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Abstract—Multiple Input Multiple Output sonar systems offer
new perspectives for target detection and underwater surveil-
lance. In this paper we present an unified formulation for
sonar MIMO systems and study their properties in terms of
target recognition and imaging. Here we are interested in large
MIMO systems. The multiplication of the number of transmitters
and receivers non only provides a greater variety in term of
target view angles but provides also in a single shot meaningful
statistics on the target itself. We demonstrate that using large
MIMO sonar systems and with a single shot it is possible to
perform automatic target recognition and also to achieve super-
resolution imaging. Assuming the view independence between the
MIMO pairs the speckle can be solved and individual scatterers
within one resolution cell decorelate. A realistic 3D MIMO sonar
simulator is also presented. The output of this simulator will
demonstrate the theoretical results.

I. INTRODUCTION

MIMO stands for Multiple Input Multiple Output. It refers
to a structure with spatially spaced transmitters and receivers.
It has been widely investigated during the last two decades for
wireless communications mainly to overcome the multipath
problem in complex environments (principally urban environ-
ment). MIMO systems have received a lot of interest in recent
years in the radar community [1], [2].

Multiple Input Multiple Output sonar systems have raised
a lot of interest during the recent years mainly in the ASW
(anti-submarine warfare) community. Often referred as multi-
static sonars they overcome monostatic sonar systems in target
localisation [3] and detection performances [4]. CMRE (Centre
for Maritime Research and Experimentation) in particular de-
veloped a deployable low frequency multi-static sonar system
called DEMUS and conducted a series of trials including pre-
DEMUS06 and SEABAR07.The DEMUS hardware consists of
one source and three receiver buoys and can be denominated
as a SIMO (Single Input Multiple Output) system. A lot of the
efforts were then focussed on the data fusion and the target
tracking problems.

In this paper we focus our attention on large MIMO sonar
systems. We will show that having a greater variety of views
of the scene offers meaningful statistics on targets with a
single snapshot and therefore have interest in automatic target
recognition. Having more views on a particular scene or target
also poses the problem of merging them. We will demonstrate
that with enough views one can solve the speckle noise and
then use the multi-view to produce super-resolution MIMO
images.

This paper is organised as follows: In section II we present
the radar MIMO formulation and derive the broadband sonar
MIMO expression. We then present a realistic 3D MIMO
simulator. In section IV we demonstrate some of the MIMO
sonar capabilities: target recognition and super resolution.

II. REFORMULATION OF THE BROADBAND MIMO SONAR
PROBLEM

A. The RADAR formulation

The first formulation for surveillance MIMO systems has
been made by the radar community [1]. The MIMO system
model can usually be expressed by: r = H.s + n, where r
represents the receivers, s the transmitters, n the noise, and H
the channel matrix. The channel matrix include the wave prop-
agation in the medium from any transmitters to any receivers
and the target reflection. At first, targets were represented using
the ”point target” assumption [5]. Since then, several target
models have been proposed such as rectangular-shape target
in [2] composed of an infinite number of scatterers. We present
here the most popular model for a radar target model which
is the finite scatterer model [6].

In [6] the authors formulate narrowband MIMO radar using
a finite point target model. A target is represented here with
Q scattering points spatially distributed. Let {Xq}q∈[1,Q] be
their locations. The reflectivity of each scattering point is
represented by the complex random variable ζq . All the ζq
are assumed to be zero-mean, independent and identically
distributed with a variance of E[|ζq|2] = 1/Q. Let Σ be the
reflectivity matrix of the target, Σ = diag(ζ1, ..., ζQ). By using
this notation the average RCS (radar cross section) of the target
{Xq}, E[tr(ΣΣH)], is normalised to 1.

The MIMO system comprises a set of K transmitters and
L receivers. Each transmitter k sends a pulse

√
E/K.sk(t).

We assume that all the pulses sk(t) are normalised. Then
E represents the total transmit energy of the MIMO system.
Receiver l receives from transmitter k the signal zlk(t) which
can be written as:

zlk(t) =

√
E

K

Q∑
q=1

h
(q)
lk sk (t− τtk(Xq)− τrl(Xq)) (1)

with h
(q)
lk = ζq exp (−j2πfc[τtk(Xq) + τrl(Xq)]) (2)

where fc is carrier frequency, τtk(Xq) represents the propa-
gation time delay between the transmitter k and the scattering



point Xq , τrl(Xq) represents the propagation time delay be-
tween the scattering point Xq and the receiver l. Note that h(q)lk
represents the total phase shift due to the propagation from the
transmitter k to the scattering point Xq , the propagation from
the scattering point Xq to the receiver l and the reflection on
the scattering point Xq .

