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Abstract—Multiple Input Multiple Output sonar systems offer
new perspectives for target detection and area surveillance.
This paper introduces MIMO sonar systems and focuses on its
capabilities. The multiplication of the number of transmitters
and receivers not only provides a greater variety in terms of
target view angles but provides also in meaningful statistics on the
target itself. Assuming that views are independent and the MIMO
system is large enough we demonstrate that target recognition
is possible with only one view from the full system. We also
demonstrate that such systems solve the speckle target noise and
decorrelate individual scatterers within one cell resolution. We
show that MIMO systems can achieve super-resolution images
and surpass the resolution given by equivalent SAS (Synthetic
Aperture Sonar) systems. To demonstrate those capabilities we
develop a physic based MIMO simulator capable of modelling
cluttered and very shallow marine environment similar of har-
bour environment. Thanks to the simulator and taking advantage
of the degree of freedom that MIMO systems offers, we also
present autofocus algorithms that automatically estimates mid-
water target parameters such as speed, orientation or depth.

I. INTRODUCTION

MIMO stands for Multiple Input Multiple Output. MIMO
generally refers to a system with several transmitters and
several receivers. Such systems can been seen as a variety
of multi-static systems, the main difference being that MIMO
system has the capability to process the information as a whole
while multi-static systems only process the data at the receiver
nodes. This implies that there is an overall strategy for MIMO
systems, a strategy specific to the end application. We can
distinguish two levels of freedom in MIMO systems, the first
one being at the transmitter level. The classic approach is to
consider orthogonal waveforms in order to separate the bistatic
signals from all the different transmitters. Finite orthogonal
waveforms do not exist and the search for approximate or-
thogonal waveforms is an active subject of research. The other
level of freedom is at the receiver end and different techniques
can be designed to extract target information from the K ×L
signals (where K is the number of transmitters and L the
number of receivers).

MIMO systems have received a lot of interest in recent
years in the radar community [1]. Radar researchers have
pointed out multiple advantages of these systems such as
diversity gain for target detection [2], angle of arrival [3] or
Doppler estimation [4]. Despite their great potential, sonar
MIMO systems have rarely been considered for surveillance
purposes.

In this paper we are interested in the problem of harbour
surveillance. Multiple Inout Multiple Output (MIMO) sonar
systems can offer great capabilities for area surveillance espe-
cially in very shallow water with heavy cluttered environment
such as harbour environment thanks to their enhanced spatial
diversity. To benefit from the view diversity MIMO systems
with spatially distributed transmitters and receivers are con-
sidered. A full 3D MIMO simulator is presented, which can
compute synthetic raw data for any transmitter/receiver pair
in a multipath and cluttered environment. Synthetic seabed
interfaces are computed using 2D fractional Brownian motion.
Bistatic reverberation levels are computed using the physical
model developed by APL-UW [5]. Finally the mirror theorem
is used to compute the various multipaths. Synthetic mid-water
targets can also be added to the environment. Simulating sound
propagation in 3D can be computationally expensive but this
cost can be reduced using sparse techniques. Results in simu-
lation are presented and show that with careful configuration
of the MIMO elements, super resolution imaging and speckle
resolution can be achieved. We also demonstrate that autofocus
techniques can be used to estimate target depth and velocity
in complex scenarios.

The paper is organised as follow: in section II-A we present
the notations and MIMO formulations we will be using in this
paper. In section II-B and II-C we derive the main properties
for large MIMO sonar systems. We demonstrate here the
automatic target recognition (ATR) capabilities and the super-
resolution capability of MIMO sonar systems. In section III,
we describe the physical based MIMO simulator. Finally in
section IV we present two autofocus algorithms using MIMO
system to estimate depth, speed and orientation of a mid-water
target in complex environment.

II. MIMO SONAR SYSTEMS: NOTATIONS AND PROPERTIES

A. MIMO sonar formulation

The first formulation for surveillance MIMO systems has
been made by the radar community [1]. We present here
the most popular model for a radar target model. the finite
scatterer model used in [6], [7]. A target is represented here
with Q scattering points spatially distributed. Let {Xq}q∈[1,Q]

be their locations. The reflectivity of each scattering point
is represented by the complex random variable ζq . All the
ζq are assumed to be zero-mean, independent and identically
distributed with a variance of E[|ζq|2] = 1/Q. Let Σ be the



reflectivity matrix of the target, Σ = diag(ζ1, ..., ζQ). By using
this notation the average RCS (radar cross section) of the target
{Xq}, E[tr(ΣΣH)], is normalised to 1.

