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MULTI-OBJECT FILTERING FOR SPACE SITUATIONAL
AWARENESS

E. D. Delande ∗, C. Frueh †, J. Houssineau ‡, D. E. Clark §,

The sources of information for Earth orbiting space objects are passive or active observations
by ground based or space based sensors. The majority of tracking and detection of new ob-
jects for contemporary applications is performed by ground based sensors, which are mainly
optical or radar based. Challenges lie in the long times spans between very short obser-
vation arcs, large number of objects, brightness variations during observations, occlusions,
crossing targets and clutter. Traditionally, tracking problems for space situational aware-
ness have been approached through heuristics-based techniques such as Multiple Hypothesis
Tracking (MHT). More recently, solutions derived from Finite Set Statistics (FISST) have
been used, such as the Probability Hypothesis Density (PHD) filter, that describe the tar-
gets at the population rather than individual level. The recent mathematical framework for
the estimation of stochastic populations combines the advantages of previous approaches by
propagating specific information on targets (i.e. tracks) whenever appropriate, and by avoid-
ing heuristics through its fully probabilistic nature. This paper presents the first application to
space situational awareness problems of the novel filter for Distinguishable and Independent
Stochastic Populations (DISP), a tracking algorithm derived from this framework, through a
multi-object surveillance scenario involving a ground based Doppler radar and five crossing
objects in all orbital regions. The preliminary results show that, despite the sensor’s limited
observability and constrained field of view, the DISP filter is able to detect the orbiting ob-
jects entering the field of view and maintain individual information on them, with associated
uncertainty, even once they have left the field of view.

INTRODUCTION

Due to the increasing number and diversity of objects orbiting around Earth, maintaining an up-to-date

catalogue of the objects evolving on every orbit has become a topic of growing interest, but a problem of

growing complexity as well. The orbits may be observed by a range of different sensor systems, either

ground-based or space-based, with specific capabilities and characteristics. Producing a catalogue of the

orbiting objects based on the measurements collected by these sensors is a challenging and exciting field of

active research, for they have limited abilities, such as:

• Their field of view is constrained (i.e. only a fraction of space can be covered at any time);

• The data capture process is imprecise (i.e. the collected measurements are noisy);

• Spurious measurements and missed detections occur;

• The state of the objects is only partially observable (e.g. the full position and velocity components

cannot be inferred from a single measurement).
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On top of these issues related to every single sensor, the fusion of the information collected by several sensors

– especially if they provide measurements of different nature (e.g. optical: astrometric, infrared, spectral or

filter measuments, radar: astrometric, astrometric Doppler, wide or narrow beam, characterization measure-

ments, laser ranging etc.) – in a single coherent representation of the orbiting objects, while out of the scope

of this paper, is a challenging problem in itself.

The construction of an up-to-date catalogue of the orbiting objects, fed by the measurements collected

sequentially from the sensor system, is referred to as a multi-object detection and tracking problem. It can be

decomposed as follows:

• How many objects are there? (cardinality problem);

• Where/what is each object? (state estimation problem);

• Which measurement goes with which object? (data association problem).

Several approaches can be adopted to solve multi-object detection and tracking problems. The solution

presented in this paper is set within the broad class of Bayesian estimation problems, whose objective is to

provide the operator with a probabilistic representation of the multiple objects, accounting for the uncer-

tainties in the information collected from the sensors (due to inaccuracies, missed detections, etc.), in the

operator’s knowledge about the objects’ behaviour (including, most notably, the orbital motion model).

The objective of this paper is to illustrate a novel multi-object estimation solution, the DISP filter,1 on a

challenging scenario in the context of space situational awareness.

The first section presents the Bayesian estimation framework in a general way, and provides a brief de-

scription of the well-established track-based2, 3, 4, 5 and Random Finite Set (RFS)-based6, 7, 8 approaches. It

then introduces an alternative approach, the novel estimation framework for stochastic populations, from

which the DISP filter is derived. The next section introduces the DISP filter, and provides the outlines of

its construction. The following section presents the multi-object surveillance scenario, and details the imple-

mentation of the DISP in the context of of this scenario. Preliminary results are presented and commented in

the next section. The last section concludes and discusses further developments of the DISP filter.

MULTI-OBJECT BAYESIAN ESTIMATION

Surveillance problem

The focus of the surveillance problem is a population X of individuals (e.g. satellites, space debris), ex-

pected to evolve in some bounded region of the physical space called the surveillance scene. The surveillance

scene has to be discriminated from the field of view (FOV) of the sensor that is used to perform the actual sur-

vey. The surveillance scene is the whole space of interest, in our case, the complete Near Earth space around

the Earth, from the Earth surface well beyond the geostationary ring in all directions. An individual of the

surveyed population enters or comes to existence in the scene∗ at some unknown time t•, and may leave it

(or disappear, object death, by decay or when docking on another space craft and becoming effectively one

object) at some unknown time t◦ later on during the scenario. While an individual evolves in the scene, it

possesses some physical and measurable characteristics described via a state x, belonging to some target

state space X that denotes physical and measurable characteristics of the individual which are unknown, but

of interest to the operator (position, velocity, etc.). In order to allow for the description of individuals that are

located outside of the scene (e.g. prior to coming into existence or being born through launch or collision),

the state space is extended with the empty state ψ to form the augmented state space X̄ = {ψ} ∪X,

The aim of the surveillance problem is then to determine, at any time t relevant to the surveillance activity,

the state of each individual of the population X in the augmented state space X̄, i.e. a) whether the individual

is in the scene and, b) if so, the value of its characteristics of interest.

