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Abstract—We propose a Bayesian game-theoretic SINR maxi-
mization technique for a multistatic radar network. We consider
a distributed network of radars, where the primary goal of each
radar is to maximize their signal to interference plus noise ratio
(SINR), within the constraint of its maximum transmission power.
We assume no communication between the radars, hence we
utilize a noncooperative game-theoretic approach. The channel
gain between a radar and the target is assumed to be private
information which characterizes the type of the player, whereas
the distribution of the channel gain is common knowledge
to every player in the game. Subsequently, we examine and
prove the existence and the uniqueness of the Bayesian Nash
equilibrium (BNE) for the aforementioned game. The simulation
results also confirm the convergence of the algorithm to the
unique solution.

I. INTRODUCTION

Distributed radar networks benefit from spatial diversity
in terms of radar cross section (RCS) variations, capture of
the geometrical characteristics of the target, multiple targets
detection, and slow moving targets tracking [1]. Nevertheless,
multistatic radar networks suffer from multiple sources of
interference induced at the receivers of each radar, namely
the cross channel interference generated by other radars in
the same network and the clutter interference. This interfer-
ence seriously deteriorates the performance and the tracking
capabilities of the radar system and thus an optimal power
allocation strategy that minimizes the interference and max-
imizes the detection performance is necessary. Game theory
is an appropriate and efficient tool to address this issue, as
it constitutes a mathematical framework of confrontation and
coordination among selfish, intelligent and rational players.

Game theoretic techniques have been utilized recently to
address various radar problems. Especially optimal power
allocation and distribution in radar networks motivated many
authors to utilize different game theoretic techniques. The
authors in [2] and [3] addressed the power allocation problem
by formulating a non-cooperative game with predefined SINR
constraints. Since it is difficult for a radar to obtain information
regarding the transmission power of the remaining radars in
the network, an SINR estimation technique was applied in [4],
to extend the work in [2]. Various game theoretic techniques
were applied in [5] to address a distributed beamforming and
resource allocation problem for a radar system in the presence
of multiple targets. In particular, strategic noncooperative,
partially cooperative and Stackelberg game were used to obtain

the optimal power allocation and satisfy a certain detection
criterion for each of the targets. The authors in [6] exploited
cooperative game theoretic techniques to solve the resource
allocation problem through maximizing the Bayesian-Fisher
information matrix (B-FIM) and utilizing the Shapley value
solution. A combination of a water filling algorithm and a
Stackelberg game was used in [7] for optimal power distri-
bution. In addition, a noncooperative power allocation game
between a multistatic radar network and multiple jammers was
presented in [8], together with the proof of the existence and
uniqueness of the Nash equilibrium.

In the aforementioned radar literature, the radars have been
assumed to have exact knowledge of the channel gain in terms
of the RCS parameters of the targets and clutter, which may
not be feasible in a real system. In this paper we introduce
uncertainty on the channel gains associated with the radars
and the targets, which arises due to the RCS fluctuations of
the targets. Bayesian game theory provides a framework to
address this problem of incomplete information. Therefore,
we consider a Bayesian game, where each player egotistically
maximizes its SINR, under a predefined power constraint.
Within this framework, we assume that each radar/player
exactly knows the channel gain between itself and the target
as private information, however we include uncertainty on the
channel experienced by other radars in the network. Only the
distribution of the channel gains is considered as common
knowledge to every player and can be obtained by exploiting
several target models, such as Swerling or extended-Swerling
models, depending on the target’s type. This problem is solved
using a Bayesian noncooperative game (BNG) framework as
considered for communication application in [9]. In order to
prove the uniqueness of the BNE of the considered game, we
exploit convex geometric programming techniques [10].

II. SYSTEM MODEL

We consider a multistatic radar network, consisting of K
widely separated radars. In radar field, a flying target and
extended clutter is assumed. Hence, the primary objective of
each radar is to maximize the SINR associated with the target,
while satisfying the power constraint. In the noncooperative
approach of the distributed radar network, each radar performs
the optimization selfishly and autonomously, having complete
knowledge only of its own channel gain realization as private
information. On the other hand, only the distribution of the
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Fig. 1: A multistatic MIMO radar network with two radars,
one target and clutter interference.

inter-radar channel gains is available to every radar. Since we
assume that all radars belong to the same organization, there
is no deliberate interference from any radars, yet we use a non
cooperative game theoretic approach as this avoids the need
for communication and coordination among radars.

