let us now derive the regional mean and variance of the Panjer process and find an interesting

relation between them and the parameters of the process. For this purpose, let B,B′ ∈ B(X ) be

two arbitrary regions. The mean µ(B) is found using Equation (1.16):

µ(B)
(1.16)

= δGPanjer(e
−f ;1B)

∣∣∣∣
h=1

(2.15a)

(2.13)
= δ

([
1 +

1

β

∫
[1− e−f(x)]s(dx)

]−α
;1B

)∣∣∣∣
h=1

(2.15b)

(2.12)
= α

[
1 +

1

β

∫
[1− e0]s(dx)

]−α−1[
1

β

∫
B

e0s(dx)

]
(2.15c)

=
α

β

∫
B

s(dx). (2.15d)

Similarly, the second-order moment µ(2)(B ×B′) is found to be

µ(2)(B ×B′) = δ2GPanjer(e
−f ;1B ,1B′)

∣∣∣∣
f=0

(2.16a)

=
α2↑

β2

[
1 +

1

β

∫
[1− e0]s(dx)

]−α−2 ∫
B

e0s(dx)

∫
B′
e0s(dx) (2.16b)

+
α

β

[
1 +

1

β

∫
[1− e0]s(dx)

]−α−1 ∫
B∩B′

e0s(dx) (2.16c)

=
α2↑

β2

∫
B

s(dx)

∫
B′
s(dx) +

α

β

∫
B∩B′

s(dx). (2.16d)

Therefore, the variance var(B) is found as follows:

var(B)
(1.9)
= µ(2)(B ×B)− [µ(B)]

2 (2.17a)

= µ(B)

(
1 +

1

β

∫
B

s(dx)

)
. (2.17b)

From (2.15) and (2.17) we obtain for B = X that

µ(X ) =
α

β
, var(X ) = µ(X )

(
1 +

1

β

)
. (2.18)
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These considerations lead to the following relation between mean and variance of a Panjer process

and its parameters α and β.

Proposition 2.1.8. For a Panjer process with intensity µ(·) and variance var(·), its parameters

α and β are found with the equalities

α =
µ(X )2

var(X )− µ(X )
, (2.19)

β =
µ(X )

var(X )− µ(X )
. (2.20)

Equations (2.19) and (2.20) show again that the negative binomial case requires the mean to

be less than the variance, whereas the binomial case requires the variance to be less than the mean

(and the ratio (2.19) to be a negative integer). Together with the Poisson limit case, the Panjer

point process can therefore have (almost) all possible values of mean and variance which makes it

much more flexible than the Poisson point process. It will be exploited for two generalisations of

the PHD filter which will be introduced in the following section.

2.2 Filtering with the Panjer point process

Two novel PHD filter alternatives are proposed below1 to find a compromise between the relative

computational simplicity of the PHD filter and the modelling flexibility of the CPHD filter. They

use the Panjer point process (see Sec. 2.1.3) to allow for cases where the variance in the number of

objects is smaller, greater, or equal to the mean. The first filter that uses this generalised model is

the PHD filter with Panjer clutter [Schlangen et al., 2016a], described in Sec. 2.2.1 and denoted by

the superscript 5; here, the Panjer-specific parameters are understood as the user-defined clutter

parameters of the algorithm. The other PHD variation is the Second-Order PHD (SO-PHD) filter

[Schlangen et al., 2017c], presented in Sec. 2.2.4 below, which exploits the Panjer distribution for

the cardinality of both the predicted target and the false alarm processes; here, the Panjer-specific

parameters of the target process are propagated, and therefore also its mean and variance due to

Proposition 2.1.8. The SO-PHD filter is henceforth marked with the superscript \.

2.2.1 The PHD filter with Panjer clutter [Schlangen et al., 2016a]

The PHD filter with Panjer clutter was originally introduced as the PHD filter with negative

binomial clutter in Schlangen et al. [2016a]. In fact, due to the form of the Panjer distribution, the

PGFLs of the Panjer and the negative binomial point process are the same (only differing by the

choice of α and β), hence the formulation of Schlangen et al. [2016a] is generalised here without

need to change the equations. The proof of the recursion equations is detailed below.

Theorem 2.2.1 (PHD recursion with Panjer clutter [Schlangen et al., 2016a]). Let αc,k and βc,k

be the Panjer clutter parameters at time k, and let sc,k denote the corresponding spatial distribution

of the false alarms.
1These works are published in Schlangen et al. [2016a] and Schlangen et al. [2017c].
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(a) Like in the case of the PHD filter prediction (1.38), the predicted first-order moment measure

is given by

µ
5
k|k−1(B) = µb,k(B) + µs,k(B), (2.21)

setting • = 5 in the survival term (1.35).

(b) The updated first-order moment measure with Poisson prediction and Panjer false alarm model

is found to be

µ
5
k(B) = µφk(B) +

∑
z∈Zk

µzk(B)

sc,k(z)

Y (Zk\{z})
Y (Zk) (2.22)

with missed detection term (1.36) and association term (1.37) where • = 5. For any Z ⊂ Z,

the terms Y (Z) are defined as

Y (Z) =

|Z|∑
j=0

(αc,k)j↑

(βc,k + 1)
j
e|Z|−j(Z) (2.23)

with the so-called elementary symmetric functions (see Vo et al. [2007])

ej(Z) =
∑
Z̄⊆Z
|Z̄|=j

∏
z∈Z̄

µzk(X )

sc,k(z)
. (2.24)

Note that the CPHD filter equations contain similar terms to (2.23), but the latter has a much

simpler form. In fact, the missed detection term µφk(B) is not rescaled at all, similarly to the

respective term in the PHD filter update (1.39); the association terms, however, are now rescaled

with the terms
Y (Zk\{z})
sc,k(z)Y (Zk)

.

The recursion of the PHD filter with Panjer clutter is derived analogously to that of the original

PHD filter [Mahler, 2003], hence the proof of the prediction is completely identical to that of the

PHD filter since the modified assumption on the false alarm process only affects the update. The

proof of the update step, on the other hand, incorporates the following three main steps:

1. Find the joint PGFL GJ,k of the target and measurement processes at time k using a Panjer

point process to describe the false positives. It takes the general form

GJ,k(g, h) = Gk|k−1 (Gd(g, h))Gc(g) (2.25)

and its detailed formulation is found by applying the filter-specific assumptions. This step is

provided in Lemma 2.2.2.

2. Find the conditional PGFL Gk which describes the observation process using

Gk(h|Zk) =
δmGJ,k(g, h; δz1 , . . . , δzm)|g=0

δmGJ,k(g, 1; δz1 , . . . , δzm)|g=0
, (2.26)

which follows from Bayes rule [Mahler, 2003]. This step is performed in Lemma 2.2.3.
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3. Find the first-order moment of Gk which is the numerator of the updated intensity

µk(B) =
δm+1GJ,k(g, h; δz1 , . . . , δzm ,1B)|g=0,h=1

δmGJ,k(g, 1; δz1 , . . . , δzm)|g=0
. (2.27)

This step is found in Lemma 2.2.4. Note that in general, (1.16) requires the Laplace func-

tional, not the PGFL, however the first factorial and non-factorial moments of a process are

equal as stated earlier, so Equation (2.27) is valid.

A few detailed remarks are given in the end of the section to explain the final form of Equa-

tion (2.22). Note that exactly the same approach will be used later on in Section 2.2.5.

2.2.2 Derivation of the PHD filter with Panjer clutter

Lemma 2.2.2. Assume that

• the predicted process with PGFL G 5
k|k−1 is a Poisson process;

• the detection process with PGFL Gd is a Bernoulli process;

• the clutter process with PGFL Gc is a Panjer process which is independent of the predicted

process.

Then, the joint target and measurement process for the update step of the PHD filter with Panjer

clutter leads to a joint PGFL of the form

G 5
J,k(g, h) = exp

(
Fd(g, h)

)(
Fc(g)

)−αc,k

, (2.28)

where the functionals Fd and Fc are defined as

Fd(g, h) =

∫
X

[
h(x)

(
1− pd(x) + pd(x)

∫
Z
g(z)l(x|z)dz

)
− 1

]
µ
5
k|k−1(x)dx (2.29)

and

Fc(g) = 1 +
1

βc,k

∫
Z

(1− g(z))sc,k(z)dz. (2.30)

Proof. The predicted and the clutter processes are independent, thus their PGFLs are superim-

posed using multiplication; the detection process, on the other hand, branches from the predicted

process, thus the detection and prediction processes are concatenated. The specific form of the

functions Fd and Fc follow from the definitions (1.25), (1.26), and (2.13).

Lemma 2.2.3. The mth order derivative of (2.28) with respect to g in the directions δz1 , . . . , δzm
can be written as

δmG 5
J,k(g, h; δz1 , . . . , δzm)

= exp(Fd(g, h))

|Zm|∑
j=0

(αc,k)j↑

βjc,k
Fc(g)−αc,k−j

∑
Z⊆Zk
|Z|=m−j

∏
z∈Z

F zd (h)
∏

z′∈Zk\Z

sc,k(z′)

 ,
(2.31)
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where

F zd (h) := δFd(g, h; δz) =

∫
X
h(x)pd(x)l(x|z)µ 5

k|k−1(x)dx. (2.32)

Proof. With the help of the general chain rule (1.21), let us first state the j-fold derivatives of the

factors Gd(g, h) := exp
(
Fd(g, h)

)
and Gc(g) :=

(
Fc(g)

)−αc,k

before incorporating the results in

the general product rule (1.20). Note that since Fd and Fc are linear with respect to the argument

g, higher-order derivatives disappear. In the following, let Z ∈ Zk, where |Z| = j.

δjGd(g, h; (δz)z∈Z)
(1.21)

=
∑

π∈Π(Z)

δ(|π|) exp

(
Fd(g, h);

(
δ(|Z′|)Fd

(
g, h; (δz′)z′∈Z′

)︸ ︷︷ ︸
=0 for |Z′|>1

)
Z′∈π

)

= δj exp

(
Fd(g, h);

(
δFd(g, h; δz)

)
z∈Z

)
(1.28)

= exp(Fd(g, h))
∏
z∈Z

δFd(g, h; δz)

= exp(Fd(g, h))
∏
z∈Z

F zd (h).

(2.33)

Here, Π(Z) denotes the partition set of Z and π is one possible partition. For them−jth derivative

of Gc, define the compement Z̄ of Z ∈ Zk via Z̄ = Zk \ Z.

δm−jGc(g; (δz)z∈Z̄)
(1.21)

=
∑

π∈Π(Z̄)

δ(|π|)

(
Fc(g)−αc,k ;

(
δ(|Z′|)Fc(g; (δz′)z′∈Z′)︸ ︷︷ ︸

=0 for |Z′|>1

)
Z′∈π

)

= δm−j

(
Fc(g)−αc,k ;

(
δFc(g; δz)

)
z∈Z̄

)
(2.12)

=
(αc,k)j↑

βjc,k
Fc(g)−αc,k−j

∏
z∈Z

sc,k(z).

(2.34)

The desired result is obtained by inserting (2.33) and (2.34) into the product rule (1.20).

Lemma 2.2.4. Let us write α := αc,k and β := βc,k for the sake of brevity. The first-order

derivative of (2.31) with respect to h in the direction 1B for some region B ∈ B(X ) is found to be

δm+1G 5
J,k(g, h; δz1 , . . . , δzm ,1B)

= exp(Fd(g, h))

[
δFd(g, h;1B)

m∑
j=0

αj↑
βj

Fc(g)−α−j
∑
Z⊆Zk
|Z|=j

∏
z∈Z

sc,k(z)
∏

z′∈Zm\Z

F z
′

d (h)

+

m∑
j=0

αj↑
βj

Fc(g)−α−j
∏
z∈Z

sc,k(z)

( ∑
z′∈Zk\Z

µz
′

k (x)
∏

z′′∈Zk\Z
z′′ 6=z′

F z
′′

d (h)

)] (2.35)

with

δFd(g, h;1B) =

∫
B

(
1− pd,k(x) + pd,k(x)

∫
Z
g(z)lk(x|z)dz

)
µ
5
k|k−1(x)dx. (2.36)

Proof. Use the product rule (1.18) on Equation (2.31).

Proof of Theorem 2.2.1. Lemmata 2.2.3 and 2.2.4 provide the denominator and the numerator of

2.27, respectively, when setting h = 1 and g = 0. The terms exp(Fd(0, 1)) and Fc(0)−α cancel
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out in the fraction, and expanding with
(∏

z∈Zm sc,k(z)
)−1 eliminates the second product in the

elementary symmetric functions. The first sum in (2.71) forms the missed detection term, whereas

the second sum describes the associations for each measurement (after rearranging the sums).

Furthermore, the term Fc(0) = (1 + 1
β ) simplifies with the term

αj↑
βj

.

2.2.3 Simulations with the PHD filter with Panjer clutter [Schlangen

et al., 2016a]

To compare the performance of the new filter with the original PHD filter in presence of spontaneous

bursts of false alarms, two artificial datasets are considered below which provide ground truth. The

data was simulated on a two-dimensional, square state space of size 50 m × 50 m with a time lapse of

1 s between each pair of consecutive frames.2 Targets were generated independently and identically

distributed according to a Poisson birth model with mean 0.5, where between 0 and 5 targets were

introduced in the first frame. The initial target velocity was set to 0 with a small white noise with

standard deviation 0.5 m s−1 in both image dimensions. The targets were propagated over time

according to a near-constant velocity model, assuming a small white noise with standard deviation

0.5 m and 0.01 m s−1 on each dimension of the position and velocity, respectively. The survival

rate was set to ps = 0.99 for the whole experiment.

For the simulation of the detection process, the probability of detection was set to pd = 0.9

and a white measurement noise with standard deviation 0.4 m was imposed. The two considered

scenarios differ from each other as follows:

S1.1 The first scenario was simulated over 15 time steps, where exactly 9 false alarms were ran-

domly placed in the scene in the first 14 time steps. At time 15, the number of false alarms

was set artificially to values between 0 and 130 to simulate bursts of clutter with varying

intensity.

S1.2 In the second scenario, the false alarms were generated according to a negative binomial point

process with mean 9.5 and variance 100. Data was simulated across 100 time instances to

analyse the long-term effect of false alarms with high variance in cardinality.

