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The goal of this paper is to propose an algorithm that learns
an orthonormal transform matrix (also called a dictionary in the
sparse representation literature) of size n × n from a given training
dataset that is numerically efficient, i.e., can be applied to data in
O(n logn). We achieve this reduced complexity by factorizing the
dictionary into a series of basic structured transformations that can be
applied sequentially. We choose to focus on orthonormal transforms
[1] since in the sparse approximation step these avoid the use of the
numerically complex orthogonal matching pursuit (OMP) [2] or `1
[3] minimization, but still have complexity O(n2).

Given an N -sample dataset Y ∈ Rn×N , the general orthonormal
dictionary learning problem (which has been studied in the past and
that we call here Q–DLA) [4] is formulated as:

minimize
U, X; UUT=UTU=I

‖Y−UX‖2F s. to ‖xi‖0 ≤ s, 1 ≤ i ≤ N. (1)

This problem can be efficiently solved by alternating minimization:
with X fixed, U is computed via the orthogonal Procrustes problem
and with U fixed we have X = Ts(UTY) where Ts is an operator
applied columnwise that keeps only the largest s entries in magnitude.

In this paper we propose to construct an orthonormal dictionary
U ∈ Rn×n already factored as a product of m Gij transforms:

U = Gimjm . . .Gi2j2Gi1j1 . (2)

The value of m � n2 is a user choice. A G-transform is an
orthonormal matrix with c, d ∈ R and indices i 6= j as

Gij =


Ii−1

∗ ∗
Ij−i−1

∗ ∗
In−j

 ∈ Rn×n, (3)

where we have denoted Ii as the identity matrix of size i and ∗ stands
for a non-zero entry. We denote the non-trivial part of Gij as

G̃ij =

{[
c d
−d c

]
,

[
c d
d −c

]}
∈ R2×2, c2 + d2 = 1. (4)

Notice that the matrix-vector multiplication Gijy takes only 6 oper-
ations and therefore Uy takes 6m with U from (2). Notice that a G-
transform is a (n+2)-sparse matrix [5]. Consider now the dictionary
learning problem in (1). Let us keep the sparse representations X
fixed and consider a single G-transform as a dictionary. We reach the
following

minimize
(i,j), G̃ij

‖Y −GijX‖2F . (5)

For simplicity of exposition we define

Z = YXT ,Z{i,j} =

[
Zii Zij

Zji Zjj

]
∈ R2×2, Zij = yT

i xj , (6)

where yT
i and xT

i are the ith rows of Y and X, respectively.
Therefore, the objective function of (5) is

‖Y −GijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)− 2Cij ,

where Cij = ‖Z{i,j}‖∗ − tr(Z{i,j}).
(7)

Algorithm 1 – Gm–DLA. Fast Orthonormal Transform Learning.
Input: The dataset Y ∈ Rn×N , the number of G-transforms m, the
target sparsity s and the number of iterations K.
Output: The sparsifying orthonormal transform U as (2) and sparse
representations X such that ‖Y −UX‖2F is reduced.

Initialization:
1) Perform the singular value decomposition of the dataset

Y = UΣVT .
2) Compute sparse representations X = Ts(UTY).
3) For k = 1, . . . ,m: with all previous (k−1) G-transforms

fixed, construct the new Gikjk by (7) such that
‖Y−GikjkGik−1jk−1 . . .Gi1j1X‖2F = ‖Y−GikjkXk‖2F (10)

is minimized.
Iterations 1, . . . ,K:

1) For k = 1, . . . ,m: update the new Gikjk , with all other
transforms fixed, such that (9) is minimized.

2) Compute sparse representations X = Ts(UTY), where
U is given by (2).

Since we want to minimize this quantity, the choice of indices
needs to be made as follows

(i?, j?) = argmax
(i,j), j>i

Cij , (8)

and then solve a Procrustes problem [6] of size 2 to construct G̃i?j? .
To construct the complete U, we fix the representations X and all

G-transforms in (2) except for the kth, denoted as Gikjk . To optimize
the dictionary U for this transform we reach the objective function

‖Y −UX‖2F = ‖Y −Gimjm . . .Gi1j1X‖2F
=‖GT

ik+1jk+1
. . .GT

imjmY −Gikjk . . .Gi1j1X‖2F
=‖Yk −GikjkXk‖2F ,

(9)

where we have used the fact that multiplication by any orthonormal
transform preserves the Frobenius norm. Matrices Yk and Xk contain
the accumulations of the G-transforms on Y and X, respectively.

The full procedure, called Gm–DLA [7] is described in Algorithm
1 and the results on image data are shown in Figures 1 and 2.
Figure 1 shows the converge of Gm–DLA while Figure 2 shows
its capacity to build computationally efficient dictionaries whose
representation performance is between that of the classical fast
discrete cosine transform (DCT) and that of computationally complex
learned orthonormal dictionaries.
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Fig. 1. For the proposed G256–DLA we show the evolution of the relative
representation error ε = ‖Y−UX‖2F ‖Y‖

−2
F (%) for the dataset Y created

from the patches of the images couple, peppers and boat with sparsity s ∈
{4, 8, 12}. The first 256 points in the plot are due to the initialization step
(m = 256 transforms are initialized) and the other K = 150 are the regular
iterations of G256–DLA. The test dataset Y ∈ R64×12288 consists of 8× 8
non-overlapping patches with their means removed and normalized Y =
Y/255.
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Fig. 2. For the same dataset as in Figure 1, we show comparisons, in terms
of relative representation errors ε = ‖Y−DX‖2F ‖Y‖

−2
F (%), of Gm–DLA

against the DCT [8], Q–DLA [4], SK–SVD [9][10][11] and Householder
based orthonormal dictionaries [12] denoted here Hp–DLA where p is the
number of reflectors in the factorization of the dictionary. The number
of transforms m is chosen so that computational complexity comparisons
against Hp–DLA is possible. Computational complexity approximately match
between: H1–DLA and G42–DLA, H2–DLA and G85–DLA, H3–DLA and
G128–DLA, H4–DLA and G170–DLA, H6–DLA and G256–DLA, H8–DLA
and G341–DLA, H16–DLA and G682–DLA. The sparsity level is set to s = 4
for all methods.
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