∗“Entering the scene” should be interpreted in a broad sense in this context. It is not restricted to individuals crossing the physical

boundaries of the scene and may also cover, for example, individuals appearing spontaneously anywhere in the scene following a

collision in the sense of object birth.
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Bayesian estimation: general principle

In the target tracking community, the Bayesian framework is largely known and exploited for sequen-

tial estimation problems, in which some system of interest – usually, one or several moving individuals of

strategic interest to the operator – is observed through some sensor that produces sequences of measurements

across time. The aim of Bayesian filters∗, such as Kalman filter variants9, 10, 11 and particle filters,12 is then to

provide the operator with a probabilistic representation of the system of interest, dynamically updated with

the measurements collected from the sensor so far (see Figure 1).

Figure 1: Data flow of a Bayesian estimator (time step t).

The Bayesian filters share a common structure depicted by Figure 1. At some time t > 0 relevant to the

scenario, where a collection of measurements Zt produced by the sensor system becomes available to the

operator:

1. Some prior information Pt−1 is propagated by the filter from past times;

2. During the time update step, the predicted information P̂t is produced by the filter, based on the knowl-

edge of the operator regarding dynamic behaviour of the individuals (usually through a motion model);

3. During the data update step, the posterior information Pt is produced by the filter, as a correction of

the predicted information through the exploitation of the newly available collection of measurements

Zt.

Numerous works in target detection/tracking problems, spanning general Bayesian estimation framework

illustrated in Figure 1, have been proposed; essentially, the choice of a filter aims at shaping the nature of the

propagated information Pt, tailored to the objective of the surveillance problem – i.e. what is of interest to

the operator? – and the constraints imposed by the available resources – i.e. what can the operator afford to

achieve their objective?.

Modern developments in Bayesian estimation for target detection/tracking focussed first on the single-

object case, for which the cardinality problem is avoided – the operator knows that there is one and only

one individual in the surveillance scene – and the data association problem is significantly simpler – unless

it is spurious, a measurement necessarily originates from the only individual in the scene. The bulk of the

developments in single-object Bayesian estimation thus focused on the single-object prediction and update

steps. Well-established solutions typically include Gaussian-based approaches such as the Kalman filter,9 and

later on its extended10 and unscented11 extensions, and the broad class of particle-based approaches.12 Note

that single-object Bayesian estimation techniques form a constitutive element of multi-object Bayesian filters

that follows a track-based approach, and will play an important role in the implementation of the DISP filter.

The interest of the tracking community has also broadened to multi-object scenarios. Broadly speaking, the

well-established solutions follow either a track-based or a RFS-based approach, described in the following

paragraphs.

Track-based filtering

The earlier developments in multi-object filtering followed a track-based approach, in which specific infor-

mation on each potential individual of the populationX – or target – is maintained through a track. Each track

∗In the context of Bayesian estimation, the term “filter” refers to an estimator that maintains a probabilistic representation of some

observed system’s state.
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describes the stream of measurements presumed to have been produced by the corresponding target across

time, and maintains a description of the target’s current state (position, velocity, etc.) through a single-object

probability distribution on the target state space.

The inherent advantage of track-based approaches is that the multi-object probabilistic representation main-

tained by the filter essentially breaks down to a collection of single-object probability representations ac-

counting for each potential individual. Its intuitive construction naturally allows the direct exploitation of

single-object techniques for the time and data update of each target (see Figure 1). In addition, a track history

– i.e. a sequence of the estimated states throughout the past times – is available for each target, from which

trajectories can be readily displayed.

Track-based approaches are relatively challenging to implement into practical algorithms due to the com-

plexity of the data association step. Pioneering works include the construction of the well-established MHT

filter, in which every prior track is matched with every current measurement in order to produce a corre-

sponding updated track; in other words, every possible sequence of measurements is maintained as possible

evidence of an underlying individual, with a corresponding probability distribution.2, 3, 4 Provided that the

number of objects to be tracked is known by the operator, the Joint Probabilistic Density Association (JPDA)

filter provides a lighter but less accurate approach, in which the likelihood of each measurement/track pair

is estimated and weighted accordingly; the probability distribution of each predicted track is then updated

as a weighted average of all the relevant measurement/track single-object data updates.5 Track-based ap-

proaches typically include mechanisms relying on heuristics (e.g. track creation/deletion, track pruning, etc.)

that must be tuned accordingly to the specifics of the surveillance problem (sensor characteristics, target

behaviour, etc.).

RFS-based filtering

The exploitation of early results in point process theory13, 14 for multi-object detection/tracking problems

started with Mahler’s seminal papers on the PHD6 and the Cardinalized Probability Hypothesis Density

(CPHD)7 filters. RFS-based filters focused on the population of individuals as a whole; most notably, the

information on all the target states is represented by the filter as a single random object, namely a RFS,

whose size (number of targets) and elements (target states) are both random. Recent works have exploited

this framework in the context of space situational awareness.15, 16

The RFS-based filters all proceed from the rigorous application of derivation rules from the FISST frame-

work;8 they are fully probabilistic in nature, providing two distinct advantages. First, the derivation of the

filters being principled, the amount of fine tuning required for the implementation of practical algorithms is

limited, and their performance relies primarily on the modelling choices. Second, the principled production

of meaningful statistical tools from the filters’ outputs is readily available, for example to enrich the infor-

mation transmitted to the operator or to compare the performance of RFS-based filters. For example, the

estimated number of individuals, with uncertainty, that currently live in an arbitrary region of the surveillance

scene can be extracted in a principled way from the RFS-based filters.17, 18

The elements of a set being unordered the RFS representation does not allow for a natural identification of

a specific individual within the population of targets. A positive consequence is that the costly, but usually

necessary, data association step in the construction of track-based filter is usually spared in the derivation

of RFS-based filters; in other words, the whole population of targets is updated once with the set of all

the measurements Zt taken as a whole, without explicitly considering all the possible measurement-target

pairs. On the other hand, this representation precludes the natural propagation of individual information on a

specific target, i.e. the production of tracks. Recent works19, 20 propose the introduction of labelled RFSs in

order to address this shortcoming within the FISST framework.