Both the original PHD filter and the proposed method were initialised with the same parameters

that were used to create the simulated data, assuming a slightly higher birth intensity of 10 for

the first frame. Due to its nature, the PHD filter with Panjer clutter is able to incorporate

the information about the variance of the clutter process. The clutter variance of the original

PHD filter, on the other hand, is bound to the value of the assumed clutter intensity, therefore

it was initialised both with a mean of 9.5 and 50 to evaluate if different intensities improve the

estimation result. The corresponding distributions used by both filters are shown in Fig. 2.2. For

all experiments, a Gaussian Mixture (GM) implementation3 was chosen for both methods in the

manner of Vo and Ma [2006], where the standard deviation of the process and measurement noise

of the underlying Kalman filters was set to 0.1 m and 0.4 m, respectively. The fact that both filters

are implemented with a GM approach and initialised with the same parameters suggests that the
2Note that the choice of units is arbitrary.
3A description of Gaussian Mixture implementations and the pseudocode are found in the appendix.
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Figure 2.2: The different clutter distributions ρc used in the experiment. As shown in the magnified
area, the negative binomial distribution still carries a significantly positive probability mass even
beyond n = 80, whereas both Poisson distributions already reached mass 0.
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Figure 2.3: Simulation S1.1: Estimation error of both algorithms at time 15 dependent on the
present number of clutter points. The results are averaged over 100 Monte Carlo runs for each
false alarm number and plotted along with the variance over those runs.

localisation error of the objects are very similar, therefore Figures 2.3 and 2.4 show only the error

in the cardinality estimate, averaged over 100 and 500 Monte Carlo (MC) runs, respectively.

Fig. 2.3 shows the errors in the estimated target number for Scenario 1 over the simulated

number of clutter points at time 15, together with the variance over the 100 MC runs. It can be

noted that the PHD filter with smaller mean performs best for small amounts of clutter close to the

assumed mean 9.5 since they are in accordance with the model, but cannot cope with high amounts

of false alarms which are miss-interpreted as new-born targets. The PHD filter that assumed the

high clutter intensity also performs best when the number of false alarms falls within a confidence

interval around the mode but shows increasing errors in the estimated number of targets when the

amount of false alarms falls out of the model. The proposed filter, in contrast, shows a consistent

performance for any amount of occurring false alarms.

Fig. 2.4 displays the mean and variance of the errors in the estimated target number for Scenario

2 over all 100 time steps, averaged over 500 MC runs. It can be seen that the PHD filter with the

low clutter intensity shows by far the highest variance in performance since it is unable to cope with

sudden bursts of false alarms as seen above. Still, the PHD filter with the high clutter intensity

performs worse on average since in most time scans, the actual number of false alarms per frame
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Figure 2.4: Simulation S1.2: Mean and standard deviation over 500 Monte Carlo runs of the
cardinality errors obtained with both algorithms.

is much lower than the assumed value of 50. The proposed filter, in contrast, consistently shows

the lowest estimation error in cardinality since the negative binomial occurrence of false alarms is

well modelled with the Panjer assumption.

In terms of runtime, the proposed filter took on average 8.0 s for one iteration of Scenario S1.2,

whereas the original PHD filter took 5.7 s on a dual-core Dell Precision M4800 workstation with

Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz using a Matlab implementation.

2.2.4 The Second-Order PHD filter [Schlangen et al., 2017c]

The promising results of Sections 2.2.1 - 2.2.3 inspired the idea to change the predicted target

process of the PHD filter to a Panjer process as well. We have seen in Equations (2.19) and

(2.20) that the mean and variance of a Panjer point process stand in one-to-one correspondence

with its two parameters α and β. As a pleasant side effect of this, it is possible to derive a PHD

filter recursion which propagates both mean and variance of the target process through the Panjer

assumption. The data flow of the proposed recursion is depicted in Figure 3.1; it can be seen

that mean and variance are directly propagated in the prediction, whereas the predicted Panjer

parameters αk|k−1 and βk|k−1 are calculated from mean and variance for the update equations.

Note that this filter only propagates the variance on the full state space X , however regional

statistics can still be extracted at all times. The proposed filter will be called the Second-Order

PHD (SO-PHD) filter (or alternatively the Panjer PHD filter or simply the Panjer filter) since

it propagates second-order information using a Panjer process to describe the target and clutter

populations. It was introduced by Schlangen et al. [2017c] and is formulated below using the same

notation. Note that a similar idea was attempted in Mahler [2006] in form of the so-called binomial

filter (without proof) which uses the binomial assumption for the target process twice (i.e. once

before both the prediction and the update steps) and models the false alarms with a Poisson

process. However, it was acknowledged that the practicality is restricted due to the constraint

on the admissible parameters (recall that α is restricted to the negative integers in that case);

furthermore, the binomial assumption requires a lot of certainty in the target process due to the

restricted variance.
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. . . . . .

Φk−1

(
µ\k−1(·), var\k−1(X )

)

Φk|k−1

(
µ\k|k−1(·), var\k|k−1(X )

)
(
µ\k|k−1(·), αk|k−1, βk|k−1

)

Φk

(
µ\k(·), var\k(X )

)
. . . . . .

prediction (2.42),(2.43)

update

(2.46),(2.47)

(2.48),(2.49)

Figure 2.5: Data flow of the second-order PHD filter at time k. In addition to the intensity function
µ it propagates the scalar var(X ), describing the variance in the estimated number of targets on
the whole state space.

Since the recursion of the SO-PHD filter are more involved through the additional propagation

of the process variance, let us state the prediction and update equations separately. As mentioned

earlier, the notation \ will be used below to refer to the SO-PHD filter. Let αk|k−1, βk|k−1 and

αc,k, βc,k be the parameters of the predicted target and clutter processes at time k, respectively.

Define the terms

Yu(Z) :=

|Z|∑
j=0

(αk|k−1)(j+u)↑

(βk|k−1)j+u
(αc,k)(|Z|−j)↑

(βc,k + 1)|Z|−j
F−j−ud ej(Z) (2.37)

for any Z ⊆ Zk, where Fd is the scalar given by

Fd :=

∫ [
1 +

pd,k(x)

βk|k−1

]
µ\k|k−1(dx), (2.38)

and ej denotes the elementary symmetric functions (cf. Eq. (2.24))

ej(Z) :=
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X )

sc,k(z)
, (2.39)

where sc,k is the spatial false alarm distribution at time k and the association term is defined via

(1.37) with • = \.4 Furthermore, define the expression l\d for d = 1, 2 via

l\d(φ) :=
Yd(Zk)

Y0(Zk)
and l\d(z) :=

Yd(Zk\{z})
Y0(Zk)

. (2.40)

4Note that the elementary symmetric functions of the PHD filter with Panjer clutter are identical (up to • = \),
cf. Equation (2.24).
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In a similar manner, define

l\, 6=2 (z, z′) :=


Y2(Zk\{z, z′})

Y0(Zk)
if z 6= z′,

0 otherwise.

(2.41)

The prediction of the variance involves the second-order factorial moment ν(2)
k which, in general,

cannot be retrieved from the predicted information µ\k|k−1, var\k|k−1 only. The assumption that

ps,k(x) = ps,k shall be uniform for all x in the state space X , however, facilitates the formulation

of a closed-form recursion. Theorem 2.2.5 states both the general and the simplified prediction

equations.

Theorem 2.2.5 (Second-order PHD recursion, prediction [Schlangen et al., 2017c]). .

(a) In the manner of (1.38) and (1.46), the predicted first-order moment measure of the Panjer

filter is given by

µ\k|k−1(B) = µb,k(B) + µs,k(B), (2.42)

using • = \ in (1.35). The predicted variance in the whole state space X is given by

var\k|k−1(X ) = varb,k(X ) + vars,k(X ), (2.43)

where varb,k denotes the variance of the birth process and vars,k is the variance of the predicted

process concerning the surviving targets which is found to be

vars,k(B) = µs,k(B)
[
1− µs,k(B)

]
+

∫
ps,k(x)ps,k(x′)tk|k−1(B|x)tk|k−1(B|x′)ν(2)

k−1(d(x, x′)),

(2.44)

again setting • = \ in (1.35).

(b) Assume additionally that ps,k(x) = ps,k is constant for all x ∈ X at time k. Then, the variance

of the predicted process in X reduces to the expression

vars,k(X ) = p2
s,kvark−1(X ) + ps,k[1− ps,k]µk−1(X ). (2.45)

Theorem 2.2.6 (Second-order PHD recursion, update [Schlangen et al., 2017c]). With the help

of Equations (2.19) and (2.20), find αk|k−1 and βk|k−1 using the expressions

αk|k−1 =
µ\k|k−1(X )2

var\k|k−1(X )− µ\k|k−1(X )
, (2.46)

βk|k−1 =
µ\k|k−1(X )

var\k|k−1(X )− µ\k|k−1(X )
. (2.47)

Then, the updated first-order moment measure becomes

µ\k(B) = µφk(B)l\1(φ) +
∑
z∈Zk

µzk(B)

sc,k(z)
l\1(z), (2.48)
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and the updated variance is obtained with

var\k(B) = µ\k(B) + µφk(B)2
[
l\2(φ)− l\1(φ)2

]
+ 2µφk(B)

∑
z∈Zk

µzk(B)

sc,k(z)

[
l\2(z)− l\1(φ)l\1(z)

]
+

∑
z,z′∈Zk

µzk(B)

sc,k(z)

µz
′

k (B)

sc,k(z′)

[
l\,6=2 (z, z′)− l̂\1(z)l̂1(z′)

]
.

(2.49)

In Section 2.1, it was already mentioned that the Poisson distribution is a limit case of the

Panjer distribution for constant λ = α
β and α → ∞; hence, it was already shown that the PHD

filter recursion can be recovered from the PHD filter with Panjer clutter. The following corollary

shows how the intensity update of the SO-PHD filter is connected to those of the original PHD

filter and the PHD filter with Panjer clutter.

Corollary 2.2.7 (Limit cases [Schlangen et al., 2016a, 2017c]). If the predicted point process

Φk|k−1 is assumed Poisson, i.e., αk|k−1, βk|k−1 → ∞ with constant ratio λk|k−1 =
αk|k−1

βk|k−1
, then

the intensity update (2.48) converges to the intensity update of the PHD filter with Panjer clutter

(2.22). Furthermore, if the clutter process is assumed Poisson as well, i.e., αc,k, βc,k → ∞ with

constant ratio λc,k =
αc,k

βc,k
, then the intensity update (2.48) of the SO-PHD filter converges to the

intensity update (1.39) of the original PHD filter.

Remark 2.2.8. Note, however, that since the PHD filter with Panjer clutter only propagates the

mean of the target process, it can be seen as a generalisation of the PHD filter, whereas the SO-PHD

filter (just like the CPHD filter) propagates additional information and is hence conceptually dif-

ferent.

2.2.5 Derivation of the SO-PHD filter

Proof of Theorem 2.2.5. (a) In the following, we denote by Gs,k the PGFL of the point process

describing the evolution of a target, given that it survives from the previous to the present

time step, and let us denote the birth point process by Gb,k. For the sake of simplicity, the

time subscripts on the birth and surviving target processes will be omitted in this proof.

First, let us write down the PGFL G\k|k−1 of the prediction process which takes the form

G\k|k−1(h) = Gb(h)G\k−1(Gs(h|·)). (2.50)

Here, the multiplicative structure stems from the independence between the newborn targets

and those surviving from the previous time step; the composition appears because the survival

process branches from the prior target process Φk−1 [Daley and Vere-Jones, 2003, Eq. 5.5.18].

Apart from the assumption that Gs is a Bernoulli process and that the birth process is in-

dependent of the target process, no additional assumptions have to be made up to this point

(in contrast to the approach of Mahler [2006] which requires Gk−1 to be a binomial process).

Therefore, the predicted intensity µ\k|k−1 is found to be identical to the predicted intensity of

the PHD filter in Equation (1.38).

Following Equation (1.9), the second-order moment of Lk|k−1 is computed and the square of
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the predicted intensity (1.38) be subtracted from the result to obtain the predicted variance

vark|k−1. Therefore, the first step is to construct the second-order moment µ(2)
k|k−1(B ×B′) in

arbitrary regions B,B′ ∈ B(X ) using Equation (1.16):

µ
(2)
k|k−1(B ×B′) = δ2L\k|k−1(f ;1B ,1B′)

∣∣
f=0

(2.51a)

= δ2G\k|k−1(e−f ;1B ,1B′)
∣∣
f=0

. (2.51b)

The product rule (1.18) leads to the expression

µ
(2)
k|k−1(B ×B′) (1.18)

= δ2Gb(e−f ;1B ;1B′)
∣∣
f=0
G\k−1(Gs(1|·))

+ δGb(e−f ;1B)
∣∣
f=0

δ(G\k−1(Gs(e
−f |·));1B′)

∣∣
f=0

+ δGb(e−f ;1B′)
∣∣
f=0

δ(G\k−1(Gs(e
−f |·));1B)

∣∣
f=0

+ Gb(1)δ2(G\k−1(Gs(e
−f |·));1B ,1B′)

∣∣
f=0

(2.51c)
(1.16)

= µ
(2)
b (B ×B′)

− µb(B)δ(G\k−1(Gs(e
−f |·));1B′)

∣∣
f=0

− µb(B′)δ(G\k−1(Gs(e
−f |·));1B)

∣∣
f=0

+ δ2(G\k−1(Gs(e
−f |·));1B ,1B′)|f=0, (2.51d)

where µb and µ
(2)
b are the first- and second-order moment measures of the birth process,

respectively. Let us first compute δ(G\k−1(Gs(e
−f |·));1B)

∣∣
f=0

in (2.51d). The general definition

of PGFLs (1.12) leads to the expression

δ(G\k−1(Gs(e
−f |·));1B)

∣∣
f=0

(1.12)
=

∑
n≥0

∫
Xn
δ

([
n∏
i=1

Gs(e
−f |xi)

]
;1B

)∣∣∣∣∣
f=0

P
(n)
k−1(dx1:n) (2.52a)

(1.18)
=

∑
n≥0

∫
Xn

n∑
i=1

δ(Gs(e
−f |xi);1B)

∣∣
f=0

P
(n)
k−1(dx1:n) (2.52b)

(1.2a)
=

∫
δ(Gs(e

−f |x);1B)
∣∣
f=0

µk−1(dx). (2.52c)

As mentioned previously, the survival process for a target with prior state x is modelled with a

Bernoulli point process with (state-dependent) parameter ps(x) and spatial distribution t(·|x),

therefore (1.25) yields

Gs(e
−f |x) = 1− ps(x) + ps(x)

∫
e−f(y)t(dy|x) (2.53)

whose derivative is found to be

δ(Gs(e
−f |x);1B) = ps(x)

∫
δ(e−f(y);1B)t(dy|x) (2.54a)

= −ps(x)

∫
1B(y)e−f(y)t(dy|x) (2.54b)
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which leads to

δ(Gs(e
−f |x);1B)

∣∣
f=0

= δ(Gs(e
−f |x);1B)

∣∣
f=0

= −ps(x)t(B|x).
(2.54c)

Substituting (2.54c) in (2.52c) yields

δ(G\k−1(Gs(e
−f |·));1B)

∣∣
f=0

= −
∫
ps(x)t(B|x)µk−1(dx). (2.55)

In a similar manner, let us write out the expression δ2(G\k−1(Gs(e
−f |·));1B ,1B′)|f=0 in (2.51d),

again using the general definition (1.12) of PGFLs:

δ2(G\k−1(Gs(e
−f |·));1B ,1B′)|f=0 (2.56a)

=
∑
n≥0

∫
Xn
δ2

([
n∏
i=1

Gs(e
−f |xi)

]
;1B ,1B′

)∣∣∣∣∣
f=0

P
(n)
k−1(dx1:n) (2.56b)

(1.18)
=

∑
n≥0

∫
Xn

n∑
i=1

δ2(Gs(e
−f |xi);1B ,1B′)

∣∣
f=0

P
(n)
k−1(dx1:n)

+
∑
n≥0

∫
Xn

∑
1≤i,j≤n
i 6=j

δ(Gs(e
−f |xi);1B)

∣∣
f=0

δ(Gs(e
−f |xj);1B′)

∣∣
f=0

P
(n)
k−1(dx1:n) (2.56c)

=

∫
δ2(Gs(e

−f |x);1B ,1B′)
∣∣
f=0

µk−1(dx)

+

∫
δ(Gs(e

−f |x);1B)
∣∣
f=0

δ(Gs(e
−f |x′);1B′)

∣∣
f=0

ν
(2)
k−1(d(x, x′)). (2.56d)

It can be deducted with the help of Equation (2.54) that

δ2(Gs(e
−f |x);1B ,1B′)

∣∣
f=0

= ps(x)t(B ∩B′|x), (2.57)

so that (2.56d) simplifies to the expression

δ2(G\k−1(Gs(e
−f |·));1B ,1B′)|f=0 = µs(B ∩B′) +

∫
ps(x)t(B|x)ps(x

′)t(B′|x′)ν(2)
k−1(d(x, x′)).