The MIMO system comprises a set of K transmitters and
L receivers. Each transmitter k sends a pulse

√
E/K.sk(t).

We assume that all the pulses sk(t) are normalised. Then
E represents the total transmit energy of the MIMO system.
Receiver l receives from transmitter k the signal zlk(t) which
can be written as:

zlk(t) =

√
E

K

Q∑
q=1

h
(q)
lk sk (t− τtk(Xq)− τrl(Xq)) (1)

with h(q)lk = ζq exp (−j2πfc[τtk(Xq) + τrl(Xq)]). fc is carrier
frequency, τtk(Xq) represents the propagation time delay be-
tween the transmitter k and the scattering point Xq , τrl(Xq)
represents the propagation time delay between the scattering
point Xq and the receiver l. Note that h(q)lk represents the total
phase shift due to the propagation and the reflection on the
scattering point Xq .

Assuming the Q scattering points are close together (i.e.
within a resolution cell), we can write:

sk (t− τtk(Xq)− τrl(Xq)) ≈ sk (t− τtk(X0)− τrl(X0))

= slk(t,X0) (2)

where X0 is the centre of gravity of the target {Xq}. So Eq. (1)
can be rewritten as:

zlk(t) =

√
E

K
slk(t,X0)×(

Q∑
q=1

ζq exp (−j2πfc[τtk(Xq) + τrl(Xq)])

)

=

√
E

K

(
Q∑
q=1

h
(q)
lk

)
slk(t,X0) (3)

B. ATR capabilities

In this section we are interested in the MIMO intensity
response of an object:

∑Q
q=1 h

(q)
lk from Eq. (3). Lets assume

that the reflectivity coefficients ζq can be modelled by the
random variable 1√

Q
e2iπU where U ∈ [0, 1] is the uniform

distribution. The central limit theorem then gives us the
asymptotic behaviour of the target intensity response, and we
can write:

lim
Q→+∞

√√√√√∣∣∣∣∣
Q∑
q=1

h
(q)
lk

∣∣∣∣∣
2

= Rayleigh(1/
√

2) (4)

The convergence of Eq. (4) is fast as shown in [8]. However
for a small number of scatterers (typically Q ≤ 5), the
target reflectivity PDF exhibits noticeable variation from the
Rayleigh distribution.

Assuming that man-made targets can be effectively mod-
elled by a small number of scatterers, we can take advantage
of the dissimilarities of the reflectivity PDF functions to
estimate the number of scattering points. Each observation is a

realisation of the random variable γn =

√∣∣∣∑Q
q=1 h

(q)
lk

∣∣∣2 with
Q the number of scattering points. Each set of observations
Γ = {γn}n∈[1,N ] where N is the number of views represents
the MIMO output. Given Γ, we can compute the probability
that the target has Q scatterers using Bayes rules:

P(TQ|Γ) =
P(Γ|TQ)P(TQ)

P(Γ)
(5)

where TQ represents the event that the target has Q scatterers.
Assuming independent observations, we have:

P(Γ|TQ) =

N∏
n=1

P(γn|TQ) (6)

We consider 4 target types: 2, 3, 4 and 5+ scatterer targets.
With Q ∈ {2, 3, 4, 5+}, we can then expend P(Γ) to:

P(Γ) =

5∑
Q=2

P(Γ|TQ)P(TQ) (7)

Given that we have no a priori information about the target we
can assume that P(TQ) is equal for all target class TQ. Eq. (5)
then becomes:

P(TQ|Γ) =

∏N
n=1 P(γn|TQ)∑5+
Q=2 P(Γ|TQ)

(8)

The estimated target class corresponds to the class which
maximises the conditional probability given by Eq. (8).
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Fig. 1. Correct classification probability against the number of independent
views for 4 classes of targets (2, 3, 4 and 5+ scattering points targets).

Figure 1 draws the probability of correct classification for
each class depending on the number of views based on 106

classification experiments. Note that the simulations have been
run with 10 dB SNR. The first observation we can make is that
it is possible to estimate the number of scattering points for
target with low number of scatterers by only observing the
target echo amplitude for a sufficient number of views. With
only 100 views, the overall probability of correct classification
is great than 92%.

C. Super-resolution capabilities

In section II-B we show the ATR capabilities for large in-
coherent MIMO sonar systems. In this section, we demonstrate
its super-resolution capabilities in terms of sonar imagery.