Assuming the Q scattering points are close together (i.e.
within a resolution cell), we can write:

sk (t− τtk(Xq)− τrl(Xq)) ≈ sk (t− τtk(X0)− τrl(X0))

= slk(t,X0) (3)

where X0 is the centre of gravity of the target {Xq}. So Eq. (1)
becomes:

zlk(t) =

√
E

K
slk(t,X0)×(

Q∑
q=1

ζq exp (−j2πfc[τtk(Xq) + τrl(Xq)])

)

=

√
E

K

(
Q∑
q=1

h
(q)
lk

)
slk(t,X0) (4)

B. The MIMO sonar extension

In this section we propose a reformulation of the
Haimovich model presented in section II-A to suit broadband
sonar systems. We demonstrate in previous works [7] that for
broadband sonar a formulation in the Fourier domain is more
appropriate. Eq. (1) becomes:

Zlk(ω) =

√
E

K

Q∑
q=1

h
(q)
lk Sk(ω)e−jω[τtk(Xq)+τrl(Xq)] (5)

Using the following notations:

τtk(Xq) = τtk(X0) + τ̃tk(Xq)
τrl(Xq) = τrl(X0) + τ̃tk(Xq)

(6)

and

Hlk(X0, ω) =

√
E

K
.e−j(2πfc+ω).[τtk(X0)+τrl(X0)] (7)

the following expression can be derived:

Zlk(ω) = Hlk(X0, ω)
(∑Q

q=1 h̃
(q)
lk e−jω[τ̃tk(Xq)+τ̃rl(Xq)]

)
Sk(ω)

= Hlk(X0, ω)F∞(ω, θl, φk)Sk(ω)
(8)

where θl is the angle of view of the target from the transmitter
and φk is the angle of view of the target from the receiver.

Eq. (8) can be interpreted as follows: the first term corre-
sponds to the propagation of the wave to and from the target,
the second term is the form function of the target, the third
term is the transmitted signal. The main advantage of this
formulation is the clear separation between propagation terms
and target reflection terms. In our formulation the target form
function F∞ is independent of any particular model. One can
use point scatterer models or more complex ones.

III. MIMO SIMULATOR

In this section we describe the main components of the 3D
MIMO sonar simulator.

A. Seabed interface

To model the seabed interface we generate 2D fractional
Brownian motion (fBm) using the Incremental Fourier Synthe-
sis Method developed by Kaplan and Kuo [8]. The main idea
is to model the 1st and 2nd order increments Ix, Iy and I2. I2
for example is given by:

I2(mx,my) = B(mx + 1,my + 1) +B(mx,my)

−B(mx,my + 1)−B(mx,my + 1)

where B is the 2D fBm. Those 1st and 2nd order increments
can be computed thanks to their FFTs. The 2nd order increment
FFT is given by:

S2(ωx, ωy) =
32
√
π sin2(ωx/2) sin2(ωy/2)Γ(2H + 1) sin(πH)√

ω2
x + ω2

y

2H+2

(9)
where H is the Hurst parameter. Figure 1 displays an example
of 2D fBm surface generated using this technique.

Fig. 1. Example of 2D fBm with H = 0.8 (fractal dimension = 2.2)

B. Bistatic reverberation level

The bistatic scattering strength is computed using the
model developed by Williams and Jackson [9]. It is given by:

Sb(θs, φs, θi) = 10 log[σbr(θs, φs, θi) + σbv(θs, φs, θi)] (10)

where σbr = [σηkr+σηpr]
1/η is the bistatic roughness scattering

which includes the Kirchhoff approximation and the pertur-
bation approximation. σbv is the sediment bistatic volume
scattering. Sb depends on the bistatic geometry as well as
the sediment physical properties. Figure 2 displays the bistatic
scattering strength for a Tx/Rx pair situated 141m apart and
both at 7.5m from the seafloor. The Sb is computed for two
different sediment types (coarse sand and sandy mud) for the
same fBm interface.

C. Propagation

Sound propagation in shallow water can become extremely
complex. Because we are modelling very shallow water en-
vironment we assume a constant sound speed through the
water column. To model the multipath we are using the
mirror theorem. We use ray tracing techniques to compute the
different propagation paths. The simulations done in this paper
consider a maximum of three bounces.

To synthesise time echo a random scatterer point cloud
including random position and random intensity is generated
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Fig. 2. Bistatic scattering strength relative to one Tx located at [0m,100m]
and a Rx located at [100m,0m] for (a) a coarse sand sediment type and (b) a
sandy mud sediment type.

for each cell in the seabed. Note that once the point cloud is
generated, it can be saved for other simulations with the same
configuration.