(2.58)

The second-order moment for B = B′ is found by inserting (2.55) and (2.58) in (2.51d):

µ
(2)
k|k−1(B ×B) = µ

(2)
b (B ×B) + 2µb(B)µs(B) + µs(B)

+

∫
ps(x)t(B|x)ps(x

′)t(B|x′)ν(2)
k−1(d(x, x′)).

(2.59)

Finally, Equation (1.9) leads to

var\k|k−1(B) = varb(B) + [µb(B)]2 − [µ\k|k−1(B)]2

+ 2µb(B)µs(B) + µs(B) +

∫
ps(x)t(B|x)ps(x

′)t(B|x′)ν(2)
k−1(d(x, x′)),

(2.60)

and the predicted variance is finally obtained by substituting the predicted intensity (1.38) in
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Equation (2.60).

(b) Let us simplify the predicted variance assuming that ps,k is uniform over the state space. Under

this assumption, Equation (1.35) with B = X and • = \ simplifies to

µs,k(X ) = ps,k

∫
tk|k−1(X|x)︸ ︷︷ ︸

=1

µ\k−1(dx) (2.61a)

= ps,kµ
\
k−1(X ). (2.61b)

With the help of Equation (2.61), the predicted variance (2.43) reduces to

vars,k(X ) = µs,k(X )[1− µs,k(X )] + p2
s,k

∫
tk|k−1(X|x)︸ ︷︷ ︸

=1

tk|k−1(X|x′)︸ ︷︷ ︸
=1

ν
(2)
k−1(d(x, x′)) (2.62a)

(2.61)
= ps,kµ

\
k−1(X )

[
1− ps,kµ

\
k−1(X )

]
+ p2

s,kν
(2)
k−1(X × X ) (2.62b)

(1.7)
= ps,kµ

\
k−1(X )

[
1− ps,kµ

\
k−1(X )

]
+ p2

s,k

[
µ

(2)
k−1(X × X )− µ\k−1(X )

]
(2.62c)

(1.9)
= ps,kµ

\
k−1(X )

[
1− ps,kµ

\
k−1(X )

]
+ p2

s,k

[
var\k−1(X ) + [µ\k−1(X )]2 − µ\k−1(X )

]
(2.62d)

= p2
s,kvar\k−1(X ) + ps,k[1− ps,k]µ\k−1(X ). (2.62e)

Proof of Theorem 2.2.6. For the proof of the SO-PHD update, let Gc,k and Gd,k denote the PGFL

of the false alarm and detection processes, respectively. The SO-PHD filter is constructed with the

following assumptions:

1. The predicted target process is a Panjer process with parameters α := αk|k−1, β := βk|k−1

and spatial distribution s := sk|k−1.

2. Each target produces measurements independently.

3. The detection process is modelled as a Bernoulli point process with state-dependent detection

rate pd,k(x) and association likelihood lk(x|·) for x ∈ X .

4. The false alarm process is Panjer with parameters αc := αc,k, βc := βc,k and spatial distri-

bution sc := sc,k.

Just like for the PHD filter with Panjer clutter, the general formulation for the joint PGFL of the

predicted and false alarm processes is found with Equation (2.25). The Panjer assumption on the

predicted target and the false alarm processes in (2.25) leads to a PGFL of the form

G\J,k(g, h) = µ(X )α
(
Fd(g, h)

)−α(
Fc(g)

)−αc

, (2.63)
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where

Fd(g, h) := µ(X )

(
1 +

1

β

∫
(1− h(x)Gd(g|x))s(dx)

)
(2.64a)

=

∫ [
1 +

1− h(x)Gd(g|x)

β

]
µ(dx), (2.64b)

and

Fc(g) := 1 +
1

βc

∫
(1− g(z))sc(z)dz (2.65)

Here, the PGFL of the detection process is found via (1.25), taking the form

Gd(g|x) = qd(x) + pd(x)

∫
Z
g(z)l(z|x)dz. (2.66)

Note that an additional factor µ(X )α

µ(X )α was added to Equation (2.63) so that the notations of the

SO-PHD filter match those of the PHD and CPHD filters [Vo et al., 2007; Delande et al., 2014].

Furthermore, Fd and Fc are linear in g, therefore their higher-order derivatives vanish, and for

z ∈ Zk their first-order derivatives are given by

δFd(g, h; δz) = −
∫
h(x)pd(x)l(x|z)

β
µ(dx), (2.67)

δFc(g; δz) = − 1

βc
sc(z). (2.68)

Again, the conditional PGFL is found using Equation (2.25) in Bayes’ rule (2.26). Its denominator

is found with the help of the higher-order product and chain rules (1.20) and (1.21) which leads to

the expression

δ|Zk|G\J,k(g, h; (δz)z∈Zk)

= µ(X )α
|Zk|∑
j=0

(α)j
βj

(αc)|Zk|−j

β
|Zk|−j
c

Fd(g, h)−α−j

Fc(g)αc+|Zk|−j

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (h)
∏

z′∈Zk\Z

sc(z′)

 (2.69a)

∝
|Zk|∑
j=0

(α)j
βj

(αc)|Zk|−j

(βcFc(g))|Zk|−j
Fd(g, h)−j

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (h)

sc(z)
, (2.69b)

where

F zd (h) :=

∫
h(x)pd(x)l(z|x)µ(dx). (2.70)

The proportionality in (2.69b) is with respect to the constant µ(X )αFd(g, h)−αFc(g)−αc
∏
z∈Zk sc(z)

which will cancel out with the numerator of (2.26).

Just like in the proof of the PHD filter with Panjer clutter, the updated intensity is found with

Equation (2.27), therefore Equation (2.69) has to be differentiated another time with respect to h
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in the direction of 1B . With the product rule (1.18), one obtains

δ|Zk|+1GJ,k(g, h; (δz)z∈Zk ,1B)

∝ (−βδFd(g, h;1B))

|Zk|∑
j=0

(α)j+1

βj+1

(αc)|Zk|−j

(βcFc(g))|Zk|−j
Fd(g, h)−j−1

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (h)

+
∑
z∈Zk

F zd (1B)

|Zk|−1∑
j=0

(α)j+1

βj+1

(αc)(|Zk|−1)−j

(βcFc(g))(|Zk|−1)−j Fd(g, h)−j−1
∑

Z⊆Zk\{z}
|Z|=j

∏
z′∈Zk

F z
′

d (h),

(2.71)

where

δFd(g, h;1B) = − 1

β

∫
B

[
qd(x) + pd(x)

∫
Z
g(z)`(x|z)dz

]
µ(dx). (2.72)

By substituting (2.69) and (2.71) into (2.27) and setting g = 0 and h = 1, the updated intensity

of the SO-PHD filter is found.

Apart from the first-order moment µ\k, also the second-order moment µ(2)
k is necessary to

compute the updated variance of the SO-PHD filter in an arbitrary region B ∈ B(X ) which is

found using (cf. (1.16)) [Delande et al., 2014]

µ
(2)
k (B ×B′) =

δ|Zk|+2GJ,k(0, e−f ; (δz)z∈Zk ,1B ,1B′)|g=0,f=0

δ|Zk|GJ,k(g, 1; (δz)z∈Zk))|g=0
. (2.73)

The denominator of the expression (2.73) has already been computed in (2.69); we shall thus focus

here on the numerator

δ|Zk|GJ,k(0, e−f ; (δz)z∈Zk) ∝
|Zk|∑
j=0

(α)j
βj

(αc)|Zk|−j

(1 + βc)|Zk|−j
Fd(0, e−f )−j

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (e−f )

sc(z)
, (2.74)

which also stems from Equation (2.69). The first-order derivative of (2.74) in direction 1B is found

to be

δ|Zk|+1GJ,k(0, e−f ; (δz)z∈Zk ,1B)

∝ −
|Zk|∑
j=0

(α)j+1

βj+1

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )−j−1Fmd(e−f1B)

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (e−f )

−
|Zk|∑
j=1

(α)j
βj

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )−j

∑
z∈Zk

F zd (e−f1B)

sc(z)

∑
Z⊆Zk\{z}

∏
z′∈Z

F z
′

d (e−f )

sc(z)
,

(2.75)

where

Fmd(h) :=

∫
h(x)qd(x)µ(dx). (2.76)

Equation (2.75) contains three functionals that are dependent on f in each of the two terms,
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therefore the second-order derivative will be a sum of six terms, i.e. it takes the form

δ|Zk|+2GJ,k(0, e−f ; (δz)z∈Zk ,1B ,1B′)

∝
|Zk|∑
j=0

(α)j+2

βj+2

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )−j−2Fmd(e−f1B)Fmd(e−f1B′)

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (e−f )

sc(z)

+

|Zk|∑
j=1

(α)j+1

βj+1

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )j−1Fmd(e−f1B)

∑
z∈Zk

F zd (e−f1B′)

sc(z)

∑
Z⊆Zk\{z}
|Z|=j−1

∏
z′∈Z

F z
′

d (e−f )

sc(z)

+

|Zk|∑
j=0

(α)j+1

βj+1

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )j−1Fmd(e−f1B∩B′)

∑
Z⊆Zk
|Z|=j

∏
z∈Z

F zd (e−f )

sc(z)

+

|Zk|∑
j=1

(α)j+1

βj+1

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )j−1Fmd(e−f1B′)

∑
z∈Zm

F zd (e−f1B)

sc(z)

∑
Z⊆Zk\{z}
|Z|=j−1

∏
z′∈Z

F z
′

d (e−f )

sc(z)

+

|Zk|∑
j=1

(α)j
βj

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )j

∑
z∈Zk

F zd (e−f1B∩B′)

sc(z)

∑
Z⊆Zk\{z}
|Z|=j−1

∏
z′∈Z

F z
′

d (e−f )

sc(z)

+

|Zk|∑
j=2

(α)j
βj

(αc)|Zk|−j

(βc + 1)|Zk|−j
Fd(0, e−f )j

∑
z,z′∈Zk
z 6=z′

F zd (e−f1B)

sc(z)

F z
′

d (e−f1B′)

sc(z)

∑
Z⊆Zk\{z,z′}
|Z|=j−2

∏
z′′∈Z

F z
′′

d (e−f )

sc(z)
.

(2.77)

Note that the third and fifth terms in (2.77) correspond exactly to the updated first-order

moment µ\k. Subsituting and (2.69) and (2.77) into (2.73) yields the much shorter notation

µ
(2)
k (B ×B′) = µ\k(B ∩B′) + µφk(B)µφk(B′)`2(φ) + µφk(B)

∑
z∈Z

µzk(B′)

sc(z)
`2(z)

+ µφk(B′)
∑
z∈Z

µzk(B)

sc(z)
`2(z) +

∑
z,z′∈Zk

µzk(B)

sc(z)

µz
′

k (B′)

sc(z′)
`6=2 (z, z′).

(2.78)

Equation (1.9) finally yields the variance var\k using the result (2.78) for B = B′ and the definition

of µ\k.

Proof of Corollary 2.2.7. Again, the time subscripts are omitted where there are no ambiguities.

Assume that the predicted point process is Poisson with constant parameter λ = α
β , where α→∞.

First of all, with the identity µ(dx) = λs(dx) one obtains the limit

lim
α,β→∞

Fd = lim
α,β→∞

∫ [
1 +

pd,k(x)

β︸ ︷︷ ︸
→0

]
λs(dx) (2.79a)

= λ. (2.79b)

In order to check the convergence of the intensity update equation (1.39) with • = \, the only
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relevant term is Yu(Z) (2.23) which is the only term that contains α or β. Therefore,

lim
α,β→∞

Yu(Z) = lim
α,β→∞

|Z|∑
j=0

α(j+u)↑

(β)j+u
(αc)(|Z|−j)↑

(βc + 1)|Z|−j
F−j−ud ej(Z) (2.80a)

(2.1)
= lim

α,β→∞

|Zk|∑
j=0

λ

(
λ+

1

β

)
︸ ︷︷ ︸
→λ

. . .

(
λ+

j + u− 1

β

)
︸ ︷︷ ︸

→λ

(αc)(|Z|−j)↑

(βc + 1)|Z|−j
F−j−ud︸ ︷︷ ︸
→λ−j−u

ej(Z) (2.80b)

=

|Z|∑
j=0

(αc)(|Z|−j)↑

(βc + 1)|Z|−j
ej(Z). (2.80c)

In particular, note that the limit of Yu(Z) is independent of the value of u; the corrective terms

(2.40) hence converge to


lim

α,β→∞
`1(φ) = 1

lim
α,β→∞

`1(z) =

∑|Zk|−1
j=0

(αc)(|Zk|−j−1)↑

(βc+1)|Zk|−j−1 ej(Zk \ {z})∑|Zk|
j=0

(αc)(|Zk|−j)↑
(βc+1)|Z|−j

ej(Zk)
,

(2.81)

which coincides with the terms for the intensity update (2.22) of the PHD filter with Panjer clutter.

If we further assume that the clutter process is Poisson, i.e. λc = αc

βc
is constant and α → ∞,

the terms (2.81) further reduce to

lim
α→∞

Y (Z) = lim
α→∞

|Z|∑
k=0

(αc)j↑

(αc+λc

λc
)j
em−j(Z)

= lim
α→∞

|Z|∑
j=0

λjc

[
α

α+λc

α+1
α+λc

· · · α+j−1
α+λc

]
︸ ︷︷ ︸

=1 for α→∞

em−j(Z)

=

|Z|∑
k=0

λjc em−j(Z).