Estimation framework for stochastic populations

The estimation framework for stochastic populations,21 from which the DISP filter is derived,1 proposes

an alternative approach to the track-based and RFS-based solutions. Broadly speaking, its development was

shaped by the following objectives:
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• It must be fully probabilistic in nature;

• It must provide a suitable representation for individual information about a specific target (i.e. a track),

whenever appropriate.

In its most general form, the resulting estimation framework is designed to provide tailored solutions to

more complex estimation problems whose scope goes beyond multi-object joint detection/tracking; recent

exploitations include information-based sensor management for surveillance,22 and target classification, de-

tection and tracking for harbour surveillance.23 In particular, this estimation framework provides grounds

for a natural extension of the DISP filter in order to approach other estimation problems encountered in the

context of space situational awareness, such as object classification.

The second requirement above was motivated by the shortcomings of the RFS-based representation men-

tioned earlier on in the paper, namely the lack of a natural distinction between the targets composing the

estimated population. This novel estimation framework21 proposes two exclusive probabilistic representa-

tions for a target, depending on its nature:

• An indistinguishable target belongs to a population whose members have not been identified (yet) by

the operator through individual information;

• A distinguishable target has been identified by the operator through individual information.

In the context of a space surveillance scenario, a typical example of an indistinguishable target would be a

piece of debris, within a larger cloud, following a recent collision of known objects and before the outcome

of the collision has been observed: propagated information about the objects prior to their collision, and some

knowledge about orbital mechanics may allow a probabilistic description of the cloud of debris as a whole,

but not of any specific piece of debris. On the other hand, provided that each measurement produced by the

sensor system stems from at most one object, any detected target, i.e. associated to at least one measurement

collected by the operator, becomes distinguishable, and can be appropriately described by a track.

THE DISP FILTER

This section provides a general description of the filter and presents the necessary concepts before an

illustration in the context of a space surveillance problem. The construction of the DISP filter, exploiting

notations and concepts from the measure theory,24, 25 is discussed in more details in recent works.22, 1

Outline and data flow

The DISP filter aims at providing an optimal solution, in the Bayesian sense, to the multi-object surveil-

lance problem under a few assumptions.1 The main ones are as follows:

1. The individuals behave independently from one another;

2. At each time step, each individual in the scene produces at most one measurement (if none, it has a

missed-detection);

3. At each time step, each measurement stems from at most one individual in the scene (if none, it is a

false alarm);

4. Individuals are immediately detected by the sensor upon entering the surveillance scene.

The second and third assumptions∗ above imply that a stream of measurements across time characterises

a single target without ambiguity, and that a target becomes distinguishable upon its first association to a

∗These assumptions are standard in multi-target detection and tracking problems. They are not, however, necessary within the

estimation framework for stochastic populations. Relaxing any one of these two assumptions would lead to the derivation of more

involved filtering solutions, out of scope in this study.
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Figure 2: Data flow of the DISP filter (time step t). The superscript d denotes a population of previously

detected, hence distinguishable, targets. The superscript a denotes a population of appearing targets, still

indistinguishable from one another.

Figure 3: An example of a few possible observation paths at time t = 6, before the availability of the

measurement set Z6. The target characterised by y′ entered the scene at time 3 and was detected through the

measurement z′3, was miss-detected at time 4 and produced the measurement z′5 at time 5.

collected measurement (see Figure 3). The fourth assumption implies that, for estimation purposes, the

individuals are assumed to have appeared in the surveillance scene at the time of their first detection. An

immediate consequence is that the DISP filter is unable to represent the population of individuals that have

already entered the surveillance scene but have not (yet) entered the sensor’s field of view.

Since a) individuals are not represented by targets prior to their their detection, and b) targets becomes

distinguishable as soon as they are associated to a measurement, it follows that the DISP filter does not

propagate information on population of indistinguishable targets (see data flow in Figure 2).

Input (time t)

From the discussion above and the data flow in Figure 2, it follows that the DISP filter propagates infor-

mation from past times through some probability P d
t−1, on a population of distinguishable targets, every one

of them identified by its own track.

Tracks

A target is identified through a sequence of observations presumed to have been produced by the underlying

individual across past times. We denote by Z̄t = {φ} ∪Zt the measurement set at time t augmented with the

empty observation φ, in order to account for miss-detections. Since individuals are assumed detected at their

time of appearance in the scene t•, a target can be characterised before the update at time t by the observation

path26

y = (φ, . . . , φ, zt• , zt•+1, . . . , zt−1) (1)

where zt• ∈ Zt• and zt′ ∈ Z̄t′ for any t• < t′ ≤ t−1. We implicitly assume that individuals with state ψ are

never detected by the sensor, that is, individuals can only be detected while they lie in the scene. We denote

by Yt−1 the set of all possible observation paths at time t, before the availability of the current measurement

set Zt (see Figure 3).
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Any target represented in the input population is therefore identified by its own observation path y, and the

information regarding the current state of the (potential) individual it represents is described by a probability

distribution pyt−1 on the augmented state space X̄. From the probability distribution pyt−1 we can extract the

following information regarding the corresponding target:

• The scalar pyt−1(X) =
∫

1X(x)pyt−1(dx) is the probability that the target is still in the scene, also

called the probability of presence of the target∗;

• Its restriction to the state space describes the state of the target provided that the underlying individual

is still in the scene, also called the spatial distribution of the target.