To synthesise the MIMO echoes from a 200m × 300m
scene with 50cm cell resolution we have to compute 400 ×
600 cells × 20 scatterers per cell × 100 MIMO pairs different
paths which represents around half a billion paths (direct paths
only). Brute force computation using MatLab on a standard
laptop requires around 2 months of computation. This can be
drastically reduced by analysing the properties of propagation
in water and the circular convolution properties of the DFT.
The main tool to propagate a signal is free water is the well
known FFT property: f(t− u)⇔ e−iuω f̂(ω). If we consider
the echo related to one cell, this echo is extremely sparse over
a 600m range signal. The idea is to compute the propagated
signal over a much smaller window. Figure 3 draws the outlines
of the algorithm: the full scene is divided into range bands, on
Fig. 3(a) each colour band represents a 10m range division.
The echoes relative to each band are computed independently
on a small window of 20m (cf. figure 3(b)). The echoes are
then recombined to give the full range bistatic response as
seen in figure 3(c). Using those techniques greatly reduces the
computation time from 2 months to around 10 hours.

IV. LARGE MIMO SYSTEMS PROPERTIES

In this section we discuss the properties of large MIMO
sonar systems.

A. Incoherent MIMO target snapshot

Back to the results of section II we are interested in the
MIMO intensity response of an object. It is interesting to note
that the term

∑Q
q=1 h

(q)
lk in Eq. (4) corresponds in essence to

a random walk in the complex plane where each step h(q)lk can
be modelled by a random variable.

Lets assume that the reflectivity coefficients ζq can be
modelled by the random variable 1√

Q
e2iπU where U ∈ [0, 1]

is the uniform distribution. This hypothesis implies that:

h
(q)
lk =

1√
Q

e2iπU (11)
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Fig. 3. (a) of the observed scene in 10m range band. (b) Individual range
band echo contribution. (c) Full echo response recomposition.

Thanks to the central limit theorem we can write:

lim
Q→+∞

√√√√√∣∣∣∣∣
Q∑
q=1

h
(q)
lk

∣∣∣∣∣
2

= Rayleigh(1/
√

2) (12)

However the central limit theorem gives only the asymptotic
behaviour of the random variable. As the number of scattering
points becomes large the reflectivity of the target can be
modelled by a Rayleigh distribution.

The convergence of Eq. (12) however is fast as shown
in [10]. Figure 4 shows the convergence of the reflectivity PDF
of a Q scattering points target. As this figure shows, for Q ≥ 5
the reflectivity PDF matches closely the Rayleigh(1/

√
2) prob-

ability distribution. In Fig. 4 we can see that the probability
function of the 100 scatterer target and Rayleigh(1/

√
2) are

almost indistinguishable.
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Fig. 4. Reflectivity probability density functions of a Q scattering points
target with Q = 2, 3, 4, 5 & 100 using the scatterer reflectivity model from
Eq. (11).



Here we want to take advantage of the dissimilarities
of the probability density functions to estimate the number
of scattering points. Each observation is a realisation of the

random variable γn =

√∣∣∣∑Q
q=1 h

(q)
lk

∣∣∣2 with Q the number of

scattering points. Each set of observations Γ = {γn}n∈[1,N ]

where N is the number of views represents the MIMO output.

Given a set of observations Γ we can compute the proba-
bility that the target has Q scatterers using Bayes rules:

P(TQ|Γ) =
P(Γ|TQ)P(TQ)

P(Γ)
(13)

where TQ represents the event that the target has Q scatterers.
Assuming the independence of the observations P(Γ|TQ) can
be written as:

P(Γ|TQ) =

N∏
n=1

P(γn|TQ) (14)

P(γn|TQ) is computed thanks to the reflectivity density func-
tion presented in Fig. 4. We consider 4 target types: 2 scatterer
target, 3 scatterer target, 4 scatterer target and 5+ scatterer
target. So Q ∈ {2, 3, 4, 5+}. Therefore we can write:

P(Γ) =

5∑
Q=2

P(Γ|TQ)P(TQ) (15)

Given that we have no a priori information about the target
we can assume that P(TQ) is equal for all target class TQ.
Eq. (13) then becomes:

P(TQ|Γ) =

∏N
n=1 P(γn|TQ)∑5+
Q=2 P(Γ|TQ)

(16)

The estimated target class corresponds to the class which
maximises the conditional probability given by Eq. (16).
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Fig. 5. Correct classification probability against the number of independent
views for 4 classes of targets (2, 3, 4 and 5+ scattering points targets).

To validate the theory, a number of experiments have been
run in simulation. For each number of views 106 classification
tests have been computed. Note that the simulations have
been run with 10 dB SNR. Fig. 5 draws the probability of
correct classification for each class depending on the number
of views. The first observation we can make is that it is
possible to estimate the number of scattering points in a target
if the number of scatterers is low (≤ 4). The 2 scattering
point target can be seen as a dipole and its reflectivity PDF

differs considerably from any n scattering points target (with
n > 2). For this reason fewer independent views are needed to
correctly classify this class of target. With only 10 views, a 2
scattering point target is correctly classified in 96% of cases.