(2.82)

In the limit α→∞, the fraction Y (Zk\{z})
Y (Zk) becomes

lim
α→∞

Y (Zk \ {z})
Y (Zk)

=

∑|Z|−1
j=0 λjc em−1−j(Z \ {z})∑|Zk|

j=0 λ
j
c em−j(Zk)

·
1

λ
|Zk|
c

1

λ
|Zk|
c

=
1

λc

∑
Z⊆Zk\{z}

∏
z′∈Z

µz
′

k (X )

λcsc(z′)

∑
Z⊆Zm

∏
z′∈Z

µz
′

k (X )

λcsc(z′)

(∗)
=

1

λc

∑
Z⊆Zm\{z}

∏
z′∈Z

µz
′

k (X )

λcsc(z′)

∑
Z⊆Zk\{z}

∏
z′∈Z

µz
′

k (X )

λcsc(z′)

1 +
µzk(X )

λcsc(z)


=

sc(z)

µzk(X ) + λcsc(z)
.

(2.83)
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Figure 2.6: Ground truth of the step experiment S2.3.

Equation (∗) was obtained by rearranging the sum in the denominator to separate the terms with

Z 3 z. By inserting the result of (2.83) into (2.22), we obtain

lim
α→∞

µ
5
k(B) = µφk(B) +

∑
z∈Zk

µzk(x)

sc(z)

(
sc(z)

µzk(X ) + λcsc(z)

)
= µφk(B) +

∑
z∈Zk

µzk(B)

µzk(X ) + λcsc(z)

(2.84)

which is the update intensity (1.39) of the PHD filter [Mahler, 2003].

2.2.6 Simulations with the SO-PHD filter [Schlangen et al., 2017c]

In the manner of Section 2.2.3, the SO-PHD filter is analysed on simulated data and compared

with the PHD and CPHD filters in order to assess how each of the filters adapts to spontaneous

large changes in the number of objects.

Again, the state space is assumed two-dimensional and of size 50 m × 50 m. Objects are only

generated in the centre of the image in order to prevent them from leaving the surveillance region

during the experiment. They move according to an n.c.v. model, having a small acceleration noise
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(c) Experiment 1.3.

Figure 2.7: Results for Scenario 1, averaged over 20 MC runs. The lines depict the mean of the
estimated number of targets, the coloured areas show the 2σ confidence region (estimated by the
filter).

with a standard deviation of 0.3 m s−2 and Gaussian distributed initial velocity with mean 0 and

standard deviation 0.5 m s−1 in both dimensions. Measurements are generated from the targets

with a detection rate of pd = 0.9 and measurement noise with standard deviation 0.2 m in each

dimension. The filters assume a survival rate of ps = 0.99 throughout all experiments. Let us

consider three different scenarios:
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S2.1 Similarly to Simulation S1.1, the experiment runs for 15 time steps. Exactly 50 targets are

propagated for the first 14 time scans, until the number of targets suddenly changes at time

15, either by adding or removing up to 50 targets randomly in the state space. The birth

model of the SO-PHD and CPHD filters is negative binomial with mean µb = 25 and variance

varb = 100, the PHD filter assumes Poisson birth with mean µb = 25. This scenario assumes

a Poisson clutter process with mean µc = 5.

S2.2 This scenario is created in the same manner as Scenario S2.1, but propagating only one target

through the first 14 time steps and then adding up to 100 targets at time 15 across the state

space. The birth process is assumed negative binomial with mean µb = 1 and varb = 100

for the three filters, though the PHD filter cannot utilise variance information. This scenario

assumes a Poisson clutter process with mean µc = 20.

S2.3 In contrast to the first two scenarios, this scenario is designed to analyse how the filters adapt

over time to spontaneous bursts of target birth (cf. Simulation S1.2). There are at least 5

targets in the scene at all times, but n additional targets are introduced every 20th time step

for 10 time steps each, where n ∈ {10, 20, 30, 40, 50}. A plot of the true x and y positions of

the targets over time is given in Figure 2.6. This scenario assumes a Poisson clutter process

with mean µc = 5.

Fig. 2.7 depicts the estimated number of targets for the three experiments along with the computed

filter variance. In experiment S2.1, the PHD filter benefits from the fact that the number of

targets was high in the previous time steps and consequently its mean and variance, such that it

is equally reactive to extreme target birth and death. In experiment S2.2, on the other hand, the

filter cannot adapt fast to big increases in the number of objects since its mean and variance has

stabilised around 1 previously. The CPHD filter, on the other hand, copes well with target birth

in both scenarios since a negative binomial birth model could be incorporated in the cardinality

information; in case of extreme target death, however, it fails to adapt fast. The SO-PHD filter,

on the other hand, copes equally well with spontaneous target birth and death in both scenarios.

It has to be noted that both the SO-PHD and the CPHD filter show a displacement in reaction to

spontaneous target birth in scenario S2.2 since the false alarm rate is set to 20 and the filters tend

to interpret unexplained measurements rather as false alarms than as newborn objects.

Experiment S2.3 analyses how long it takes the three filters to adapt to sudden changes in the

number of objects of variable intensity. After each change in the number of objects, the filters have

10 scans to adapt to the new number of targets. This experiment confirms the findings of the first

two results: the PHD filter needs up to three time steps to adapt to sudden birth but adapts to

target death very quickly; the CPHD filter, on the other hand, behaves in the opposite manner,

adapting quickly to target birth and taking up to five time steps to adapt to target death. The

proposed method is reactive to both target birth and death.

The average runtimes of one iteration for Scenario S2.3 in Matlab on a dual-core Dell Precision

M4800 workstation with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz were 0.9 s for the PHD

filter, 1.2 s for the SO-PHD filter and 6.5 s for the CPHD filter.
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2.3 Two alternative single-cluster PHD filter methods

The formulation of the SO-PHD filter motivates its exploitation for applications that involve, but

go beyond, multi-object estimation. In Section 1.4, it was shown on the example of the PHD

filter that multi-object filters can be embedded in a hierarchical process to estimate unknown

parameters on top of the multi-target state. In general, this hierarchical architecture can take

on any daughter process, so this section attempts to utilise the CPHD and SO-PHD filters to

formulate their respective single-cluster processes.5

2.3.1 The single-cluster CPHD and SO-PHD filters

Theorem 2.3.1 (Multi-object likelihood of the CPHD filter). The multi-object likelihood function

of the CPHD filter for a given sensor state s is found to be

`]k(s|Z) = 〈Υ̃0[µ]k|k−1, Z], ρk,k−1〉 (2.85)

with

Υ̃0[µ]k|k−1, Z](n) =

min(|Z|,n−u)∑
j=0

n!(|Z| − j)!
(n− (j + d))!

ρc(|Z| − j)µφk(X|s)n−(j+d)
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X|s)
∏

z′∈(Z′)c

sc,k(z),
(2.86)

where (Z ′)c = Z \ Z ′.

Theorem 2.3.2 (Multi-object likelihood of the second-order PHD filter). Write α = αk|k−1 and

β = βk|k−1 for the sake of brevity, and let

F̃d,s = 1− 1

β

∫
X
pd,k(x|s)sk|k−1(dx, s), (2.87)

Fc = 1 +
1

βc
(2.88)

for a given sensor state s. The multi-object likelihood function of the Panjer PHD filter for s is

found to be

`\k(s|Z) =

|Z|∑
j=0

αj↑
βj

(αc,k)(|Z|−j)↑

(βc,k + 1)|Z|−j
F̃−α−jd,s F−αc−|Z|−j

c

∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µzk(X )
∏

z′∈(Z′)c

sc,k(z|s). (2.89)

Again, let us assess the performance of the filters on simulated data first. For the sake of

comparison, an alternative likelihood function is consulted which is introduced by Leung et al.

[2016]. This multi-object likelihood takes all possible associations between the measurement set

and the target population into account. First of all, write the short-hand notation

pc(Z) =

∏
z∈Z sc(z|sk)

exp
(∫
sc(z′|sk)dz′

) . (2.90)

5In Schlangen et al. [2014], the so-called Hypothesised filter for Independent Stochastic Populations (HISP)
[Houssineau, 2015] was already successfully embedded in a single-cluster process approach.
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Furthermore, define the association function θ : B(Z)→ B(X ) which maps a selection of measure-

ments Z = {z1, . . . , zmk} to a selection of targets X = {x1, . . . , xnk} via

θ(zj) =

xi if zj is associated with xi,

0 otherwise,
(2.91)

where the xi are extracted from the predicted intensity µ•k|k−1 with • ∈ {[, ], \}. Then,

ˆ̀
k(s|Z) = pc(Z)

nk∏
i=1

(1− pd(xi|s))

·
∑
θ

mk∏
j=1
θ(j) 6=0

pd(θ(zj)|s)`(θ(zj)|zj , s)
(1− pd(θ(zj |s))pc(zj)

.
(2.92)

Note that in contrast to (1.58), the associations in the last term of (2.92) are not marginalised

over all possible states, but this algorithm depends on the extraction of specific object locations

xi. In other words, this approach does not use the full information available through the predicted

intensity.

2.3.2 Derivation of the multi-object likelihood for the PHD, CPHD and

SO-PHD filters

Each of the following proofs follows the same structure. Just like in the proofs of the PHD filter

with Panjer clutter and the SO-PHD filter, the PGFL of the observation process (2.26) is found

using the specific assumptions of the respective filter, and the multi-object likelihood is found via

the |Z|th order derivative with respect to each measurement.

Alternative proof of PHD likelihood (1.58). The PHD likelihood was demonstrated in [Swain, 2013]

in the context of random finite sets, for the sake of completeness this section provides an alternative

proof using point processes. In case of the PHD filter, both Gk|k−1 and Gc are Poisson PGFLs

such that (2.25) takes the form

G[J,k(g|s) = exp
(∫

(g(z)− 1)µc(z|s)

+

∫ ([
1− pd(x|s) + pd(x|s)

∫
g(z)`(x|z, s)dz

]
− 1

)
µk|k−1(x|s)dx

)
.

(2.93)

Differentiation by g requires repeated applications of the chain rule (1.19) which pulls out one

multiplicative term µc(z)+
∫
pd(x|s)l(x|z, s)µk|k−1(x|s)dx for each measurement z ∈ Zk. The final

result is obtained by setting g = 0.

Proof of CPHD likelihood (2.85). The CPHD filter assumes the target and clutter processes to be

50



i.i.d. cluster processes. This results in the following variation of (2.25):

G]obs(g|s) = G]c(g|s)G]k|k−1(Gd(g|·, s)) :=

∑
n≥0

ρc(n)

[∫
g(z)sc(z|s)dz

]n
·

(∑
n≥0

ρk|k−1(n)

[ ∫ (
1− pd(x|s) + pd(x|s)

∫
g(z)`(x|z, s)dz

)
s]k|k−1(x|s)dx

]n) (2.94)

Since the product in (2.94) cannot be simplified like in (2.93) above, it requires the use of the

general product rule (1.20) leading to

δmG]obs(g; δz1 , . . . , δzm |s)|g=0

=
∑
Z⊆Zm

(
δ|Z

c|G]c(g; (δz)z∈Zc |s)|g=0δ
|Z|G]k|k−1(Gd(g; (δz)z∈Z |·, s))|g=0

)
,

(2.95)

where Zc = Zm \ Z. The first term in (2.95) creates the product
∏
z∈Zm\Z sc(z|s)ρc(Zc) for all

Z ⊆ Zk since setting g = 0 eliminates almost every term of the i.i.d. cluster process. The second

term is evaluated using the chain rule (1.21) which leads to the sum

δ|Z|G]k|k−1(Gd(g; (δz)z∈Z |·, s))|g=0

=
∑
n≥|Z|

n!ρk|k−1(n)

(n− |Z|)!
∏
z∈Z

∫
pd(x)`(x|z, s)s]k|k−1(x|s)dx

(∫
(1− pd(x))s]k|k−1(x)dx

)n−|Z|
.
(2.96)

The result is obtained by switching summations and rearranging the terms.

Proof of SO-PHD likelihood (2.89). The Panjer assumption of the second-order PHD filter leads

to the PGFL

G\obs(g|s) = G\c(g|s)G\k|k−1(Gd(g|·, s)) =

(
1 +

1

βc

∫
(1− g(z))sc(z|s)dz

)−αc

·
(

1 +
1

βk|k−1

∫ [
1−

(
1− pd(x|s) + pd(x|s)

∫
`(x|z, s)g(z)dz

)]
s\k|k−1(x|s)dx

)−αk|k−1

.

(2.97)

The general product rule (1.20) is needed for the product in (2.97) in the same manner as (2.95),

replacing ] by \. Using the notations G\k|k−1(g|s) := Fd(g|s)−αk|k−1 and G\c(g|s) := Fc(g|s)−αc , the

corresponding derivatives are

δ|Z|G\k|k−1(g; (δz)z∈Z |s) = Fd(g|s)−αk|k−1−|Z| (αk|k−1)|Z|

β
|Z|
k|k−1

∏
z∈Z

∫
pd(x|s)`(x|z, s)sk|k−1(x|s)dx

(2.98)

and

δ|Z
c|G\c(g; (δz)z∈Zc |s) = Fd(g|s)−αc−|Zc| (αc)|Z|

β
|Z|
c

∏
z∈Zc

sc(z). (2.99)

Including (2.98) and (2.99) into (2.97), switching the summations and rearranging the terms leads

to the desired result.
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2.3.3 Simulations using the single-cluster CPHD and SO-PHD filters

All experiments presented in this section are performed using a Gaussian Mixture implementation

of the algorithms described earlier, see [Vo and Ma, 2006; Vo et al., 2007; Schlangen et al., 2017c]

and the Appendix for more detail. The calibration is conducted for all filters with their respective

full multi-object likelihoods (1.58), (2.89) and (2.85), henceforth globally denoted by L1, as well as

with the likelihood (2.92), labeled by L2 in the following. The parent process is implemented in all

cases with a SMC filter approach in the manner of [Lee et al., 2013; Schlangen et al., 2016b] and

others (see Appendix A.3.2), using 300 MC particles for each run and performing basic roulette

resampling if the effective sample size falls below 150. All results presented in the following are

averaged over 50 MC runs, and the sensor estimate as well as the estimated number of targets is

computed as the weighted mean over all particles.

As [Leung et al., 2016] suggests, the likelihood (2.92) needs additional assumptions to make

it computationally feasible. Firstly, only associations are taken into account that lead to a single

object - single association likelihood above a threshold τ0 = 10−7 in the first time step and τ = 10−3

otherwise. Furthermore, a connected component analysis is performed to find groups of object-

measurement clusters that are worth being associated, and these groups are restricted contain at

most 3 measurements and 3 targets. Note that the three multi-object likelihood functions (1.58),

(2.89) and (2.85) do not require any restrictions.