A track is then defined by a pair with an observation path y ∈ Yt−1 and the corresponding probability

distribution pyt−1. Because a target is identified through the corresponding observation path y and completely

characterised by the corresponding track (y, pyt−1), the terms target, observation path, and track may be used

interchangeably when there is no ambiguity.

Hypotheses

Recall from the previous sections that any measurement stems from at most one individual. Therefore, the

possible configuration of individuals that have entered the scene since the beginning of the scenario are

described by all the subsets of observation paths h ⊆ Yt, called hypotheses, such that any pair of distinct

observation paths belonging to a common hypothesis y, y′ ∈ h do not share a common measurement, unless

it is the empty one. In the situation illustrated in Figure 3, for example, the subsets ∅, {y}, {y′}, {y′′}, {y, y′},

{y′, y′′} are hypotheses but the subsets {y, y′′}, {y, y′, y′′} are not, for the observation paths y and y′′ share

the measurement z2 and thus at most one of them can represent a valid individual of the surveyed population

X . The set of all hypotheses propagated from the previous time step is denoted by Ht−1, and the DISP filter

maintains a cardinality distribution ct−1 on the hypotheses such that

∑

h∈Ht−1

ct−1(h) = 1. (2)

The weight ct−1(h), where h ∈ Ht−1, denotes the credibility of the hypothesis h, i.e. the probability that the

individuals of the population X , that have entered the surveillance scene so far, have produced the sequences

of measurements denoted by the observation paths y ∈ h. It is also called the probability of existence of the

hypothesis h.

Note that a given observation path y ∈ Yt−1 may belong to several hypotheses h ∈ Ht−1. For every

observation path y ∈ Yt−1 the scalar

αy
t−1 =

∑

h∈Ht−1

h∋y

ct−1(h) (3)

denotes the credibility or probability of existence of target y. It is a scalar between 0 and 1; the closer αy
t−1 is

to 1, the more likely it is that some individual of the populationX has produced the sequence of measurements

given by the observation path y ∈ Yt−1. Note the difference with the probability of presence pyt−1(X), which

denotes the probability that the individual represented by the target is still in the scene, provided that it exists.

The prior information, propagated by the DISP filter from the previous time step (see Figure 2) can then

be formally described by the product measure1

P d
t−1 =

∑

h∈Ht−1

ct−1(h)
⊗

y∈h

pyt−1. (4)

∗Its complementary to one, i.e. p
y

t−1
(ψ), is the probability of absence of the target.
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Prediction step (time t)

The prediction step of the DISP filter is quite straightforward. Since the measurement set Zt has not been

collected yet, the possible observation paths Yt−1 and the corresponding hypothesesHt−1 remain unchanged.

The probability distribution pyt−1 of each track y ∈ Yt−1 is transformed to its predicted form p̂yt as follows:















p̂yt (dx
′) =

∫

X

ps,t−1(x)m̂t−1,t(x, dx
′)pyt−1(dx), x′ ∈ X,

p̂yt (ψ) =

∫

X

[1− ps,t−1(x)] p
y
t−1(dx) + pyt−1(ψ),

(5)

where m̂t−1,t denotes the transition kernel representing the evolution of the state of the individuals within the

scene (e.g. the motion model along an orbit), and ps,t denotes their probability of survival in the scene.1 Both

functions are model parameters that reflect the knowledge of the operator regarding the dynamical behaviour

of the individuals.

Note that the predicted probability of presence p̂yt (X) = 1− p̂yt (ψ) of a given track y ∈ Yt−1 is smaller or

equal to its prior value pyt−1(X). Indeed, only a new detection may increase the evidence of an individual’s

presence in the scene, and new measurements are unavailable at this point.

The predicted information (see Figure 2) can then be formally described by the product measure1

P̂ d
t =

∑

h∈Ht−1

ct−1(h)
⊗

y∈h

p̂yt . (6)

Update step (time t)

In the update step, the measurement set Zt collected from the sensor is processed in order to update the

information P̂ d
t maintained so far by the DISP filter (see Figure 2).

Appearing individuals

The individuals appearing in the surveillance are described by a population of indistinguishable targets, for

none has been associated to a measurement yet and thus no specific information is available on any of them.

Based on the knowledge of the operator regarding the frequency of appearance of individuals within the

surveillance scene, and their whereabouts, this population is described by:

• Some cardinality function ĉat , describing the number of individuals that have appeared in the scene

since the previous time step;

• Some probability distribution p̂at on the state space X, collectively describing the initial state of all the

appearing individuals.

Recall from the previous sections that the appearing individuals are immediately detected upon arrival in the

scene and thus the mass of the probability distribution p̂at is concentrated within the sensor’s field of view.

The information on appearing targets (see Figure 2) can then be formally described by the product measure1

P̂ a
t =

∑

n∈N

ĉat (n)(p̂
a
t )

⊗n. (7)

Data association

The core of the update step consists in the data association step, in which potential sources of measurements

are matched with the newly available measurement set Zt and the likelihood of each association is assessed.

The potential sources of measurements are:

1. The individuals that entered the scene in an previous step, represented by P̂ d
t ;
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Figure 4: Data association, for a hypothesis h ∈ Ht−1 and given number n of appearing individuals.

2. The individuals that have just entered the scene, represented by P̂ a
t ;

3. The false alarm generators.

For the purpose of data association, a false alarm generator is modelled for each measurement z ∈ Zt through

a false alarm function pfa,t: the generator produced the measurement z with probability pfa,t(z) (in which case

z is a false alarm), or it produced no observation with probability 1−pfa,t(z) (in which case z originates from

an individual of the population X ). Note that the modelling of the false alarm function is highly dependent

on the type of sensor.