In the presence of a target, the received signal for radar k
is obtained by:

xk = αk
√
pksk +

K∑
j=1,j 6=k

βjk
√
pjsj + νk

√
pksk + n̂ (1)

where sk = ψkak describes the transmitted signal from
radar k and ak = [1, ej2πfD,k , . . . , ej2π(N−1)fD,k ]T is the
Doppler steering vector of radar k associated with the desired
target, fD,k denotes the normalized Doppler shift as seen by
radar k, N is the number of signal return samples that the
radars receive at each time step and ψk corresponds to the
predesigned waveform transmitted from radar k. The parameter
αk denotes the desired channel gain at the direction of the
target, pk stands for the transmission power of radar k, βjk
describes the cross-channel gain among radars k and j, νk
and n̂ denote the clutter channel gain and a zero-mean white
Gaussian noise with variance σ2

n. There is no direct path
interference assumed among the radars of the system. Hence,
the SINR for the kth radar is written as:

SINRki =
hkpk

ckpk +
K∑

j=1,j 6=k
gjkpj + σ2

n

. (2)

where αk ∼ CN (0, hk), νk ∼ CN (0, ck) and βjk ∼
CN (0, gjk), hence hk, ck and gjk describe the variance of the
desired channel gain, the clutter channel gain and the cross-
channel gain, respectively.

III. GAME THEORETIC FORMULATION

In this section, we model the interactions between the K
radars in the network as a Bayesian game, in which the
main goal for each radar is to maximize its SINR for target
detection under a power constraint and uncertainty on channel
knowledge. More specifically, the incomplete information in
the considered system model reflects the inability of radar
k to obtain the exact value of the cross channel gains, i.e.
[g1k, g2k, . . . , gKk]. Nevertheless, since each radar knows the
type of the target, then the distribution of the RCS of the target
and subsequently the distribution of the cross channel gain is
considered as common information. It is clear from the SINR
equation (2) that although increased transmission power at a
radar strengthens the desired signal, it induces higher cross
interference to the remaining radars in the network. Thus, we
model the aforementioned interaction as the noncooperative
Bayesian game G =< R, T ,P,Π,U >, which can be fully
characterized as:
• The set of radars is considered to be the player set: R =
{R1, . . . , RK}.

• The type set is denoted as T = T1 × . . . × TK , and
corresponds to each player’s channel gain, i.e. for the
case of two types, TK = {g−, g+}, where g− and g+
represent two possible channel states with g− < g+.

• The action set of the game is P = P1 × . . .× PK with

Pk = {pk ∈ R+ | pk ∈ [0, Pmaxk ]}, ∀i ∈ {1, . . . ,K}

where Pmaxk denotes the maximum available power for
radar Rk.

• The common prior or probability set is defined as Π =
Π1×. . .×ΠK , where Πk is the probability distribution of
the channel gain for radar Rk and hence the distribution
of the player’s type and it is common knowledge to every
player.

• The Bayesian game model is concluded by defining the
utility function set as U = {u1, . . . , uK}, where uk repre-
sents the kth radar SINR from (2), as uk(p1, . . . , pK) =
SINRki. It is evident that the utility function is a function
of the power allocation of all K players.

In the considered BNG, player k egotistically maximizes its
SINR, within the constraint of maximum transmission power,
given the transmission power strategies of the remaining
players. Therefore, the best response for player k is determined
by solving the following optimization problem:

max
pk∈Pk

E[uk(p1, . . . , pK)] (3)

s.t. E[pk] ≤ Pmaxk , pk > 0

The study on the convergence of the game G to a stable
solution is the most critical part of the game theoretic analysis,
as it provides the ability to predict the performance and
the stability of the distributed radar system under channel
uncertainty. This specific solution defines the BNE, where
no player could benefit by unilaterally changing its power
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allocation strategy. Hence, for the considered game G the BNE
describes the action profile (p∗−k, p

∗
k), where p−k denotes the

transmission power adopted by all other players except player
k, when:

ūk(p∗−k, p
∗
k) ≥ ūk(p∗−k, pk), ∀pk ∈ Pk,∀k ∈ R.

where ūk defines the expected utility for player k. The next
section presents a mathematical analysis on the existence and
the uniqueness of the BNE.