2.3.3.1 Experiment 1

For the first experiment, a global ground truth is simulated over 100 time steps (of unit 1 s) for

both the multi-target configuration and the sensor trajectory, and the 50 MC runs are performed

on different measurement sets extracted from this ground truth. Both the target and the sensor

state space are assumed four-dimensional, accounting for position and velocity in a two-dimensional

environment measured in m. The targets follow a Poisson birth model with mean 4, and the objects

move according to a n.c.v. model with acceleration noise of 0.3 m s−2 and with an initial velocity

of 0 with Gaussian noise of 0.1 m s−1 in both x and y. Each target survives with a probability of

ps = 0.95. The sensor follows an n.c.v. model with acceleration noise 0.2 m s−2 and initial velocity

0 m s−1 in both x and y. The simulated sensor trajectory is depicted in Fig. 2.8a.

From this scenario, measurements are generated with a uniform detection probability of pd =

0.99 over the whole state space. The observation space is assumed two-dimensional, accounting for

the two dimensions of the environment that contains the objects. Measurements are superimposed

with a measurement noise of 0.1 m in both dimensions and with the created sensor drift, and false

alarms are generated uniformly over the state space according to a Poisson noise model with mean

10.

In this scenario, the filter parameters are set to the same parameters that were used to generate

the simulation. Fig. 2.9a shows the root mean square error in the estimation of the sensor trajectory

over all 100 time steps for all filters. It can be seen that the three filters do not differ greatly

among each other since the generated measurements fit the filter parameters. The full multi-object

likelihoods associated to each filter, however, bring a much better estimation of the sensor state in
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filter prediction update likelihood
PHD L1 0.0022 0.2805 0.0182
PHD L2 0.0022 0.7205 0.5007
SO-PHD L1 0.0024 0.5914 0.0191
SO-PHD L2 0.0019 0.8681 0.4285
CPHD L1 0.2256 4.5857 0.0218
CPHD L2 0.2141 4.8107 0.4630

Table 2.2: Averaged runtimes in seconds, Experiment 1.

filter prediction update likelihood

14
de
at
hs

PHD L1 0.0014 0.0812 0.0033
PHD L2 0.0014 0.0897 0.0173
SO-PHD L1 0.0014 0.2003 0.0036
SO-PHD L2 0.0013 0.1957 0.0153
CPHD L1 0.3281 1.6374 0.0067
CPHD L2 0.3079 1.5674 0.0166

15
bi
rt
hs

PHD L1 0.0016 0.2323 0.0109
PHD L2 0.0016 0.2664 0.0484
SO-PHD L1 0.0017 0.7661 0.0117
SO-PHD L2 0.0017 0.7389 0.0431
CPHD L1 0.3185 5.1335 0.0143
CPHD L2 0.3066 4.8654 0.0427

Table 2.3: Averaged runtimes in seconds, Experiment 2.

comparison to the likelihood suggested by [Leung et al., 2016] which is consistently diverging after

time step 10 for all three filters. In terms of the estimated number of targets (Fig. 2.9b and 2.9c),

all filters seem to monitor the ground truth consistently, apart from the second-order PHD filter

with the alternative likelihood that slightly underestimates the number of targets in comparison

to the other filters.

Tab. 2.2 shows the averaged runtimes for the prediction, update and likelihood functions of

all filters, averaged over 50 MC runs. The CPHD filter update is up to 16 times slower than the

updates of the PHD filters of first and second order. Moreover, the alternative likelihood function

L2 also performs considerably slower than the full multi-object likelihood function.

2.3.3.2 Experiment 2

The second experiment aims at analysing the effect of model mismatches on the robustness of the

filters. While the filters follow the same target birth/death model as in Experiment 1, the ground

truth does not: 15 targets are created at the initial step, and stay alive until time step t = 15; then,

either 14 objects are artificially removed (Experiment 2.1) or 15 objects are added to the existing

population (Experiment 2.2), such that the number of targets changes to 1 or 30, respectively, all of

which stay alive until the end of the scenario. Little is known for the filters about the birth/death

model, thus the second-order PHD and the CPHD filters are fed with a negative binomial birth

with mean 2 and variance 20, accounting for a large uncertainty. The PHD filter, on the other

hand, can only describe the number of newborn targets through its mean value, which is set to

2 as well. The probability of survival in the three filters is set to ps = 0.99. There are no model

mismatches for the remaining parameters, whose values are set as in Experiment 1, except for a
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Figure 2.8: Ground truth for the sensor state for Experiments 1 and 2, both originating at (0, 0).

slightly smaller acceleration noise (0.1 m s−2).

Fig. 2.10 shows the estimation results for Experiment 2.1, with unexpected target death at

time t = 15. As for the first experiment, the proposed likelihood L1 leads to a significantly more

accurate estimation of the sensor state. Regardless of the chosen filter or likelihood, the estimation

error increases sharply after time t = 15; it might be explained by the sudden target death which

drastically decreases the amount of information for the estimation of the sensor state. Fig. 2.10b

and 2.10c suggest that the CPHD filter is less reactive to unexpected target disappearances; this

might be explained by its lower flexibility to out-of-model target deaths since it maintains a full

cardinality distribution on the number of targets. On the other hand, it remains unclear why

the second-order PHD filter slightly underestimates the number of targets if combined with the

alternative likelihood L2, but shows accurate results with the proposed likelihood L1.

The results for Experiment 2.2 are displayed in Fig. 2.11. Again, the proposed method using

likelihood L1 shows better performances in the estimation of the sensor state. Unlike Experiment

2.1, the unexpected increase in the number of targets provides more information and seems to

facilitate the estimation of the sensor state, resulting in an improvement for all the filters and

likelihoods immediately after time step t = 15. Again, the second-order PHD filter underestimates

the number of targets when combined with the alternative likelihood L2.

Tab. 2.3 confirms the findings on the runtime analysis of Experiment 1. The decrease in target

number in Experiment 2.1 leads to a generally faster performance for all three filters, whereas the

increase in target number in Experiment 2.2 results in longer runtimes. In the update, the CPHD

filter again runs up to 20 times slower than the PHD filter, whereas the second-order PHD filter

needs only twice as much time to run as the PHD filter. Furthermore, the proposed likelihood L1

is consistently faster than the alternative likelihood L2.

54



10 20 30 40 50 60 70 80 90 100
0

1

2

3

time

R
M
SE

PHD L1
PHD L2
Panjer L1
Panjer L2
CPHD L1
CPHD L2

(a) Error in the estimated sensor state.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

time

#
ta
rg
et
s

gt
PHD
Panjer
CPHD

(b) Estimated number of targets, proposed likelihood (L1).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

time

#
ta
rg
et
s

gt
PHD
Panjer
CPHD

(c) Estimated number of targets, alternative likelihood (L2).

Figure 2.9: Results for Experiment 1 (no model mismatches).

2.4 Exploiting second-order information

2.4.1 Variance, covariance and correlation of point processes

Within the SO-PHD filter framework, the variance was incorporated in the propagation of the

target process additionally to the propagation of the intensity. In fact, higher-order information

can also be extracted as an additional statistic at any time from any filter as a means of analysing

its behaviour. In [Delande et al., 2014], the regional variance for the PHD and CPHD filters was

derived and it was demonstrated in simulations that the regional variance is not proportional to

the size of the region; in fact, it is not even additive and consequently not a measure. This can be
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(c) Estimated number of targets, alternative likelihood (L2).

Figure 2.10: Experiment 2.1 (out-of-model target deaths).

demonstrated by looking at the definition of the variance (1.9):

varΦ(A ∪B) = µ
(2)
Φ ((A ∪B)× (A ∪B))− [µΦ(A ∪B)]

2 (2.100a)

= µ
(2)
Φ ((A×A) ∪ (A×B) ∪ (B ×A) ∪ (B ×B))− [µΦ(A ∪B)]

2 (2.100b)

= µ
(2)
Φ (A×A) + µ

(2)
Φ (A×B) + µ

(2)
Φ (B ×A) + µ

(2)
Φ (B ×B)− [µΦ(A) + µΦ(B)]

2

(2.100c)

= varΦ(A) + varΦ(B) + µ
(2)
Φ (A×B) + µ

(2)
Φ (B ×A)− 2µΦ(A)µΦ(B) (2.100d)

Here, Equation (2.100c) follows from the additivity of the two moment measures µΦ and µ
(2)
Φ .

From the result (2.100) it is easy to see that the variance of the union of two sets A,B ∈ B(X )

can be less, more or equal to the sum of the individual variances, depending on the values of the

moments.

Example 2.4.1. Let Φ be a point process describing exactly one object, furthermore consider two

disjoint regions A,B ∈ B(X ). Assume that the considered object is either in A with probability p or

56



5 10 15 20 25 30
0

1

2

3

4

time

R
M
SE

PHD L1
PHD L2
Panjer L1
Panjer L2
CPHD L1
CPHD L2

(a) Error in the estimated sensor state.

5 10 15 20 25 30
0

10

20

30

time

#
ta
rg
et
s

gt
PHD
Panjer
CPHD

(b) Estimated number of targets, proposed likelihood (L1).

5 10 15 20 25 30
0

10

20

30

time

#
ta
rg
et
s

gt
PHD
Panjer
CPHD

(c) Estimated number of targets, alternative likelihood (L2).

Figure 2.11: Experiment 2.2 (out-of-model target births).

in B with probability (1− p). The variance in cardinality in each individual region is greater than

0, but the variance in the union A ∪B equals 0 since the object is in the union with probability 1.

Statistical variance is not the only second-order information that is widely studied throughout

the literature; also the covariance (1.8) and correlation (1.10) are useful statistical quantities. In

the following, we will introduce these concepts in the context of point processes to utilise them to

yield a better understanding of the multi-object filters discussed in Sections 1.3 and 2.2.4. Since

variance and correlation can be computed via the covariance, let us state the regional covariance

for the PHD, CPHD and SO-PHD filters.

Proposition 2.4.2 (Regional covariance [Delande et al., 2014] and [Schlangen et al., 2017c]). Let

B,B′ ∈ B(X ) be two Borel sets.

(a) The PHD filter covariance in B, B′ after the update is found to be

cov[k(B ×B′) = µ[k(B ∩B′)−
∑
z∈Zk

µzk(B)µzk(B′)[
µzk(X ) + µc,k(z)

]2 , (2.101)
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where • = [ in the definition of the association terms µzk.

(b) The CPHD filter covariance in B, B′ after the update is given by

cov]k(B ×B′) = µ]k(B ∩B′) + µφk(B)µφk(B′)[`]2(φ)− `]1(φ)2]

+
∑
z∈Zk

[
µφk(B)

µzk(B′)

sc,k(z)
+ µφk(B′)

µzk(B)

sc,k(z)

] [
`]2(z)− `]1(z)`1(φ)

]
+

∑
z,z′∈Zk

[
µzk(B)

sc,k(z)

µz
′

k (B′)

sc,k(z′)

] [
`],6=2 (z, z′)− `]1(z)`]1(z′)

]
,

(2.102)

where • = ] in the definition of the association and missed detection terms µzk and muφk and

`], 6=2 (z, z′) :=


〈Υ2[µ,Z \ {z, z′}], ρk|k−1〉
〈Υ0[µ,Z], ρk|k−1〉

. if z 6= z′,

0 otherwise.

(2.103)

(c) The covariance cov\k(B×B′) of the SO-PHD filter in B, B′ after the update is equal to (2.102),

where ] is globally replaced by \.

Equations (2.101) and (2.102) stating the covariances cov•k(B,B′), • ∈ {[, ], \}, are a direct

consequence of Equation (1.8), using the first- and second-order moments of the target process.

For the PHD and CPHD filters, the second-order moment is given in Equations (29)/(31) and

(19)/(29) in [Delande et al., 2014], respectively; the full derivations of the second-order moments

and covariances for the SO-PHD filter was already provided in (2.78). From the covariance, the

variance is found immediately by setting B = B′, see Equation (1.9), and the correlation is found

via (1.10) using the definition of variance and covariance.

2.4.2 Application example: analysing the “spooky effect at a distance”

[Fränken et al., 2009]

In [Ulmke et al., 2008; Fränken et al., 2009], it was discovered that the CPHD filter shows a counter-

intuitive behaviour in the presence of missed detections: for example, if there are two objects that

move independently at a great distance from each other and only one of them gets detected at

some point in time, then the CPHD filter shifts some of the weight of the miss-detected object to

the detected one. An analytical explanation in [Fränken et al., 2009] revealed that the cardinality

distribution is updated correctly in such a case but the intensity update draws probability weight

towards the detections. This behaviour was coined ibid. as the “spooky effect at a distance” or

simply “spookiness” (referring to a similar effect in quantum physics), however a mathematical

definition was not established that made this behaviour measurable. Furthermore, the authors

stated as a side remark that the PHD filter shows a similar behaviour; this claim was adopted later

in [Vo and Vo, 2012] without verification, and [Mahler, 2014] concluded based on a short theoretical

analysis on a minimal example that while being superpositional, the PHD filter shows even more

“spookiness” than the CPHD filter since “the weight of the undetected track is even smaller than it

should be, and this missing weight has been shifted to the detected track” [Mahler, 2014, p. 221].
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(b) Experiment S3.2: Moving regions A (red) and B (green).

Figure 2.12: Ground truth for the two experiments that analyse the spooky effect of the three
filters.

So far, while this interesting effect has been identified and studied in the aforementioned works,

the literature still lacks an objective means of quantifying it.

In this section, two experiments will be conducted which exploit the regional correlation (1.10)

as a quantitative measure of spookiness in the PHD, CPHD and SO-PHD filters. For this purpose,

the filter-dependent regional covariance equations (2.101) and (2.102) are utilised. The first exper-

iment focuses on the presence of missed detections on the intensities in two well-separated regions,

whereas the second experiment analyses the effect of the distance and overlap of two regions on

their filter correlation.

S3.1 Spooky effect at a distance:

Consider two two-dimensional regions A,B ∈ B(X ) of size 50 m × 50 m which are 100 m

apart along the x axis to avoid interferences. In each of these regions, 10 objects are created

in the first time step and propagated with survival rate ps = 1 for 100 time steps using a

near-constant velocity model assuming an acceleration noise of 0.1 m s−2 in each dimension.

Their initial velocities are Gaussian normal distributed with mean 0 and standard deviation

0.3 m s−1 along each dimension of the state space. The setup is depicted in Figure 2.12a. From
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these objects, measurements are generated using a detection rate of pd = 0.9 and measurement

noise with standard deviation 0.2 m in each dimension. Furthermore, the clutter process is

assumed Poisson with a clutter rate of 20 in each region. In order to provoke the spooky

effect, all objects in region B are intentionally miss-detected every tenth time scan.