For every hypothesis h ∈ Ht−1 and every possible number of appearing individuals n ∈ N, a valid data

association h then associates the three sources of measurements – the distinguishable targets y ∈ h, the n
appearing targets, and the |Zt| clutter generators – to the collected measurements z ∈ Zt and the empty

observation φ (see Figure 4). A valid association h is then an element of the set1

AdmZt
(h, n) =

{

(hd, Zd, Za, ν) |hd ⊆ h, Zd ⊆ Zt, Za ⊆ Zt \ Zd, |Za| = n, ν ∈ S(hd, Zd)
}

, (8)

where hd designates the targets that are detected at the present time step, Zd the measurements associated to

these detected targets, Za the measurements associated to the n appearing targets, and ν the bijective function

associating detected targets to measurements in Zd.

Each triplet a = (h, n,h), where h ∈ AdmZt
(h, n), then represents a specific association scheme de-

scribed by the scalar1

P a

t = P a

d,t × P a

md,t × P a

fa,t, (9)

where

P a

d,t =
[

∏

z∈Za

∫

X

ℓt(z, x)pd,t(x)p̂
a
t (dx)

][

∏

y∈hd

∫

X

ℓt(ν(y), x)pd,t(x)p̂
y
t (dx)

]

,

P a

md,t =
∏

y∈h\hd

[

p̂yt (ψ) +

∫

X

[1− pd,t(x)]p̂
y
t (dx)

]

,

P a

fa,t =
[

∏

z∈Zd∪Za

[1− pfa,t(z)]
] [

∏

z∈Zt\(Zd∪Za)

pfa,t(z)
]

,

(10)

where P a

d,t, P
a

md,t and P a

fa,t denote the joint probability of the data association of the detected targets, the

miss-detected targets, and the clutter generators, respectively, pd,t denotes the probability of detection, and

ℓt the measurement likelihood function. As for the probability of false alarm function, the modelling of

the probability of detection and likelihood functions are heavily dependent on the type of sensor used for a

specific surveillance problem.

Hypothesis update

For a given population h ∈ Ht−1 of predicted targets, a given number n ∈ N of appearing individuals, some
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valid association h ∈ AdmZt
(h, n) leads to the construction of a unique updated hypothesis ĥ, composed of

the updated observation paths of the form

ĥ =
[

⋃

y∈hd

{y :ν(y)}
]

∪
[

⋃

y∈h\hd

{y :φ}
]

∪
[

⋃

z∈Za

{φt−1 :z}
]

, (11)

where φt−1 denotes the “empty” observation path, i.e. the sequence of t − 1 empty measurements∗. Using

Bayes’ rule, its probability of existence ct(ĥ) is found to be1

ct(ĥ) =
ĉat (n)ct−1(h)P

a

t
∑

n′≥0

∑

h′∈Ht−1

ĉat (n
′)ct−1(h

′)
∑

h′∈AdmZt
(h′,n′)

P a
′

t

, (12)

Note that the number of updated hypotheses |Ht| is finite, for the number of predicted hypotheses |Ht−1| is

finite, the number of observations |Zt| is assumed finite, and the set of admissible associations AdmZt
(h, n)

given by Eq. (8) is empty if n > |Zt|.

Track update

Following the construction of an updated hypothesis ĥ ∈ Ht given by Eq. (11), the updated observation paths

it contains can be of three different forms.

An updated observation path of the form y :z, where y ∈ Yt−1 and z ∈ Zt, corresponds to a predicted track

y which was detected and produced measurement z. Following Bayes’ rule, the probability distribution of

the track is updated as follows:1











py :z
t (dx′) =

pd,t(x
′)ℓt(z, x

′)p̂yt (dx
′)

∫

X
pd,t(x)ℓt(z, x)p̂

y
t (dx)

, x′ ∈ X,

py :z
t (ψ) = 0.

(13)

Note that the probability of presence in the scene raises to one†. Indeed, only individuals in the surveillance

scene can be detected by the sensor; therefore, a target that has just been detected is necessarily in the

surveillance scene.

An updated observation path of the form y :φ, where y ∈ Yt−1, corresponds to a predicted track y that was

miss-detected this time step. Following Bayes’ rule, the probability distribution of the track is updated as

follows:1


















py :φ
t (dx′) =

[1− pd,t(x
′)]p̂yt (dx

′)

p̂yt (ψ) +
∫

X
[1− pd,t(x)]p̂

y
t (dx)

, x′ ∈ X,

py :φ
t (ψ) =

p̂yt (ψ)

p̂yt (ψ) +
∫

X
[1− pd,t(x)]p̂

y
t (dx)

.

(14)

Note that the denominator in Eq. 14 is no greater than one; thus py :φ
t (ψ) is no smaller than p̂yt (ψ); in other

words, the probability of presence of the target is non-increasing. Indeed, no fresh evidence on the target

presence is available since it was miss-detected this time step.

Finally, a new observation path of the form φt−1 :z, where z ∈ Zt, denotes an appearing target which was

detected and produced measurement z. The update process is similar to the previously detected targets in

Eq. (13) and yields:1










p
φt−1 :z
t (dx′) =

pd,t(x
′)ℓt(z, x

′)p̂at (dx
′)

∫

X
pd,t(x)ℓt(z, x)p̂at (dx)

, x′ ∈ X,

p
φt−1 :z
t (ψ) = 0.

(15)

Note that, for the same reason as detected targets in Eq. (13), the probability of presence of appearing targets

is always one.

∗“ :” is the concatenation operator, i.e. (e1, . . . , en) :e = (e1, . . . , en, e).
†Recall that p

y :z

t (X) = 1− p
y :z

t (ψ).
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Posterior information

The posterior information (see Figure 2) can then be formally described by he product measure1

P d
t =

∑

h∈Ht

ct(h)
⊗

y∈h

pyt . (16)

Maximum a Posteriori (MAP) of the multi-object configuration

The DISP filter being fully probabilistic in nature, the posterior information P d
t representing all the indi-

viduals of the population X that have entered the surveillance scene can be exploited in various ways. We

shall focus here on the production of MAP estimate, i.e. the most probable configuration of the population of

these individuals.