Let rl(t) be the total received signal at the receiver l. We
can write rl(t) =

∑K
k=1 zlk(t). The target response xlk from

the MIMO system is then the output of the filter bank s∗k(t)
with k ∈ [1,K]. With our notations and assuming orthogonal
waveforms, we arrive to:

xlk = rl ? s
∗
k(t) =

Q∑
q=1

h
(q)
lk (9)

The average target echo intensity from all the bistatic views is
given by:

F(r) =
1

N

∑
l,k

||xlk||2 (10)

Using the same target probability distribution stated in the
model presented earlier (cf. section II-A), we deduce that F(r)
follows the probability distribution:

F(r) ∼ 1

N

N∑
n=1

Rayleigh2(σ) ∼ N.Γ(N, 2σ2) (11)

where Γ is the Gamma distribution. Note that the second
equivalence is given using the properties of the Rayleigh
distribution. The asymptotic behaviour of F(r) can be deduced
from the following identity [9]:

lim
N→+∞

N.Γ(Nx,N, 1) = δ(1− x) (12)

Eq. 12 shows that the MIMO mean target intensity F(r)
converges toward the RCS defined in section II-A which
means that the scatterers within one resolution cell decorrelate
between each other. MIMO systems then solve the speckle
noise in the target response. This demonstrates why super-
resolution can be achieved with large MIMO systems.

In order to image the output of the MIMO system we will
use the multi-static back- projection algorithm which is a vari-
ant of the bistatic back-projection algorithm developed by the
Synthetic Aperture Radar (SAR) community. Further details
can be found in [10]. Using the back-projection algorithm
the Synthetic Aperture Sonar (SAS) image is computed by
integrating the echo signal along a parabola. In the bistatic
case the integration is done along ellipses. For the multi-static
scenario the continuous integration is replaced by a finite sum
in which each term corresponds to one transmitter/receiver pair
contribution.

In the following simulation we aim to demonstrate that we
can recover the geometry of a target (i.e. the location of its
scatterers). We chose a ”L” shape MIMO configuration: the
transmitters are placed along the x-axis, the receivers along
the y-axis. The MIMO system frequency band is 50 kHz to
150 kHz. We consider a 3 point scatterers target, the scatterers
are separated by one wavelength. In figure 2(a) we consider a
10 Tx × 10 Rx MIMO system. With this configuration we are
able to clearly image the 3 scatterer target in so doing achieve
super resolution imaging. For comparison purposes we have
computed the SAS image (cf. Fig. 2(b)) of the same target
using the same frequency band and at the same range. The
full geometry of the target is not recovered there.

III. MIMO SIMULATOR

In this section we describe the main components of the 3D
MIMO sonar simulator.
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Fig. 2. 3 scatterers target: (a) MIMO image using 10 transmitters and 10
receivers with 3 metres spacing, (b) SAS image.

A. Seabed interface

To model the seabed interface we generate 2D fractional
Brownian motion (fBm) using the Incremental Fourier Syn-
thesis Method developed by Kaplan and Kuo [11]. The main
idea is to model the 1st and 2nd order increments Ix, Iy and
I2. Ix, Iy and I2 are given by:

Ix(mx,my) = B(mx + 1,my)−B(mx,my)

Iy(mx,my) = B(mx,my + 1)−B(mx,my)

I2(mx,my) = B(mx + 1,my + 1) +B(mx,my)

−B(mx,my + 1)−B(mx,my + 1)

where B is the 2D fBm. Those 1st and 2nd order increments
can be computed thanks to their FFTs. The 2nd order increment
FFT is given by:

S2(ωx, ωy) =
32
√
π sin2(ωx/2) sin2(ωy/2)Γ(2H + 1) sin(πH)√

ω2
x + ω2

y

2H+2

(13)
where H is the Hurst parameter. Figure 3 displays an example
of 2D fBm surface generated using this technique.