IV. EXISTENCE AND UNIQUENESS OF THE BAYESIAN
NASH EQUILIBRIUM

Initially, it is important to underline that for a given set of
opponent power strategies p−k, the optimization problem (3)
is convex, since the objective is a quasiconcave function and
the constraint is a convex set. Therefore, we can reformulate
(3) as a standard form convex optimization problem, by
changing the sign of the objective function, as follows:

min
pk∈Pk

−E[uk(p1, . . . , pK)] (4)

s.t. E[pk]− Pmaxk ≤ 0 ,−pk < 0

At this point, we may define the Lagrangian L correspond-
ing to the convex optimization problem (4) as:

L(pk, λ1, λ2) = E

−
hkpk

ckpk +
K∑
j=1
j 6=k

gjkpj + σ2
n

+

λ1(pk − Pmaxk )− λ2pk (5)

where λ1 and λ2 are the Lagrange multipliers associated with
the inequality constraints of (4). We assume that (p∗k, λ

∗
1, λ
∗
2)

are the primal and dual optimal points of (4). Thus, the Karush-
Kuhn-Tucker (KKT) conditions on convexity must be satisfied
and we have:

λ∗1 = E


hk

K∑
j=1,j 6=k

gjkpj + hkσ
2
n(

ckpk +
K∑

j=1,j 6=k
gjkpj + σ2

n

)2

 (6)

λ∗1(p∗k − Pmaxk ) = 0 (7)

From (6) it is straightforward that the optimal Lagrange
multiplier λ1 is strictly positive. Therefore, from (7) the opti-
mal transmission power for radar k is equal to the maximum
power constraint, i.e. p∗k = Pmaxk . However, it is evident
from (6) that the optimal solution for radar k is a function
of the transmission power of all K players, which is not
common knowledge. Hence, in order for each player to obtain

the optimal power allocation, each radar must optimize its
transmission power based on the estimate of all the remaining
radars’ power allocation. The investigated BNG theoretic
framework models exactly this kind of interaction.

A. Existence

The existence of a BNE follows from the result of [11] on
abstract economies. According to this result, for our problem a
BNE exists as the following hold: for all players k = 1, . . . ,K
the set Pk is compact, nonempty and convex, the utility
function uk(p−k, pk) is continuous on P and quasi-convex
in pk. For every p−k the set-valued function Pk is continuous
with closed graph and for every p−k the set P(p−k) is non-
empty and convex.

B. Uniqueness

One method to prove the uniqueness of the BNE is to verify
that the second derivative of the utility function of radar k is
strictly concave with respect to its action set. Therefore, we
utilize geometric programming techniques [10] to prove the
uniqueness of the solution, as the following Lemma suggests:

Lemma 1: The Bayesian game G has a unique solution.

Proof. Following [10], we can maximize a nonzero monomial
utility function, by minimizing its inverse. Thus, we restate the
best response optimization problem (3) for player k following
geometric programming techniques as:

min
pk∈Pk

E

(hkpk)−1

ckpk +

K∑
j=1,j 6=k

gjkpj + σ2
n

 (10)

s.t. E[pk]− Pmaxk ≤ 0,−pk < 0

At this point, by redefining the utility function as

u
′

k(p−k, pk) = (hkpk)−1(ckpk +
K∑

j=1,j 6=k
gjkpj + σ2

n), game

G becomes G′
=< R, T ,P,Π,U ′

>, where U ′
=

{u′

1, . . . , u
′

K}. Since we have shown from the KKT conditions
(6) and (7) that the optimal transmission power is obtained
when the power constraint is satisfied with equality, we can
define the transmission power when the channel gain is g+ as
π+pk(g+) = Pmaxk −π−pk(g−) in the case when two possible
channel states are considered (g− and g+, g+ > g−), where
pk(g+) and pk(g−) denote the power transmitted from radar
k regarding the higher and lower channel gains, respectively.
Hence we define the average utility function ū

′

k as a weighted
sum function as:

ū
′

k(p−k, pk) =
∑
i

φi(h
i
kpk)−1(ckpk +

K∑
j=1,j 6=k

gijkpj + σ2
n)

(11)
where i stands for the different probability realizations of the
channel gains 1, φi represents the respective probability for

1i represents a certain combination of the channel gains associated to each
radar.
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∂ū
′

k(p−k, pk)

∂pk
=
∑
i

φi

−(hik)−1p−2k

K∑
j=1,j 6=k

gijkpj − (hik)−1p−2k σ2
n

 (8)

∂2ū
′

k(p−k, pk)

∂2pk
=
∑
i

φi

2(hik)−1p−3k

K∑
j=1,j 6=k

gijkpj + 2(hik)−1p−3k σ2
n

 (9)

event i, hik and gijk denote the desired and cross-channel gains
for event i. At this point, we can derive the first and the second
derivatives of the utility function of player k with respect to
its strategy pk, as shown in (8) and (9).