Since the maintained hypotheses h ∈ Ht denote exclusive multi-object configurations representing the

population of individuals, the most probable configuration must be chosen as the hypothesis h∗t with the

highest credibility, i.e.

h∗t = arg max
h∈Ht

ct(h). (17)

Then, the operator is not necessarily interested in being transmitted all of the tracks y ∈ h∗t . Some may

be tentative tracks with a low probability of existence that have not been confirmed yet through a consistent

stream of measurements, and a cautious operator may not be interested in displaying such targets. Consider

some track of the form y :z ∈ h∗t . In order to prevent flickering in the display of targets, a simple rule, based

on the probability of existence computed in Eq. (3), can be designed as follows:

1. If the parent track y was not displayed, do not display y :z unless its probability of existence αy :z
t

exceeds some confirmation threshold tc;

2. If the parent track y was displayed, keep displaying y :z if its probability of existence αy :z
t exceeds

some lower de-confirmation threshold td < tc.

Setting the values of the thresholds tu, tc should be left to the operator based on their expertise and objectives

for a specific surveillance problem; they need not and should not be tuned according to the specifics of the

implementation (notably the chosen approach for the implementation of single-object probability distribu-

tions), the nature of the sensor, or any other parameter of the filtering process that is not the primary concern

of the operator.

IMPLEMENTATION OF THE MULTI-OBJECT SURVEILLANCE PROBLEM

Surveillance problem

Individuals

The DISP filter is applied to the problem of Earth orbiting space object tracking, where five targets evolve on

different orbits. The surveillance scene is a portion of space centred on Earth, spanning 70 000km in every

direction, and the targets are characterised by their six-variable state, consisting of their position (x, y, z) and

velocity (ẋ, ẏ, ż) elements. The initial orbital elements and area to mass ratios of the five targets are listed

in Table 1. The start epoch is 53159.5 MJD, the propagation duration is 10 hours, and the interval between

two time steps is constant and set to 100 s. The orbits have been created from the initial orbital elements

utilizing a Runge-Kutta 7/8 numerical integration. The Earth gravitational field has been taken into account

up to order and degree 12, third body perturbations of Sun and Moon as well as direct radiation pressure, a

spherical object shape was assumed.

This scenario presents several challenges (see Figure 5). Individual 1 is the “test target”; it is on a geo-

stationary orbit and remains in the sensor’s field of view throughout the whole duration of the scenario.

Individual 2 is also on a geostationary orbit, on a retrograde orbit. Individuals 1 and 2 cross each other’s

paths when they are covered by the sensor. Since the measurements do not provide angular rates, the mea-

surements produced by these two targets are expected to be close in value. Individual 3 and 4 are on medium

11



Target no. a ( km) e i (◦) Ω (◦) ω (◦) ν (◦) AMR (m2/kg)

1 42164.0 0.012 10.0 61.0 349.0 82.0 0.02

2 42164.0 0.010 170.0 50.0 30.0 20.0 0.60

3 26595.0 0.010 2.0 20.0 311.0 80.0 0.02

4 27495.0 0.30 3.0 30.0 250.0 50.0 0.02

5 42164.0 0.80 11.3 60.0 351.0 80.0 0.02

Table 1: Semi-major axis, eccentricity, inclination, right ascension of the ascending node, argument of

perigee, true anomaly and area-to-mass ratio.

Figure 5: Illustration of the scenario. Initial positions of the five individuals are marked by circles, an last

positions by stars. The grey region denotes the sensor’s field of view.
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Table 2: Sensor model: cell resolution and noise profile

cell resolution noise (standard deviation)

range r azimuth θ elev. ϕ range rate ṙ range r azimuth θ elev. ϕ range rate ṙ
1000m 1◦ 1◦ 100m s−1 1000m 1◦ 1◦ 100m s−1

Earth orbits, and do not stay in the sensor’s field of view for long. Individual 4, however, re-enters the sensor’s

field of view once during the scenario. Individual 5 is on a geostationary high eccentricity transition orbit,

about to leave the vicinity of Earth. It is initially in the sensor’s field of view, but leaves it after four time

steps and never re-enters it.

Sensor

A Doppler radar is placed on the northern Hemisphere, at a latitude of 20◦; the sensor’s field of view thus ro-

tates in the reference frame. The sensor’s field of view defines a radar-like sensing region of about 45× 106m
deep, 15◦ wide, in Earth fixed coordinates; it is fixed pointed at the zenith and covers the inclinations from

−45◦ to 45◦. The sensor provides range and range rate, as well as azimuth and elevation measurements every

100 seconds when the object is in the field of view. The information on the angular rates is not observed,

hence only a subset of the full state is available through a single measurement. At most one false alarm occurs

per sensor resolution cell and per scan, occurring with equal probability in each cell. An average of 2 false

alarms is produced per scan. The probability of detection of the sensor is set to 0.9 throughout the scenario.

The characteristics of the observation noise are given in Table 2.

Prediction step in the filter and orbital mechanics

At this point, it is important to note that the construction of the DISP filter does not impose any restriction

on the single-object probability distributions. An important consequence is that the implementation choices

regarding these distributions have minimal impact upon the design of the practical detection/tracking algo-

rithm: its structure remains identical, and the only changes will be in the evaluation of the integrals on the

single-object state space X in Eqs (5), (10), (13), (14), and (15).