B. Super-resolution MIMO imaging

Let rl(t) be the total received signal at the receiver l.
According to our previous notations we have for l ∈ [1, L]:

rl(t) =

K∑
k=1

zlk(t) (17)

where zlk(t) has been defined in Eq. (4). Let xlk output of
rl from the filter bank s∗k(t) with k ∈ [1,K]. Assuming
orthogonal output pulses we have:

xlk = rl ? s
∗
k(t) =

Q∑
q=1

h
(q)
lk (18)

Approaching the data fusion problem from the detection prob-
lem perspective, we can choose the following detection rule
which represents the average target echo intensity from all the
bistatic views:

F(r) =
1

N

∑
l,k

||xlk||2 (19)

Using the same target probability distribution stated in the
model presented earlier, we deduce that F(r) follows the
probability distribution:

F(r) ∼ 1

N

N∑
n=1

Rayleigh2(σ) (20)

Using the properties of the Rayleigh distribution we can write:
N∑
n=1

Rayleigh2(σ) ∼ Γ(N, 2σ2) (21)

where Γ is the Gamma distribution. So the PDF of the detec-
tion rule F(r) is N.Γ(Nx,N, 1). The asymptotic behaviour
of the detection rule F(r) can be deduced from the following
identity [11]:

lim
N→+∞

N.Γ(Nx,N, 1) = δ(1− x) (22)

Eq. 22 shows that the detection rule F(r) converges toward
the RCS defined in section II-A which means that the scat-
terers within one resolution cell decorrelate between each
other. MIMO systems then solve the speckle noise in the
target response. This demonstrates why super-resolution can
be achieved with large MIMO systems.

In order to image the output of the MIMO system we will
use the multi-static back- projection algorithm which is a vari-
ant of the bistatic back-projection algorithm developed by the
Synthetic Aperture Radar (SAR) community. Further details
can be found in [12]. Using the back-projection algorithm
the Synthetic Aperture Sonar (SAS) image is computed by
integrating the echo signal along a parabola. In the bistatic
case the integration is done along ellipses. For the multi-static
scenario the continuous integration is replaced by a finite sum
in which each term corresponds to one transmitter/receiver pair
contribution.



In the following simulation we aim to demonstrate that
we can recover the geometry of a target (i.e. the location of
its scatterers). We chose a ”L” shape MIMO configuration.
The transmitters are placed in the x-axis, the receivers are on
the y-axis. The MIMO system frequency band is 50 kHz to
150 kHz. We consider a 3 point scatterers target, the scatterers
are separated by one wavelength.
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Fig. 6. 3 scatterers target: (a) MIMO image using 10 transmitters and 10
receivers with 3 metres spacing, (b) SAS image.

In figure 6(a) we consider a 10 Tx × 10 Rx MIMO system.
With this configuration we are able to clearly image the 3
scatterer target in so doing achieve super resolution imaging.
For comparison purposes we have computed the SAS image
(cf. Fig. 6(b)) of the same target using the same frequency
band and at the same range. The full geometry of the target is
not recovered there.

Figure 7 displays a synthetic aperture MIMO image of a
realistic environment: the background is a fractal coarse sand
seafloor, a mid-water target is present at the location [200m,
150m].

(a) (b)

Fig. 7. Synthetic aperture MIMO image of a mid water -30dB target on a
coarse sand sediment background, (a) 2D image, (b) 3D image.

Synthetic aperture MIMO imaging shares a lot of fea-
tures with standard SAS imaging. In particular the image is
projected onto a plane or a bathymetry estimate. The image
of a mid water target will then appear unfocused for this
particular projection. By moving the projection plane through
the water column the MIMO target image will focus at its
actual depth. Using simple autofocus algorithm it is then
possible to estimate the depth of the target even if the MIMO
system is coplanar. For a mid water target at 400m range in a
15m depth environment it is possible to estimate its depth with
10 to 50 cm accuracy. Figure 8 displays the autofocus results
and the estimated target depth compared with the ground truth.
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Fig. 8. Autofocus algorithm results based on maximising the scattering
response: ground truth (white curve) and estimated depth (green curve).

V. CONCLUSION

In this paper we have posed the fundamental principles
for MIMO sonar systems. We propose a new formulation
for broadband MIMO sonar systems by separating clearly
the terms of propagation and the terms of target reflection.
We show the recognition and the super-resolution imaging
capabilities of such systems and present a realistic 3D MIMO
simulator. The MIMO sonar capabilities described in this paper
make such a system a very attractive tool for underwater
surveillance.
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