It is evident from (9) that the second derivative of the payoff
function regarding the kth player is strictly positive ∀pk >
0 and hence the Bayesian game G′

has a unique solution.
Consequently, the initial game G admits a unique BNE.

V. SIMULATION RESULTS

In this section, simulation results are presented to validate
the theoretical background. We consider a bistatic radar net-
work consisting of two radars and two possible channel states
g− = 1 and g+ = 4. There is also a target assumed at the
far-field of the radars and substantial clutter, whose gain is set
to c1 = 0.5 and c2 = 0.3. We presume that both radars have
initial information regarding the target’s location and thus each
radar exactly knows the channel gain between itself and the
target. For the simplicity of the algorithm, we assume that
the desired channel gain at the direction of the target has
also two possible states, identical to the cross-channel gain
states, h− = g− = 1 and h+ = g+ = 4. The noise power
is set to σ2

n = 0.1. Initially, in Fig. 2 and Fig. 3 we display
the convergence of the power allocated to the higher channel
gain (pk(g+)) to the unique solution for two different starting
strategies when π− = π+ = 0.5. The starting power allocation
is set to p1(g+) = 0.5, p2(g+) = 0.00001 for the first
simulation and p1(g+) = 0.8, p2(g+) = 0.2 for the second
simulation. It is clear that the proposed Bayesian geometric
programming game converges swiftly to the unique solution,
regardless the initial strategy of the radars.

In Fig.4 and Fig. 5 we confirm the convergence of the
algorithm for different channel gain probabilities, hence we set
π− = 0.25 and π+ = 0.75. Similar to the first example, the
convergence is secured, whatever the starting power allocation
of the radars. In addition, one can observe that when the belief
regarding the higher channel gain is stronger, both players
allocate more power to the higher channel gain. This fact is
further analyzed in Table 1, where the Bayesian equilibrium
for different values of the probability π+ is displayed along
with the SINRs of the two radars. As expected, the higher
the belief for g+, the players transmit with increased power
corresponding to the stronger channel and also the SINR for
both players is increasing with respect to the confidence of the
high channel gain π+.

Fig. 2: Convergence of the power allocation corresponding to
g+ for π− = π+ = 0.5 when p1(g+) = 0.5 and p2(g+) =
0.00001.

Fig. 3: Convergence of the power allocation corresponding to
g+ for π− = π+ = 0.5 when p1(g+) = 0.8 and p2(g+) = 0.2.

In Fig. 6, we highlight the importance of the prior belief
of a player regarding the channel gains on the resulting
power allocation, by studying the convergence of the power
allocated to g+ from player 2 for different high channel gain
probabilities π+. As the belief for a better channel gain gets
more robust, the player is more confident of deciding a mixed
strategy, where the transmission power is increased. On the

978-1-4673-8823-8/17/$31.00 ©2017 IEEE 0549



Fig. 4: Convergence of the power allocation corresponding
to g+ for π− = 0.25, π+ = 0.75 when p1(g+) = 0.5 and
p2(g+) = 0.00001.

Fig. 5: Convergence of the power allocation corresponding
to g+ for π− = 0.25, π+ = 0.75 when p1(g+) = 0.8 and
p2(g+) = 0.2.

other hand, when the aforementioned probability gets slimmer,
the transmission power is restrained, as a worse channel gain
is more probable.

VI. CONCLUSION

We investigated a Bayesian game theoretic SINR maximiza-
tion and resource allocation technique within a distributed

TABLE I: Bayesian Nash equilibrium and SINRs for the two
players for different values of π+.

Probability π+ 0.1 0.5 0.75

BNE (0.5263,0.5263) (0.6667,06667) (0.8000,0.8000)

SINR 1 0.7830 0.8886 0.9009

SINR 2 0.8442 0.9493 0.9540

Fig. 6: Transmission power (p2(g+)) convergence for player
2 for different channel gain probabilities π+.

radar network. The radars are considered to have private
information only about their own channel gains and only the
distribution of the other radars’ channel gains is assumed to be
public knowledge. Initially, we modeled the interactions within
the aforementioned multistatic network as a Bayesian game
and then we presented a proof of the existence and uniqueness
of the Bayesian Nash equilibrium. The simulation results
also demonstrated the convergence to the unique solution,
regardless the initial resource allocation strategy of the players.
Furthermore, it was shown that the higher the confidence of
a player regarding a better channel gain associated with the
remaining players the higher the SINR and the transmission
power of this player.
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