Two broad classes of implementation techniques are widely popular to represent store and maintain single-

object probability distributions: particle filters,12 and Gaussian mixtures.27 For this first illustration of the

DISP filter in a space surveillance problem, we are exploiting a relatively simple orbital motion model that

could be adapted to the more restrictive Gaussian mixture representation. However, with the objective of an

enrichment of the orbital motion model in mind, we have opted for a particle filter implementation, able to

accommodate highly non-linear motion models, inspired from the recent disparity space approach.28, 29 The

number of particles per track is constant and set to 400.

In this scenario, then, each track y ∈ Yt−1 maintained by the filter is propagated along its orbit during the

prediction step (see Eq. 5 via the Shepperd matrix,30, 31 with additional noise to account for the approxima-

tions, applied to each particle composing the prior distribution pyt−1. No target disappearance is expected in

this scenario; thus, the probability of survival ps,t is set to almost one (1 − 10−3) in the surveillance scene

but drops to zero along its physical edges.

Update step and orbit determination

One of the major challenges in space surveillance problems is that the single-object probability distri-

butions in the Cartesian reference frame may not be accurately parametrised into a simple analytical form

(e.g. Gaussian distribution), for both the orbital mechanics and the sensor observation process are highly

non-linear in nature.

However, since the sensor observation noise is modelled as a multivariate Gaussian distribution with un-

correlated noise on each component r, θ, ϕ, ṙ, it may be expected that the same single-object probability

distributions, once projected into the augmented sensor space (a full spherical frame centred on the sensor),

assume a simpler form that can be approximated by a multivariate Gaussian distribution. Inspired by recent
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works on multi-object joint detection/tracking problems with cameras exploiting this principle,29 we apply in

this paper a similar technique to a Doppler radar sensor.

Measurement update

The measurement update (13) is implemented as illustrated in Figure 6 (depicted in 2D for the sake of clarity):

1. The particle states of the predicted distribution p̂yt are transformed into the augmented sensor space

(full 3D spherical coordinates);

2. The resulting distribution is approximated as a Gaussian distribution, in the same space;

3. The Gaussian distribution is updated, with a classic Kalman filter, using the measurement in the sensor

space (3D spherical coordinates without angular rates);

4. New particles are sampled from the updated Gaussian distribution, still in the augmented sensor space;

5. The particles states are transformed back into the reference space and yield the updated distribution

py :z
t .

Initial Orbit determination

Due to the structure of the data association mechanism of the DISP filter (see Figure 4), the probability

distribution p
φt−1 :z
t of a newborn track must be determined upon a single measurement z ∈ Zt (see Eq. (15)).

In the context of this scenario, no prior information is assumed by the operator regarding the orbits on which

the individuals evolve. For this reason, the initial distribution of the appearing individuals p̂at is uninformative

regarding the position of the individuals within the sensor’s current field of view.

Given the position and range rate coordinates of an appearing individual provided by the Doppler radar

through some measurement (r, θ, ϕ, ṙ), an admissible region for the unknown angular rates (θ̇, ϕ̇) can be

shaped from internal energy constraints.32, 33 Since the appearing individual is on a real orbit, its internal

energy is non-positive, i.e.
1

2
|ṙ|2 −

µ

|r|
≤ 0, (18)

where µ is the Earth mass times the gravitational constant and r is the geocentric inertial position vector of

the individual. The vectors r, ṙ can then be expressed as follows:

{

r = rs + rρr

ṙ = ṙs + ṙρr + rθ̇ρθ + rϕ̇ρϕ,
(19)

where rs is the geocentric inertial position vector of the sensor, and ρr,ρθ,ρϕ the unit vectors associated to

the measurement (r, θ, ϕ, ṙ).

Substituting (19) into (18) yields the new form

α1θ̇
2 + α2ϕ̇

2 + α3θ̇ + α4ϕ̇+ a5 ≤ 0, (20)

where the parameters αi are as follows:



















































α1 = r2 cos2 ϕ

α2 = r2

α3 =
rṙs · ρθ

2

α4 =
rṙs · ρϕ

2

α5 = ṙ2 + 2ṙṙs · ρr + |ṙs|
2 −

2µ
√

r2 + 2rrs · ρr + |rs|2
.

(21)
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Figure 6: Principle of Kalman data update in augmented sensor space (illustration in 2D). The blue distribu-

tion in the reference space A corresponds to some predicted probability distribution p̂yt , and the red one to the

updated probability distribution py :z
t , where z ∈ Zt is a range-only measurement depicted, with uncertainty,

in the sensor space C.
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From (20), the boundaries of the admissible region for the unknown parameters (θ̇, ϕ̇) are found to be:34























θ̇ =
α3

α1
+

√

α2
3

α2
1

+
α2
4

α1α2
−
α5

α1
cosφ

ϕ̇ =
α4

α2
+

√

α2
3

α1α2
+
α2
4

α2
2

−
α5

α2
sinφ,

(22)

with φ ∈ [0, 2π).

Following the measurement update process illustrated in Figure 6, the mean and variance parameters on

the components (θ̇, ϕ̇) of the initial Gaussian distribution of an appearing individual (red ellipse in the aug-

mented sensor space B) are thus chosen such that the sampled particle distribution populates the admissible

region adequately (in particular, the standard deviations on the (θ̇, ϕ̇) components are set to the values of the

corresponding square root terms in Eq. (22)).

Filter output: MAP estimates of the single-object probability distributions pyt

In the general case, the posterior probability distributions pyt of the tracks cannot be parametrised into a

simple analytical form in the Cartesian reference frame – most notably, if the track has not been detected for

a long time, the particles are usually spread along the estimated orbit in a “banana shape” – and the extraction

of a MAP estimate for displaying purposes is thus rather challenging. Projected in the full 3D spherical

frame centred on the sensor, however, these probability distributions may assume a simpler form that may

be adequately approximated by a Gaussian. In order to extract these MAP estimates, we followed the same

approach as depicted in Figure 6:

1. The particle states of the posterior distribution pyt are transformed into the augmented sensor space;

2. The resulting distribution is approximated as a Gaussian distribution, in the same space;

3. The mean of the Gaussian distribution, transformed back in the Cartesian reference space, yields the

MAP estimate of the track y.