Fig. 3. Example of 2D fBm with H = 0.8 (fractal dimension = 2.2)

B. Bistatic reverberation level

The bistatic scattering strength is computed using the
model developed by Williams and Jackson [5]. It is given by:

Sb(θs, φs, θi) = 10 log[σbr(θs, φs, θi) + σbv(θs, φs, θi)] (14)

where σbr = [σηkr+σηpr]
1/η is the bistatic roughness scattering

which includes the Kirchhoff approximation and the pertur-
bation approximation. σbv is the sediment bistatic volume
scattering. Sb depends on the bistatic geometry as well as
the sediment physical properties. Figure 4 displays the bistatic



scattering strength for a Tx/Rx pair situated 141m apart and
both at 7.5m from the seafloor. The Sb is computed for two
different sediment types (coarse sand and sandy mud) for the
same fBm interface.
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Fig. 4. Bistatic scattering strength relative to one Tx located at [0m,100m]
and a Rx located at [100m,0m] for (a) a coarse sand sediment type and (b) a
sandy mud sediment type.

C. Propagation

Sound propagation in shallow water can become extremely
complex. Because we are modelling very shallow water en-
vironment we assume a constant sound speed through the
water column. To model the multipath we are using the
mirror theorem. We use ray tracing techniques to compute the
different propagation paths. The simulations done in this paper
consider a maximum of three bounces.

To synthesise time echo a random scatterer point cloud
including random position and random intensity is generated
for each cell in the seabed. Note that once the point cloud is
generated, it can be saved for other simulations with the same
configuration.

To synthesise the MIMO echoes from a 200m × 300m
scene with 50cm cell resolution we have to compute 400 ×
600 cells × 20 scatterers per cell × 100 MIMO pairs different
paths which represents around half a billion paths (direct paths
only). Brute force computation using MatLab on a standard
laptop requires around 2 months of computation. This can be
drastically reduced by analysing the properties of propagation
in water and the circular convolution properties of the DFT.
The main tool to propagate a signal is free water is the well
known FFT property: f(t− u)⇔ e−iuω f̂(ω). If we consider
the echo related to one cell, this echo is extremely sparse over
a 600m range signal. The idea is to compute the propagated
signal over a much smaller window. Figure 5 draws the outlines
of the algorithm: the full scene is divided into range bands, on
Fig. 5(a) each colour band represents a 10m range division.
The echoes relative to each band are computed independently
on a small window of 20m (cf. figure 5(b)). The echoes are
then recombined to give the full range bistatic response as
seen in figure 5(c). Using those techniques greatly reduces the
computation time from 2 months to few hours.
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Fig. 5. (a) of the observed scene in 10m range band. (b) Individual range
band echo contribution. (c) Full echo response recomposition.

IV. AUTOFOCUS WITH MIMO SYSTEMS

The MIMO images are computed using the multistatic back
projection algorithm which is a variant of the bistatic back
projection algorithm [10] developed by the SAR community.
For the multi-static scenario the continuous integration along
ellipses is replaced by a finite sum in which each term
corresponds to one transmitter/receiver pair contribution. In
this section we propose two variants of the multistatic back
projection algorithm to estimate the depth of a mid-water
target, its speed and orientation.

A. Depth estimation

As it has been mentioned before synthetic aperture MIMO
imaging shares a lot of features with standard SAS imaging. In
particular the image is projected onto a plane or a bathymetry
estimate representing the seafloor level. The image of a mid
water target will then appear unfocused for this particular
projection. By moving the projection plane through the water
column the MIMO target image will focus at its actual depth.
Using simple autofocus algorithm and maximising the target
amplitude it is then possible to estimate the depth of the target
even if the MIMO system is coplanar. For a mid-water target
at 400 m range in a 15 m depth environment it is possible to
estimate its depth with 10 to 50 cm accuracy. Figure 6 displays
the autofocus results and the estimated target depth compared
with the ground truth.



Fig. 6. Autofocus algorithm results based on maximising the scattering
response: ground truth (white curve) and estimated depth (green curve).

B. Speed and direction estimation

Speed estimation for MIMO systems is an active subject
of research in the radar community [12], [13] . Most of the
proposed methods are based on maximum-likelihood (ML)
estimation and then rely on the Doppler shift of the moving
target. In our case we are interested in low velocity target (few
knots) in a highly cluttered and multiplath environment. For
these reasons we assume in this paper that the Doppler shift
is negligible.

The main idea of speed and direction autofocus is to
introduce a defocus for moving objects and then estimate
the speed and direction parameter −→v which will re-focus the
target. In our scenario the MIMO system inspects a 200 m ×
300 m area. In this area we are interested in target travelling
at around 1.5 m.s−1. If all the Tx were to transmit at the same
time the maximum displacement of the target relative to all the
transmitted pulses would be in the order of λ/10. Figure 7(b)
displays the MIMO image with no transmitting delay of a
target moving at 1.5 m.s−1. The target is still well focused.