The PHD, CPHD and SO-PHD filters are initialised with the parameters used for the simu-

lation, assuming a survival rate of 0.98 and a negative binomial birth process with intensity

µb(X ) = 1 and variance varb(X ) = 100. The regional means and variances in each region

estimated by the three filters are shown separately in Figures 2.13a, 2.13b and 2.13c. The

PHD filter shows no effect on region A when the objects in region B are miss-detected (see

Figure 2.13a); the CPHD filter, in contrast, experiences considerable peaks in intensity in

region A when the intensity in region B drops (see Figure 2.13b). For the SO-PHD filter,

on the other hand, the estimated number of objects in A drops slightly when the objects in

B are not detected, and it shows a slight overshoot when the intensity in B goes back up

in the subsequent time step (see Figure 2.13c). In other words, the change in intensity in

both regions is strongly negatively proportional for the CPHD filter and slightly positively

proportional for the SO-PHD filter. These findings can be visualised neatly in terms of cor-

relation as seen in Figure 2.13d: Here, the correlation of the PHD filter between A and B

stays at 0 over the whole experiment, whereas it shows negative values for the CPHD filter,

especially at the time instances where region B is undetected, and slightly positive values for

the SO-PHD filter.

S3.2 Influence of distance on the spooky effect:

The results of Scenario S3.1 let us wonder what would happen in terms of correlation if the

regions draw closer to each other, and which conclusions one could draw for the spooky effect

of the three filters, and how the birth variance affects the results. Therefore, let us consider

again a square, two-dimensional state space of size 50 m× 50 m that is monitored for 50 time

steps with time lapse 1 s. In the beginning, two objects are generated at the initial positions

(30, 40) and (50, 30), surviving throughout the whole experiment with probability ps = 1 and

moving according to a constant velocity model with velocities (−0.2,−0.8) and (−1,−0.4),

respectively. Their true trajectories are shown in Figure 2.12b. This time, measurements

are generated with detection rate pd = 0.9 without artificial missed detections, and the

measurement noise was assumed to be 1 m in each dimension of the state space. The false

alarm rate was set to 2 false alarms per frame.

The three filters were initialised with the same parameters used for the simulation, setting the

initial velocities to be Gaussian normal distributed with mean 0 m s−1 and standard deviation

1 m s−1. Furthermore, the birth model was set negative binomial with mean 0.4 and three

different variances 1, 2 and 10, and the survival rate was assumed to be 0.98. The acceleration

noise was set to 0.01 m s−2.

Instead of assuming fixed regions like in Scenario S3.1, two square regions A and B of size

6 m× 6 m were centered on the true position of the targets at every time scan, hence moving

them along the target trajectories. Furthermore, the trajectories cross in (25, 20) at time 26
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(a) Mean and standard deviation of the estimated target number, PHD filter.
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(b) Mean and standard deviation of the estimated target number, CPHD filter.
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(c) Mean and standard deviation of the estimated target number, SO-PHD filter.
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(d) Correlation between the estimated number of targets in regions A and B.

Figure 2.13: Results for Scenario S3.1, averaged over 100 MC runs. Figures 2.13a, 2.13b and 2.13c
show the mean and standard deviation of the estimated number of targets per region for the three
filters. Figure 2.13d shows the respective correlations of A and B according to each filter.
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such that the two regions perfectly align there. Figures 2.14, 2.15 and 2.16 show the simulation

results in terms of the estimated number of targets in both regions and correlation over time.

The correlation plots additionally show the percentage-wise overlap of the two regions and

one minus the Hellinger distance between the filtered intensities of the two objects.

It can be seen in all experiments that the estimated intensities change from 1 to 2 as soon

as both targets are present in each region. For increasing birth variance, the estimated

intensities drop slightly in case of the CPHD filter and grow slightly for the SO-PHD filter;

this behaviour might be tied to the regional correlation of the filters: for the CPHD filter,

the correlation decreases considerably with increasing birth variance, hence suppressing the

estimated cardinalities in both regions. The regional correlation of the SO-PHD filter, in

contrast, increases for increasing birth variance which seems to have an enhancing effect on the

estimated cardinality. The PHD filter cannot incorporate variance information, furthermore

its correlation equals 0 while there is no overlap in the regions. Regarding the changing

distance of the two regions, it can be noted that for all three filters, the correlation already

grows before the regions actually start to overlap, so the vicinity around the regions already

influences the estimation inside the regions.
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(b) Mean and standard deviation of the estimated target number, CPHD filter.
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(c) Mean and standard deviation of the estimated target number, SO-PHD filter.
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(d) Correlation results between the estimated number of targets in regions A and B.

Figure 2.14: Results for Scenario S3.2 with birth variance varb = 1, averaged over 100 MC runs.
Figures 2.14a, 2.14b and 2.14c show the mean and standard deviation of the estimated number of
targets per region for the three filters. Figure 2.14d shows the respective correlations of A and B
according to each filter.
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(a) Mean and standard deviation of the estimated target number, PHD filter.
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(b) Mean and standard deviation of the estimated target number, CPHD filter.
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(c) Mean and standard deviation of the estimated target number, SO-PHD filter.
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(d) Correlation results between the estimated number of targets in regions A and B.

Figure 2.15: Results for Scenario S3.2 with birth variance varb = 2, averaged over 100 MC runs.
Figures 2.15a, 2.15b and 2.15c show the mean and standard deviation of the estimated number of
targets per region for the three filters. Figure 2.15d shows the respective correlations of A and B
according to each filter.
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(a) Mean and standard deviation of the estimated target number, PHD filter.
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(b) Mean and standard deviation of the estimated target number, CPHD filter.
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(c) Mean and standard deviation of the estimated target number, SO-PHD filter.
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(d) Correlation results between the estimated number of targets in regions A and B.

Figure 2.16: Results for Scenario S3.2 with birth variance varb = 10, averaged over 100 MC runs.
Figures 2.16a, 2.16b and 2.16c show the mean and standard deviation of the estimated number of
targets per region for the three filters. Figure 2.16d shows the respective correlations of A and B
according to each filter.
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Chapter 3

Challenges in super-resolution

microscopy

So far, the findings of Chapter 2 have assessed the performance of the family of PHD filters only

in simulations, however it will be important to study their potential on real data as well. As

mentioned in the introductory remarks, one type of applications that is particularly prone to

non-Poisson behaviour in the number of objects and false alarms is single-molecule fluorescence

microscopy, which we will focus on in this chapter.

Recent developments in optical microscopy have made it possible to monitor intracellular pro-

cesses at the nano-scale, either by using superlenses [Luo and Ishihara, 2004; Fang et al., 2005],

or by crossing the diffraction limit of light using active illumination techniques. The basic idea

of active illumination is to label some protein of interest with a photo-activatable fluorescent

marker and resolve occurring signal overlaps using, for example, excitation and depletion (Stimu-

lated Emission Depletion (STED) microscopy [Hell and Wichmann, 1994]), structured illumination

(Structured Illumination Microscopy (SIM) [Gustafsson, 2000]), or stochastic downsampling of the

signal (Photo-Activated Localisation Microscopy (PALM) [Betzig et al., 2006; Hess et al., 2006]

and Stochastic Optical Reconstruction Microscopy (STORM) [Rust et al., 2006]). We will focus on

PALM below since this technique makes it possible to study molecule dynamics over time in live

cells, as opposed to many other techniques which only work on fixed (dead) cells. Target tracking

(which is usually called linking in the biomedical literature) makes it possible to extract desired

statistics such as object number, dynamics, life time, speed, etc. from PALM image sequences in

an automatic and principled manner. If PALM is combined with tracking techniques, it is referred

to as single particle tracking PALM (sptPALM) [Manley et al., 2008]. Note that in this context,

the term particle tracking has nothing to do with SMC techniques but simply refers to tracking

movements of point-like structures in a medium. In the following, however, the term particle will

always denote a random sample of a probability distribution, and the tracked objects will be called

molecules, objects or targets.

As mentioned earlier, tracking/linking is usually still performed using heuristic nearest-neighbour

techniques [Meijering et al., 2006], however the manifold ambiguities in single-molecule fluorescence
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Figure 3.1: Data flow of the data processing of PALM image sequences.

microscopy images makes those techniques highly error-prone since they cannot cope well with

target crossings, false alarms and missed detections. In this chapter, we propose an algorithm to

process PALM data using the PHD filter methods discussed in Chapters 1 and 2. The basic data

flow is shown in Figure 3.1; first, the image sequence is pre-processed using a suitable detection

algorithm [Smal et al., 2010] and point-like measurements are extracted from the image. These

measurements usually describe 2-dimensional position coordinates in the image, but other statistics

such as intensity, size, shape, etc. could be extracted and estimated as well. These detections are

forwarded a the multi-object estimation algorithm of choice (e.g. the PHD, CPHD, or SO-PHD

filter or their respective single-cluster versions for additional parameter estimation) which gives

the desired statistics as its final output.

In Section 3.1.1, the PALM technique will be very briefly explained to highlight the difficulties

that arise in the data processing. Section 3.1.2 proposes a simple technique to extract detections

from PALM images, and the subsequent sections describe the conducted experiments on real data.

3.1 Acquisition and processing of PALM images

3.1.1 On the nature of PALM data

In PALM [Betzig et al., 2006], the molecules of interest are transfected with a fluorescent marker

which is photo-activatable, i.e. fluorescence is activated through illumination with laser light of a

certain wavelength which is specific to the used fluorophore, then switched on by laser light of a

second specific wavelength and switched off permanently with laser light of a third specific wave

length. Since the fluorophores are tiny point-shaped light sources beyond the diffraction limit of

light, their emitted signal is blurred with the point spread function of the microscope which is

dependent on the numerical aperture and the optics of the lenses used in the microscope. This

convolution leads to an optical signal in the shape of an Airy disk (Fig. 3.2a) [Betzig et al., 2006;

Rust et al., 2006]. Now, if two such signals are too close to each other, i.e. closer than half the

emitted wavelength, their Airy disks overlap significantly so that they cannot be resolved (Figure

3.2b). To achieve super-resolution, a method has to be found to detect each signal separately,
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either by spatial or temporal distance between the detections.

(a) Airy disk originating from
one point source.

(b) Airy disks of two point
sources close to each other.

(c) Airy disks of two point
sources far from each other.

Figure 3.2: Airy disks of objects beyond the diffraction limit. If the objects of interest are so close
together that their Airy disks overlap substantially, it is almost impossible to distinguish them
(Fig. 3.2b), however if they are reasonably far away from each other, their locations can still be
resolved accurately (Fig. 3.2c).

The photo-activation in PALM is in a way “stochastic”, i.e. only a small, random subset of all

fluorophores is brought to the active state, whereas the de-activation laser switches all activity

off at once. Like this, sub-diffraction structures can be resolved using temporal separation since

clustered molecules are imaged successively, hoping to keep simultaneous excitation of objects in

close proximity to each other to a minimum. Furthermore, once a fluorophore changes to the

dark state, it is bleached for the rest of the experiment, therefore each detection belongs to a

distinct object. STORM is quite similar to PALM, however fluorophores are attached through

immuno-labelling and they can switch between the light and dark state multiple times [Rust et al.,

2006] which makes it impossible to count or label objects; it is rather used for imaging subcellular

structures like microtubules. Both techniques and their various derivatives result in images similar

to Fig. 3.3, showing the molecules of interest as bright spots on noisy background.

While the idea behind PALM works perfectly fine in theory, there are a number of challenges

that makes the resulting images hard to interpret. First of all, there is no guarantee that objects

with close proximity to each other are not activated at once, and it is hard to tell from an image

like 3.3 how much signal overlap is still recorded. Furthermore, since the fluorescent signal is quite

weak and high frame rates are needed to monitor quick intracellular processes, the recorded PALM

images usually suffer from a low SNR and autofluorescence of the background is a common problem

leading to a non-homogeneous background profile. Another challenge arising from the small size

of the monitored objects is the problem of stage drift which can be caused by small movements in

the system such as thermal expansion or motor vibrations.

One way of reducing the background signal is by using Total Internal Reflection Fluorescence

(TIRF) microscopy [Ambrose, 1956]: in this imaging technique, a high-power laser beam is totally

internally reflected on the cover slip and the evanescent field around the beam only excites a very

thin slice (usually less than 200 nm) of the cell membrane that touches the cover slip. Therefore,

TIRF microscopy can remove most of the background fluorescence which is particularly useful

when cell signalling at the membrane is studied. All examples studied in this chapter are acquired

using the TIRF technique on an Olympus Cell Excellence wide-field microscope and an EMCCD
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5µm

(a) One frame.

5µm

(b) Sum across the stack. Note that most of the detail is blurred out.

Figure 3.3: PALM dataset showing fluorescent N-type calcium channels, image dimensions
27.14 µm× 22.15 µm. Figure 3.3a shows one frame of the sequence, and Figure 3.3b shows the
sum of all 4000 frames. The latter is equivalent to the output if all molecules were fluorescing at
once, demonstrating how PALM makes it possible to increase resolution by looking only at a few
molecules at a time.

69



camera with a pixel width corresponding to 106 nm.

Regarding stage drift, the findings of Sections 1.4 and 2.3 about hierarchical processes can be

exploited to track the movement of the sensor simultaneously with the molecular movement. The

same technique can also be applied to estimate other unknown parameters such as the false alarm

rate [Schlangen et al., 2017a].

3.1.2 Image processing

Given a sequence of PALM images, the first step is to extract sets of point-like measurements

representing the molecules of interest per frame. Even though in general, signal overlaps cannot

be ruled out completely, let us assume in the following that each blob corresponds to one distinct

fluorophore. Following Smal et al. [2010], spot detection is performed in three steps:

1. Noise reduction: Readout and photon noise have to be removed from the input image, using

techniques like Gaussian blurring or wavelet denoising.

2. Signal enhancement : An image enhancement step can be used to emphasise the structures

of interest in the de-noised image and to remove the background.

3. Signal thresholding : Thresholding will give a binary output that identifies regions of interest

in the image.

The method of choice for the experiments below is the so-called Isotropic Undecimated Wavelet

Transform (IUWT) which uses a wavelet decomposition to extract blob-like structures of a cer-

tain size/frequency from the images through band-pass filtering. Since low-frequency information

(i.e. background activity) can be selectively left out in the reconstruction of the enhanced image,

this technique combines all three enhancement steps described above in the following manner: Let

I denote the pixel matrix of the input image which is given by

I = {I(i, j)}i∈{1...m},j∈{1...n} ∈ Rm×n, (3.1)

where I(i, j) is the intensity of the pixel at position (i, j), and define the one-dimensional kernel

H =

[
1

16
,

1

4
,

3

8
,

1

4
,

1

16

]
. (3.2)

By convolving I row- and columnwise with H for K times, we obtain a sequence {Ik}k∈{1...K}
which leads in turn to the sequence of the form

Wk = Ik−1 − Ik, (3.3)

obtained with the pixel-wise differences Wk(i, j) = Ik−1(i, j) − Ik(i, j) for i ∈ {1 . . .m} and j ∈

{1 . . . n}. The sequence {Wk}k∈{1...K} is called the à trous wavelet decomposition with the property

I = IK +

K∑
k=1

Wk. (3.4)
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The matricesWk encode information of different frequencies in the image, i.e. structures of different

sizes. The background can be suppressed by removing the low-frequency bottom layer Ik from

the sequence, furthermore the high-frequency noise contained in the top layer W1 can be removed

as well. A sequence {Ŵk}k∈{2...K} is obtained from the remaining layers by using a user-defined

threshold, hence producing the final output

IIUWT =

K∑
k=2

Ŵk. (3.5)

Figure 3.4a shows the IUWT of Figure 3.3. There are different ways of extracting point-like

measurements from the enhanced image IIUWT. The most naive approach is to extract local

maxima or the centre of mass of each blob in the image, another way is to fit a sum of Gaussians

on the image, using the fact that the Airy disk can be approximated well by a Gaussian bell

curve [Zhang et al., 2007]. Both the centroid and the Gaussian fit approaches are demonstrated in

Figures 3.4b and 3.4c; in the following, the centroid approach is preferred since, apart from being

easier to compute, it detects all shapes in the image whereas the Gaussian fit approach seems to

miss some of the objects.