Approximations for the practical implementation

From the structure of the DISP filter it can be seen that no information loss is incurred during the filtering

process, in the sense that a) the data association step produces a track for every possible observation path,

and an hypothesis for every possible combination of compatible observation paths, and, b) neither tracks nor

hypotheses, regardless of their credibility, are ever discarded by the filter. An obvious consequence is that

the number of hypotheses |Ht| and tracks |Yt| grows dramatically across time, increasing the computational

and memory load of the filtering process. However, the probabilistic nature of the filtering framework allows

for the operator to make principled approximations in order to reduce the complexity of the algorithm to

available resources.

Discarding hypotheses and/or tracks with low credibility is perhaps the most intuitive and straightforward

approximation to implement. In the context of this scenario where the density of false alarm is relatively

scarce, it is efficient to discard tentative tracks that were initiated through a false alarm, but remained within

the sensor’s field of view without being confirmed by subsequent coherent measurements. Recall that the

credibility of an hypothesis h ∈ Ht (respectively a track y ∈ Yt) is directly given by its probability of

existence ct(h) (respectively cyt ), and a simple threshold on these quantities provides an efficient way to

curtail the growth in their number. In this scenario, the threshold on existence for hypotheses (respectively

tracks) is set to 10−30 (respectively 10−7). A complementary approach consists in controlling the number of

hypotheses an/or tracks following each time step by discarding those with the lowest credibility. Considering

the small number of targets involved in this scenario, the maximum number of hypotheses to propagate is set

to 30.
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Another option is to discard tracks representing individuals that are likely to have left the surveillance

scene, for they may be of little interest to the operator. Recall that the mass of the probability distribution

of some track y ∈ Yt concentrated in the single-object state space, i.e. pyt (X), is the probability of presence

of the underlying target in the scene; therefore, tracks that are a likely to be absent from the scene can be

discarded through a simple threshold on this quantity (set to 10−5 in this scenario).

Although the simultaneous appearance of several individuals in the sensor’s field of view is covered by

the data association mechanism – the number of appearing individuals in Eq. (8) may be as high as the

number of collected measurements – limiting the number of appearances to one per time step is a reasonable

approximation in this context that reduces significantly the number of hypotheses generated during the data

update step. This approximation is nonetheless lifted during the initial step, for all the targets within the

initial field of view are bound to appear simultaneously (provided that they are detected) as soon as the sensor

is “switched on”.

SIMULATION RESULTS

The preliminary results of the multi-object surveillance problem are depicted in Figure 7. A first general

comment is that, despite the challenging conditions regarding the observability – limited field of view and

relatively low probability of detection – the DISP filter proves able, on this scenario, to initiate and propagate

a track for each individual that has already entered the field of view.

As expected, individual 1 is estimated with the best accuracy since its state is updated consistently through-

out the whole scenario. The estimation of individuals 2 and 4 show similar performances: the time period

during which the individual remains in the field of view is seemingly too short to allow for an appropriate

correction of the state initialisation provided by the orbit determination technique. Individual 3 also shows

a quick degradation of the state estimation once the individual has left the field of view; the estimation is

quickly then corrected once the individual hits the field of view a second time; however, the discrepancies

between the estimated track and the individual remains at a significant level, and the filter eventually assigns

the remaining stream of measurements to a new track. The estimation of individual 5 shows a similar degra-

dation of performance than individuals 2 and 4. Around time step 300, the uncertainty regarding the position

of the individual is large enough for a lot of particles to have left the surveillance scene: the probability of

presence of the corresponding track quickly drops to negligible levels, and the track is eventually discarded

by the filter.

An important fact that can be drawn from these results is that the DISP filter does maintain tracks whose

Mahalanobis distances to the corresponding individuals, taking into account the uncertainty on the filter in

its estimation, remain low throughout the scenario. In other words, the quality of the estimation quickly

degrades once the individuals have left the sensor’s field of view, but the filter is aware of this degradation.

This suggests that the orbital motion model used in the prediction step, the sole source of information about

individuals that are away from the sensor’s field of view, is relatively inaccurate but consistent in the context

of this scenario.

CONCLUSION AND FURTHER DEVELOPMENTS

This paper presents the DISP filter, a novel multi-object joint detection/tracking algorithm derived from the

very recently developed estimation framework for stochastic populations, in the context of wide area surveil-

lance for space situational awareness. It is illustrated on a challenging multi-object surveillance problem

involving five targets orbiting Earth on five different trajectories, observed by a single sensor with limited

coverage.

In this scenario, the preliminary results suggest that the DISP filter is able to initialise and maintain specific

information (e.g. tracks) on all the individuals that have already entered the sensor’s field of view, despite

the challenging conditions. The degradation in quality of the estimation, which occurs once the individuals

have left the field of view, is acknowledged and maintained by the filter through an accurate estimate of

uncertainty.
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Figure 7: Simulation results (one figure per individual). Light blue zones corresponds to time periods where

the individual lies within the sensor’s field of view. The Euclidean distance (position) between an individual

and the MAP estimate of the corresponding track is depicted in blue, while the Mahalanobis distance (full

state) between an individual and the corresponding track is depicted in green. The maximum value on the

right axis (Mahalanobis distance) corresponds to the 95% confidence interval.
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A natural route lead for future research would involve the incorporation of an alternative orbital motion

model in the Bayesian prediction step, in order to improve the performance of the filter in the estimation of

targets while they are outside sensor’s field of view.
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