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The goal of this paper is to propose an algorithm that learns
an orthonormal transform matrix (also called a dictionary in the
sparse representation literature) of size n X m from a given training
dataset that is numerically efficient, i.e., can be applied to data in
O(nlogn). We achieve this reduced complexity by factorizing the
dictionary into a series of basic structured transformations that can be
applied sequentially. We choose to focus on orthonormal transforms
[1] since in the sparse approximation step these avoid the use of the
numerically complex orthogonal matching pursuit (OMP) [2] or ¢;
[3] minimization, but still have complexity O(n?).

Given an N-sample dataset Y € R™*¥ the general orthonormal
dictionary learning problem (which has been studied in the past and
that we call here Q-DLA) [4] is formulated as:

minimize [Y-UX||% s. to][xil]jo < s, 1<i<N. (1)

U, X; UUT=UTU=I
This problem can be efficiently solved by alternating minimization:
with X fixed, U is computed via the orthogonal Procrustes problem
and with U fixed we have X = 7;(U7Y) where 7 is an operator
applied columnwise that keeps only the largest s entries in magnitude.
In this paper we propose to construct an orthonormal dictionary

U € R™*" already factored as a product of m G; transforms:

U=Gi, - GiyyGijr- @)
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The value of m < n” is a user choice. A G-transform is an
orthonormal matrix with ¢, d € R and indices i # j as
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where we have denoted I; as the identity matrix of size ¢ and * stands
for a non-zero entry. We denote the non-trivial part of G;; as
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Notice that the matrix-vector multiplication G;;y takes only 6 oper-
ations and therefore Uy takes 6m with U from (2). Notice that a G-
transform is a (n + 2)-sparse matrix [5]. Consider now the dictionary
learning problem in (1). Let us keep the sparse representations X
fixed and consider a single G-transform as a dictionary. We reach the
following

minimize ||Y — Gi;X||%. )
(4,9), Gij
For simplicity of exposition we define

— T R —
Z=YX 7Z{w} |:Zj' Zi;

} ERY? Zij =yix;, (6)

where y7 and x7 are the i" rows of Y and X, respectively.
Therefore, the objective function of (5) is

1Y - Gy X|E = YI[F + X7 - 2u(Z) - 2Ci;,

N
where Cij = Hz{i,j}H* — tr(Z{iyj}).

Algorithm 1 - G,,,—DLA. Fast Orthonormal Transform Learning.
Input: The dataset Y € R™* N the number of G-transforms m, the
target sparsity s and the number of iterations K.

QOutput: The sparsifying orthonormal transform U as (2) and sparse
representations X such that ||[Y — UX||% is reduced.

Initialization:

1) Perform the singular value decomposition of the dataset
Y =UxV”.

2) Compute sparse representations X = 75 (UTY).

3) For k =1,...,m: with all previous (k — 1) G-transforms
fixed, construct the new Gy, j, by (7) such that

Y =Girin Gy 1j s - Girin X[ F = [Y =G5, X[ (10)
is minimized.
Iterations 1,. .., K:
1) For k = 1,...,m: update the new Gy, j,, with all other
transforms fixed, such that (9) is minimized.

2) Compute sparse representations X = 75(U”Y), where
U is given by (2).

Since we want to minimize this quantity, the choice of indices
needs to be made as follows

(z%,7%) = argmax Cjj, ®)

(4,3), 3>
and then solve a Procrustes problem [6] of size 2 to construct G G*
To construct the complete U, we fix the representations X and all
G-transforms in (2) except for the k™, denoted as G, j, . To optimize
the dictionary U for this transform we reach the objective function

Y = UX|% = [Y = Gipjpn - Giy iy X[ 7
=G ey - Gl Y = Gy -Gy X2 (9)

=[[Y% — Gy, Xl 7,

where we have used the fact that multiplication by any orthonormal
transform preserves the Frobenius norm. Matrices Y, and X, contain
the accumulations of the G-transforms on Y and X, respectively.

The full procedure, called G,,,—DLA [7] is described in Algorithm
1 and the results on image data are shown in Figures 1 and 2.
Figure 1 shows the converge of G,,—DLA while Figure 2 shows
its capacity to build computationally efficient dictionaries whose
representation performance is between that of the classical fast
discrete cosine transform (DCT) and that of computationally complex
learned orthonormal dictionaries.
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Fig. 1. For the proposed G2s56—DLA we show the evolution of the relative
representation error € = ||[Y — UX||%, ”YH;“Q (%) for the dataset Y created
from the patches of the images couple, peppers and boat with sparsity s €
{4, 8,12}. The first 256 points in the plot are due to the initialization step
(m = 256 transforms are initialized) and the other K = 150 are the regular
iterations of Gos6—DLA. The test dataset Y € R64X12288 ¢ongists of 8 x 8
non-overlapping patches with their means removed and normalized Y =
Y /255.
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Fig. 2. For the same dataset as in Figure 1, we show comparisons, in terms
of relative representation errors € = ||Y —DX||% ”Y”;“Q (%), of G;—DLA
against the DCT [8], Q-DLA [4], SK-SVD [9][10][11] and Householder
based orthonormal dictionaries [12] denoted here Hp,—DLA where p is the
number of reflectors in the factorization of the dictionary. The number
of transforms m is chosen so that computational complexity comparisons
against Hp,—DLA is possible. Computational complexity approximately match
between: Hi—-DLA and G42-DLA, Ho-DLA and Ggs-DLA, H3-DLA and
G128-DLA, H4-DLA and G170-DLA, Hg—DLA and G256—DLA, Hs—DLA
and G341-DLA, H16—-DLA and Ggga—DLA. The sparsity level is set to s = 4
for all methods.
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