(a) (b)

(c) (d)

Fig. 7. MIMO image of (a) a static target, (b) moving target with
no transmitting delay, (c) moving target with random transmitting delay
introducing an average of 4λ/5 target displacement and (d) moving target with
random transmitting delay introducing an average of 10λ target displacement.

By introducing random delays to the transmitting pulses we
can control the average time difference ∆t between pulse times

of arrival at the target. The target will then move between two
pulses by −→v ∆t on average. Figure 7(c) and (d) display the
MIMO image of a moving target with random transmitting
delay introducing respectively 4λ/5 and 10λ displacement.
For a high displacement (greater than λ) the resulting target
image is not coherent anymore. For low reflectivity targets the
target signal can then be masked by the reverberation level
(cf. Figure 7(d)). For an average displacement lower than λ
the back projection processing is still coherent and the target
structure visible (cf. Figure 7(c)).

From the defocused image and assuming a constant ve-
locity it is possible to compensate the target motion by time
shifting the MIMO responses. Let note zkl(t) the signal
recorded at the receiver l from the transmitter k. Let note ∆kt
the transmitting delay of the transmitter k and dk the distance
between transmitter k and the target. The target displacement
from t = 0 to t = δt = ∆k + dk/c time where the pulse
transmitted by the transmitter k hit the target is −→v δt. The
path difference ∆kl between the target location at t = 0 and
the target location at t = δ is then:

∆kl(
−→v ) = (−→uk +−→ul).−→v δt = (∆k + dk/c)(

−→uk +−→ul).−→v (15)

where −→uk and −→ul are respectively the direction of arrival
and the direction of departure of the sound wave from the target
coordinates. Figure 8 draws a schematic of the configuration.

Tx

Rx

�!v �t �!uk

�!ul

dk

dl

Fig. 8. Schematic and notations: path difference of a moving target.

To focus at a velocity −→v we then need to compensate
for the transmitting time delay and the target motion by
applying the multi static back projection algorithm to the
set of signals

{
zkl(t−∆kl(

−→v )/c)k,l∈[1,K]×[1,L]
}

instead of{
(zkl(t))k,l∈[1,K]×[1,L]

}
. The estimated velocity −→ve is then

given by:

−→ve = max−→v

[
max

(
BP
(
{zkl(t−∆kl(

−→v )/c)}k,l∈[1,K]×[1,L]

))]
(16)

where BP is the multi static back projection image for-
mation. Figure 9 display the max(BP(−→v )) functions for (a)
no transmit delay, (b) λ/4 displacement transmit delay and (c)



(a) (b) (cc)

Fig. 9. max (BP(v, θ)) functions for (a) no transmit delay, (b) λ/4 displacement transmit delay and (c) 4λ/5 displacement transmit delay. v is the target speed
in m.s−1 and θ the direction in radian.

4λ/5 displacement transmit delay. Let note −→v = (v, θ) where
v is the target speed and θ the target heading.

For no transmit delay or small displacement transmit delay
(cf. Figure 9(a) and (b)) the ambiguity between speed and
direction is important. In that case the MIMO moving target
image was already close to focus and it is not surprising that
a large portion of the (v, θ) plane can focus the moving target
image. When the displacement transmit delay is important
enough to create a defocusing of the moving target (cf.
Figure 7(c)) then the optimal focusing value −→v is a better
constraint (cf. Figure 9(c)).

Around 500 tests for speed and direction estimation have
be run using this autofocusing technique. Several types of
point targets have been tested in different locations with speeds
varying from 0.5 m.s−1 to 3 m.s−1. In average the speed is
estimated with around 0.15 m.s−1 error and the heading with
around 6◦ error.

V. CONCLUSION

Despite the physical constraints, the high number of trans-
mitters and receivers of a large MIMO sonar system gives
to the user a great degree of freedom on how to use and
exploit large MIMO sonar systems. Assuming independent
observations from each MIMO pair we demonstrated that
incoherent systems can classify target based on their num-
ber of scatterers. We also demonstrated the super-resolution
capability of coherent systems that surpasses the state of
the art SAS resolution. We presented a physic based MIMO
simulator and demonstrated the theoretical results inherent
from MIMO sonar systems. A series of techniques based on
autofocus algorithms were presented. These techniques allow
a large MIMO sonar system in a complex environment to
automatically estimate mid water target parameters such as
speed or depth and highlight the potential of such sonar system
for harbour surveillance.
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