3.2 Applications

This chapter gives three examples in which the PHD filter methods are shown to be useful alter-

natives to the current state of the art used in cell and molecule tracking. The first application

(Section 3.2.1) shows a comparison of the PHD, CPHD and SO-PHD filters for pure molecule

tracking; the other two experiments use variations of the single-cluster PHD filter to estimate

stage drift (Section 3.2.2) and the unknown clutter rate in the image sequence (Section 3.2.3).

3.2.1 Application 1: Tracking molecules

The following experiment is conducted on live PALM data showing N-type calcium channels1 on

the membrane of a tumour cell of the PC12 cell line.2 In order to make the channels visible in the

data, the cell culture is transfected with photoactivatable mCherry (PAmCherry), a red-fluorescent

protein which is brought to the active state using laser light with a wavelength of around 350 −

400 nm and whose fluorescence is then triggered using laser light with a wavelength of maximally

595 nm. In this particular experiment, 405 nm laser-activated PAmCherry was visualized using

561 nm wavelength laser excitation. Each activation-excitation cycle lasts for 100 frames; the total

number of frames is 4000, but for this experiment, only the first 500 frames are considered. The

extracted images are of size 27.14 µm× 22.15 µm which corresponds to image dimensions of 256 px×

209 px. Figure 3.3a shows a sample frame of the considered sequence.

From this dataset, detections are extracted across all 500 frames in the manner of Section

3.1.2. The PHD, CPHD and SO-PHD filters are run on the extracted measurements based on

the following parametrisation: Targets are assumed to move according to an n.c.v. model with an
1N-type calcium channels are important for signalling of the nervous system.
2Thanks to Katarzyna Ciałowicz for providing the images.
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(a) À trous wavelet denoising.

(b) Centroids of the detected blobs, excluding those
with less than 3 pixels.

(c) Gaussian fits on the denoised image.

Figure 3.4: The detection process on the example of Fig. 3.3.

acceleration noise of 0.1 px per frame squared, and the initial target velocity is assumed Gaussian

normal distributed with mean 0 and a small standard derivation of 0.05 px per frame for both

image dimensions. Molecules are supposed to stay fluorescent with survival probability ps = 0.9,

and new fluorophores are assumed to start emitting light according to a negative binomial birth

model of mean 10 and variance 80, accounting for unexpected bursts in the number of objects due

to repeated activation-excitation cycles. Furthermore, the measurement noise is set to 1 px in each
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Figure 3.5: Estimated mean and variance in the number of targets over time for the live PALM
dataset.

image dimension, and false alarms are modelled using a negative binomial distribution with mean

10 and variance 60. The estimation results for all three filters are shown in Figure 3.5 in terms of

the estimated mean and variance in the number of targets. The number of extracted measurements

is plotted in the same coordinate system to give an idea of the data flow.

The results reflect the experimental setup of PALM as the plot shows: in every excitation cycle,

the number of active objects is growing quickly and then slowly reducing over time; the overall

number of objects also decreases since more and more objects are transferred permanently to the

dark state. It can be noticed that the PHD filter consistently produces a higher estimate in the

number of objects than the CPHD and SO-PHD filters; it seems that the missing information on

the variance in the number of births and false alarms brings the PHD filter to trust the observations

more, whereas the other two filters are more reluctant to interpret incoming data as true targets.

This confirms the findings in Section 2.2.6 and Vo et al. [2007].

3.2.2 Application 2: Stage drift estimation

The following experiment was conducted in [Schlangen et al., 2016b] to demonstrate the value of

the single-cluster PHD filter with multiple motion models for the calibration of PALM data which

is subject to stage drift. The idea is to utilise only the static objects in the image for the calibration

since they give more reliable feedback on the sensor movement. Therefore, multiple motion models

are incorporated in the PHD filter recursion as follows: for all Nmm considered motion models

with index i ∈ 1, . . . , Nmm, the prediction is performed according to (1.38) using a model-specific

birth intensity µ(i)
b,k and exchanging the Markov transition t(i)k|k−1 in the survival term, such that

the prediction becomes

µ
[,(i)
k|k−1(B) = µ

(i)
b,k(B) + µ

(i)
s,k(B) (3.6)
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with modified survival term

µ
(i)
s,k(B) =

∫
X
ps,k(x)t

(i)
k|k−1(B|x)µ[k−1(dx). (3.7)

In the update, the normalisation is performed over all motion models, so that (1.39) is changed

into

µ
[,(i)
k (B) = µ

φ,(i)
k (B) +

∑
z∈Zk

µ
z,(i)
k (B)

µc,k(z) +
∑Nmm

j=1 µ
z,(j)
k (X )

, (3.8)

where µφ,(i)k and µz,(i)k are obtained by performing Equations (1.36) and (1.37) on the prediction

intensities µ[,(i)k|k−1 according the respective motion model i.

For the experimental setup, a PALM dataset is used which shows SNAP253 activity in human

embryonic kidney cells from the 293 cell line.4 The cells are transfected with the red-fluorescent

protein PAmCherry again, and the cover slip contains randomly placed gold beads which serve as

fiducial markers to aid with the detection of possible stage drift. The images represent a square

area of size (54.272 µm)2 which corresponds to an image size of (512 px)2, and they are recorded at

a sampling rate of 16.6 Hz over 100 frames. An example frame is shown in Figure 3.6a. Detections

are again obtained using the technique described in Section 3.1.2.

Since the fiducial markers are placed randomly over the image, it is possible find two sub-images

one of which contains fiducial markers and one of which does not; like this, it can be assessed to

which extent the single-cluster PHD filter relies on fixed points in comparison to image calibration

methods which are conventionally used for the drift estimation. The two chosen sub-images are

presented in Figure 3.6c, having the following specifications:

(i) This sub-image contains 4 beads, and it is of size 90 px× 75 px.

(ii) This sub-image does not contain beads, and it is of size 100 px× 90 px.

In order to have reliable ground truth available for the assessment of the drift estimation, the

measurements obtained from both subframes are corrupted with simulated stage drift. To ensure

that there is no detectable image drift in the sequence a priori, 10 fiducial markers (shown in Figure

3.6b) are selected in the full image frames and tracked across the whole image sequence.5 Figure

3.7 shows the displacement of each marker with respect to its location in the first frame, averaged

over all 10 objects, and it can be seen that the average displacement consistently falls below 0.1 px

which is to be expected due to the imperfection of the detection method.

After showing that the dataset is drift-free, 20 artificial sensor trajectories are simulated in a

2-dimensional state space using a n.c.v. and a Brownian motion model, respectively, to be added

to the measurements extracted from the two subframes. The Brownian motion is created using a

standard deviation of 1 px per frame on each dimension of the sensor position; the n.c.v. model

assumes a Gaussian normal distributed initial velocity with mean 0 standard deviation 0.25 px per

frame and state space dimension and acceleration noise of 0.2 px per frame squared and dimension.
3SNAP25 is a protein which is involved in the process of exocytosis.
4Thanks to Colin Rickman for providing the images.
5For this purpose, an implementation of the HISP filter was used, see Houssineau et al. [2013].
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10 µm

(a) Original image.

10 µm

(b) A selection of beads used for the analysis in Fig. 3.7.

(i)

(ii)

10 µm

(c) Chosen sub-images: (i) contains 4 beads, (ii) marker-free.

Figure 3.6: Example image of PALM data used for the estimation of the sensor drift.

Finally, the single-cluster multi-model PHD filter is run on the two sub-images (corrupted with

the different random instances of Brownian and linear drift) using two different motion models for

the objects, i.e. constant position and Brownian motion. For each simulated sensor trajectory, 20
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Figure 3.7: Average drift in the PALM dataset shown in Figure 3.6a over time, based on the
displacement of 10 gold beads (Figure 3.6b) with respect to their positions in the first frame.

MC runs are performed since an SMC implementation is used for the parent process; see Appendix

A.3.2 for details on the implementation. The outcome is compared with the calibration results of

the ImageJ plugin StackReg which calibrates the frames of the image sequence with an intensity-

based least-squares optimisation method [Thevenaz et al., 1998]. The results for Brownian and

linear drift, averaged over all trajectories and MC runs, are demonstrated in Figure 3.8 in terms

of the Root Mean Square Error (RMSE) of the estimated sensor position and the true position.

The proposed method shows very little error when it is aided by fiducial markers, and a slightly

increased error when it solely relies on the static molecules appearing spontaneously; the image-

based registration, on the other hand, leads to estimation errors which are around four times higher

than the marker-free drift estimation with the proposed algorithm.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

frame no.

R
M
SE

(n
m
)

StackReg, markers
StackReg, no markers
proposed method, markers
proposed method, no markers

(a) Estimation of linear drift.
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(b) Estimation of Brownian drift.

Figure 3.8: Results of the sensor drift estimation the two subimages of 3.6c for Brownian and linear
motion, all plotted with their standard deviation over all MC runs.
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3.2.3 Application 3: Clutter rate estimation

In practice, parameters are often chosen by the user based on intuition and careful manual tweaking,

however it would be useful to have a technique at hand which chooses the optimal parameter

automatically based on the incoming data instead. Inspired by this idea, we used the single-cluster

PHD filter in Schlangen et al. [2017a] for the estimation of the background noise in PALM data,

assuming that it follows a Poisson model. In contrast to the experiment in Section 3.2.2, the

classic PHD filter with only one motion model is used, i.e. Nmm = 1; furthermore, the particles of

the SMC implementation of the parent process are neither moved in the prediction nor resampled

in the update since we are looking for a parameter which we assume to be static, i.e. the (one-

dimensional) false alarm rate λ. Instead, a fixed grid of integer values between 0 and λmax is

assumed whose weights are simply updated using the multi-object likelihood of the PHD filter

using the respective false alarm rates.

To validate this idea, the filter is first tested on 100 MC instances of a simulated dataset of

100 frames, created on a square two-dimensional state space with a width of 50 µm. Objects are

generated according to a Poisson birth process with a birth rate of 0.5 targets per frame, having

a Gaussian distributed initial velocity with mean 0 and standard deviation 500 nm per frame and

moving according to an n.c.v. model with acceleration noise of 100 nm per frame in both image

dimensions, respectively. Furthermore, the objects survive with probability ps = 0.98 and are

detected with probability pd = 0.99. False alarms are generated according to a Poisson model

with an average of 10 false positives per frame, which is assumed to be unknown for the filtering

process.

The maximum admissible clutter parameter for this scenario is set to λmax = 50; a typical

output of the filter at time 60 is shown in Figure 3.9a, where 14 targets are currently present. The

plot shows the estimated number of objects for different clutter rates in red, and the corresponding

multi-object likelihood in blue. As it can be seen, the multi-object likelihood is well-concentrated

around the true false alarm rate 10, and the number of objects is also most accurately estimated

around this value. When run over time, the Maximum A Posteriori (MAP) value is extracted

as the filter output, i.e. the false alarm rate which leads to the highest multi-object likelihood;

similarly, the corresponding estimated number of objects is extracted as well. Both MAP outputs

over time are shown in Figure 3.9b, along with the ground truth (plotted in black): as it can be

noticed, the estimated clutter rate converges quickly to the true value, and the true number of

objects falls comfortably into the 2σ gate around the PHD estimate (using the PHD filter variance

as formulated in Delande et al. [2014]).

After this sanity check, the method is tested on the same PALM dataset used in Section 3.2.2

for the drift estimation. Again, no ground truth is available, so we choose to run the algorithm on

the full frame and a square subframe of width 200 px (i.e. 21.2 nm), shown in Figure 3.10, expecting

that the ratio of the image sizes will approximately match with the ratio of the estimated clutter

values and number of targets. The filter parameters are set as follows: The objects are assumed

to appear according to a Poisson model with a birth rate of 5 objects per frame, and to survive

with probability ps = 0.95. Their motion model is assumed to be n.c.v. with an acceleration noise
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(a) Simulation result in frame 60 over the considered clutter rates for one MC run, where 14 targets are
currently present. The estimated mean and standard deviation in the number of targets for different
clutter rates is shown in red, and the multi-object likelihood is plotted in blue. The light blue area shows
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(b) Simulation results over time (MAP value), averaged over 100 MC runs. Again, the estimated mean
and standard deviation in the number of targets are plotted in red, and the average clutter rate with
corresponding standard deviation over all MC runs is plotted in blue. The dashed line stands for a ±

√
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k

confidence interval around the true value.

Figure 3.9: Simulation results for the clutter rate estimation.

(a) Full image frame with subframe marked. (b) The chosen subframe.

Figure 3.10: Sample frame of the PALM dataset of Section 3.2.2 with selected subframe.
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(a) Results for the full images.
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(b) Results for the subimages.

Figure 3.11: Estimation results for the PALM dataset with the same colour coding as in Figure
3.9b.

of 106 nm per frame squared and Gaussian distributed initial velocity with mean 0 and standard

deviation 5.3 nm per frame and image dimension. The detection rate was assumed to be pd = 0.95,

and the measurement noise was set to 212 nm. Since there are around 80 measurements in each

frame, the maximum admissible false alarm rate was set to 100 in this case.

As Figure 3.11 shows, the estimated clutter rate for the full frame converges to 42.4 false alarms

per frame, whereas the sub-images give a value of 8.5; the estimated number of targets oscillates

around 75 and 15 for the full and cropped sequences, respectively. Since the image area of the

cropped frame is approximately 1
5 of the full frame, the estimated values are consistent with the

expectation.
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Conclusion

The focus of this work was on multi-object estimation techniques that are based on the represen-

tation of targets through point processes. It was demonstrated that the PHD filter, while being a

powerful multi-object estimator in many applications, can be restrictive in its modelling assump-

tions and therefore might not cope well with unexpected changes in the number of detections. The

CPHD filter, which was designed to overcome the limitations of the PHD filter by propagating

the whole cardinality distribution of the target process in addition to the intensity, was shown

to perform considerably slower and sometimes being over-confident in the estimation of the num-

ber of targets. Therefore, alternative estimation methods were designed to relax the modelling

assumptions of the PHD filter while avoiding the computational complexity of the CPHD filter.

For this purpose, the so-called Panjer point process was introduced which generalises the Poisson

point process by incorporating the Poisson, binomial and negative binomial distributions in one

single formulation and therefore allowing for a more flexible description of the number of objects

by parametrising the mean and variance separately. As a first attempt, the PHD filter with Panjer

clutter was introduced and it has been demonstrated in simulations that the generalised clut-

ter model makes it possible to estimate the target population considerably better than using the

Poisson model in the presence of greatly varying numbers of false alarms. Based on these promis-

ing results, the SO-PHD filter was formulated which uses a Panjer model for both the predicted

target process and the false alarm process. Utilising the properties of the Panjer point process,

the SO-PHD filter propagates second-order information in form of the variance in the number of

targets in addition to the process intensity at a much lower computational cost than the CPHD

filter. Furthermore, simulation studies have shown that the spooky effect at a distance which was

diagnosed for the CPHD filter previously is present in the SO-PHD filter as well, but to a much

smaller extent. The CPHD and SO-PHD filters were also successfully embedded in a single-cluster

estimation algorithm based on the idea of the single-cluster PHD filter. The low computational

time of the SO-PHD filter makes it a suitable alternative to the PHD filter in challenging param-

eter estimation scenarios. The presented experiments on simulated and real data showed that all

three methods are powerful techniques to extract meaningful statistics from microscopy images,

hence providing helpful analysis tools to aid biomedical research and other fields of science and

engineering.
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Appendix A

Implementation

A.1 The Kalman filter and Gaussian mixtures

The Kalman filter was first introduced by Kalman [1960] as an exact closed-form solution of the

Bayesian recursion for one object. It is based on the assumption that the described dynamical

system is linear and represented fully by Gaussian distributions. In the following, let N (·;mk, Ck)

denote a Gaussian distribution with dx-dimensional mean mk ∈ Rdx and a covariance matrix Ck ∈

Rdx×dx . The prediction step in the Kalman filter involves a state transition matrix Fk ∈ Rdx×dx ,

a process noise matrix Qk ∈ Rdx×dx an optional control input matrix Bk ∈ Rdx×dx if a control

vector ukRdx is involved. With these notations, the prediction step of the Kalman filter is found

to be (cf. Figure 1.1b for illustration)

mk|k−1 = Fkmk−1 +Bkuk, (A.1)

Ck|k−1 = FkCk−1F
T
k +Qk. (A.2)

Suppose that at time k, a dz-dimensional measurement zk ∈ Rdz is obtained. First, the so-called

innovation with mean yk ∈ Rdz and covariance Sk ∈ Rdz×dz is computed which represents the

information gain through the measurement. Its value is dependent on the process noise matrix

Rk ∈ Rdz×dz and on the projection of the predicted Gaussian distribution onto the measurement

space using the projection matrix Hk ∈ Rdz×dx . As an intermediate step, the Kalman gain

Kk ∈ Rdx×dz is computed from the covariances of the predicted distribution and the innovation,

which is used in turn to find the updated distribution with mean mk and covariance Ck. The

equations of the Kalman filter update are given as (cf. Figure 1.1c for illustration)

yk = zk −Hkmk|k−1, (A.3)

Sk = HkCk|k−1H
T
k +Rk, (A.4)

Kk = Ck|k−1H
T
k S
−1
k , (A.5)

mk = mk|k−1 +Kkyk, (A.6)

Ck = (I −KkHk)Ck|k−1. (A.7)
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The formulation of the Kalman filter can be exploited when working with Gaussian mixture models.

A Gaussian Mixture (GM) is given by the sum

p( · ) =

Nk−1∑
i=1

w
(i)
k−1N ( · ;m

(i)
k−1, C

(i)
k−1). (A.8)

for a collection
{
w

(i)
k−1,m

(i)
k−1, C

(i)
k−1

}Nk−1

i=1
of Gaussian distributions with weights 0 ≤ w(i)

k−1 ≤ 1. In

the prediction, each of the Gaussian components is predicted using Equations (A.1) and (A.2) and

updated with Equations (A.6) and (A.7). The prediction and update of the component weights

w
(i)
k−1, however, depends on the specific filter in which the Gaussian mixture model is used. In

the Gaussian sum filter [Alspach and Sorenson, 1972], for example, the weights are updated using

the innovation given by (A.3) and (A.4) and then normalised. In case of the PHD filter methods

discussed in this work, the reweighting of the Gaussians is more intricate, involving probabilities of

detection and survival and other normalisation constants. An example is shown in Appendix A.3.1,

showing pseudocode for a GM implementation of the SO-PHD filter.

A.2 Track extraction and the PHD filter class

Since the class of PHD filter techniques is concerned with tracking target populations rather than

individuals and avoids data association, track extraction is not a natural part of the estimation.

However, it can be useful for biomedical applications to extract information for specific objects,

e.g. in order to calculate statistics on individual molecule speeds. Some methods were suggested

in the literature, e.g. by Lin et al. [2006] and Li et al. [2014] for SMC implementations of the PHD

filter. If a GM implementation is used like in the experiments of this work, the involved Kalman

filters can be utilised for the track extraction in the following manner. First of all, additionally

to its weight w ∈ [0, 1], mean m ∈ X ⊆ R4 and covariance matrix C ∈ R4×4, accounting for

positions and velocities in x and y, each Gaussian in the mixture can be equipped with a unique

identification number i ∈ N and a sequence h = (xk0 , . . . , xk−1) of previous state estimates, where

k0 is the time step where the object was created. Now, if an object is updated at time k, its

history h is augmented by the new estimate xk. In the merging step, two objects are merged if the

Hellinger distance between their Gaussian distributions falls below a user-defined threshold and if

their identification numbers are identical. Like this, it is ensured that objects with significantly

different trajectories are maintained even if their distributions become similar. In the end, only the

trajectories of those objects are extracted whose weight wk raises above a user-defined threshold.

A.3 Pseudocode

In the following, let Nk−1, Nb,k−1 denote the respective numbers of Gaussians in the prior and

birth mixtures.
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A.3.1 Second-order GM-PHD filter

Algorithm 1: SO-PHD prediction (time k).

Input

Posterior:
{
w

(i)
k−1,m

(i)
k−1, P

(i)
k−1

}Nk−1

i=1
, vark−1(X )

Birth:
{
w

(i)
b,k−1,m

(i)
b,k−1, P

(i)
b,k−1

}Nb,k−1

i=1
, varb,k(X )

Prior intensity

µk−1(X ) =
∑Nk−1

i=1 w
(i)
k−1

Survival process

for 1 ≤ i ≤ Nk−1 do

w
(i)
k|k−1 = ps,kw

(i)
k−1

m
(i)
k|k−1 = Fk−1m

(i)
k−1

P
(i)
k|k−1 = Fk−1P

(i)
k−1F

T
k−1 +Qk−1

end for

vars,k(X ) = p2
s,kvark−1(X ) + ps,k[1− ps,k]µk−1(X )

Newborn process

for 1 ≤ j ≤ Nb,k−1 do

w
(nk−1+j)
k|k−1 = w

(j)
b,k−1

m
(nk−1+j)
k|k−1 = m

(j)
b,k−1

P
(nk−1+j)
k|k−1 = P

(j)
b,k−1

end for

Nk|k−1 = Nk−1 +Nb,k−1

vark|k−1(X ) = varb,k(X ) + vars,k(X )

Output

Predicted process:
{
w

(i)
k|k−1,m

(i)
k|k−1, P

(i)
k|k−1

}Nk|k−1

i=1
, vark|k−1(X )

Algorithm 2: Computation of the elementary symmetric functions using Vieta’s theorem.

Input

Collection of terms: {µzk(X )}z∈Zk
Vieta’s theorem

Expand: p(x) =
∏
z∈Zk (x− µzk(X )) =

∑mk
j=0 pjx

j

Set ej(Zk) = pj for all 0 ≤ j ≤ mk

Output

Elementary symmetric functions {ej(Zk)}0≤j≤mk
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Algorithm 3: SO-PHD data update (time k).

Input

Prediction:
{
w

(i)
k|k−1,m

(i)
k|k−1, P

(i)
k|k−1

}Nk|k−1

i=1
, vark|k−1(X )

Current measurements: Zk = {zj}Mk

j=1

Panjer parameters

µk|k−1(X ) =
∑Nk|k−1

i=1 w
(i)
k|k−1

αk|k−1 = µk|k−1(X )2/(vark|k−1(X )− µk|k−1(X ))

βk|k−1 = µk|k−1(X )/(vark|k−1(X )− µk|k−1(X ))

Missed detection and measurement terms

for 1 ≤ i ≤ Nk|k−1 do

w
(i)
φ,k = (1− pd,k)w

(i)
k|k−1

m
(i)
φ,k = m

(i)
k|k−1

P
(i)
φ,k = P

(i)
k|k−1

end for

µφk(X ) = (1− pd,k)µk|k−1(X )

for 1 ≤ j ≤Mk do

for 1 ≤ i ≤ Nk|k−1 do

y
(i,j)
k = zj −Hkm

(i)
k|k−1

S
(i)
k = HkP

(i)
k|k−1H

T
k +Rk

K
(i)
k = P

(i)
k|k−1H

T
k [S

(i)
k ]−1

w
(i,j)
d,k = pd,kw

(i,j)
d,k|k−1N (z; y

(i,j)
k , S

(i)
k )/sc,k

m
(i,j)
d,k = m

(i)
k|k−1 +K

(i)
k y

(i,j)
k

P
(i,j)
d,k = (I −K(i)

k Hk)P
(i)
k|k−1

end for

µ
zj
k (X ) =

∑Nk|k−1

i=1 w
(i,j)
d,k

end for
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Corrective terms

Fd = (1 +
pd,k
βk|k−1

)
∑
z∈Zk µ

zj
k (X )

Compute {ed(Zk)}0≤d≤Mk
using Algorithm 2

for 0 ≤ u ≤ 2 do

Υu(Zk) =
∑Mk

j=0
(αk|k−1)j+u
(βk|k−1)j+u

(αc,k)mk−j

(βc,k+1)mk−j
F−j−ud ej(Zk)

end for

`1(φ) := Υ1(Zk)/Υ0(Zk), `2(φ) := Υ2(Zk)/Υ0(Zk)

for 1 ≤ i ≤Mk do

Compute {ed(Zk \ zi)}0≤d≤Mk−1 using Algorithm 2

for 1 ≤ u ≤ 2 do

Υu(Zk \ zi) =
∑Mk−1
d=0

(αk|k−1)d+u
(βk|k−1)d+u

(αc,k)mk−1−d

(βc,k+1)mk−1−dF
−d−u
d ed(Zk \ zi)

end for

`1(zi) := Υ1(Zk \ zi)/Υ0(Zk)

`2(zi) := Υ2(Zk \ zi)/Υ0(Zk)

for 1 ≤ i < j ≤Mk do

Compute {ed(Zk \ {zi, zj})}0≤d≤Mk−2 using Algorithm 2

Υ2(Zk \ {zi, zj}) =
∑Mk−2
d=0

(αk|k−1)d+2

(βk|k−1)d+2

(αc,k)mk−2−d

(βc,k+1)mk−2−dF
−d−2
d ed(Zk \ {zi, zj})

`6=2 (zi, zj) = Υ2(Zk \ {zi, zj})/Υ0(Zk)

end for

end for

Missed detection terms

for 1 ≤ i ≤ Nk|k−1 do

w
(i)
k = `1(φ)w

(i)
φ,k

m
(i)
k = m

(i)
φ,k

P
(i)
k = P

(i)
φ,k

Association terms

for 1 ≤ j ≤Mk do

w
(i·nk|k−1+j)

k = `1(zj)w
(i,j)
d,k

m
(i·nk|k−1+j)

k = m
(i,j)
d,k

P
(i·nk|k−1+j)

k = P
(i,j)
d,k

end for

end for

Nk = Nk|k−1 +Nk|k−1Mk

µk(X ) =
∑Nk
i=1 w

(i)
k

Variance update

vark(X ) = µk(X ) + µφk(X )2
[
`2(φ)− `1(φ)2

]
+ 2µφk(X )

∑
z∈Zk

µzk(X )
sc,k(z) [`2(z)− `1(φ)`1(z)]

+
∑
z 6=z′∈Zk

µzk(X )
sc,k(z)

µz
′
k (X )

sc,k(z′)

[
`6=2 (z, z′)− `1(z)`1(z′)

]
,

Output

Posterior:
{
w

(i)
k ,m

(i)
k , P

(i)
k

}Nk
i=1

, vark(X )
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A.3.2 The single-cluster multi-object filter

The parent process of single-cluster multi-object filters is usually implemented with a SMC ap-

proach to avoid the burden of estimating correlations of the objects with the estimated parameter

(i.e. the sensor state, clutter rate, etc.). Therefore, the sensor state is represented by a fixed num-

ber N of random samples ({(yik, wik,Д
i
k)}Ni=1, called particles, where yik denotes the ith instance of

the estimated parameter at time k, wik is its corresponding weight, and Дi
k is the set of statistics

maintained by the multi-object filter of choice, dependent on the particle state yik. If the PHD

filter is chosen, Дi
k is the intensity µ[k of the target population only, for the CPHD filter it denotes

the intensity µ]k with the cardinality distribution ρk, and for the SO-PHD filter it stands for the

intensity µ\k plus the variance var\k. The multi-object likelihood function can either be the filter-

specific function (1.58), (2.85) or (2.89), respectively, or a suitable alternative as given in Leung

et al. [2016]. To avoid particle degeneracy [Doucet et al., 2001], a resampling step is performed if

the number of effective particles Neff falls below a certain value r ·N with 0 ≤ r ≤ 1; the number

of effective particles is computed using the formula

Neff =
1∑N

i=1(wik)2
. (A.9)

One of the easiest methods of resampling is called roulette resampling [Doucet et al., 2001], which

is chosen for all experiments conducted in this work; to improve the results, one could consider

alternative approaches like importance sampling and others. These considerations lead to the

following algorithm.

Algorithm 3: Algorithm for parameter estimation.

Input

Set of particles {(yik, wik,Д
i
k)}Ni=1

Set of measurements Zk+1

Prediction

for 1 ≤ i ≤ N do

Sample yik+1 ∼ N (yik,Σs)

Дi
k+1|k ← Prediction(Дi

k)

end for

Update

for 1 ≤ i ≤ N do

Дi
k+1 ← Update(Дi

k+1|k, Zk+1)

wik+1 ← MultiObjectLikelihood(Дi
k+1|k, Zk+1)

end for
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Resampling

Neff ←
1∑N

i=1(wik+1)2

if Neff ≤ r ·N then

{yik+1}Ni=1 ← Resampling({(yik+1, w
i
k+1)}Ni=1)

for 1 ≤ i ≤ N do

wik+1 ← 1
N

end for

end if

Output

Set of particles {(yik+1, w
i
k+1,Д

i
k+1)}Ni=1
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