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Abstract—In this work, we consider the front-end processing ciated with different range-bearing bins. These estimates

for an active sensor. We are interested in estimating signal then used as design parameters in constant-false-alaem rat
amplitude and noise power based on the outputs from filters detection algorithms [3]. However, this approach is prome t
that match transmitted waveforms at different ranges and bar- . . e . .

ing angles. These parameters identify the distributions in for errlors dug to |ncorrect_|dent|flcat|on of bins thgt 9°”ta!m_'>’°
example, likelihood ratio tests used by detection algoritms and NOiSe or signal-and-noise as a result of that this identitina
characterise the probability of detection and false alarm mtes. task requires the temporal information in the received aign
Because they are observed through measurements induced by awhich is ignored. Estimation of the signal eneryrequires
(hidden) target process, the associated parameter likeldod has a collection of temporal samples, as well. One way of doing thi

time recursive structure which involves estimation of the arget . . . .
state based on the filter outputs. We use a track-before-detée is to replace the MF bank in the basedband processing chain

scheme for maintaining a Bernoulli target model and updatirg With iterative processing algorithms preferably workinghw
the parameter likelihood. We use a maximum likelihood straegy high sampling rates (e.g., [4], [5]). This places requiratae
and demonstrate the efficacy of the proposed approach with an on the hardware architecture that are hard to satisfy irtigeac
example. In this work, we use multiple snapshots from the MF bank
|. INTRODUCTION collected across a time interval and perform spatio-tempor

Active sensors send energy packets towards a surveillapcecessing to jointly estimate' and 532. We treat the problem
region in order to locate objects within from the reflectionsis a parameter estimation problem in state space modets. Thi
For example, radars transmit radio frequency (RF) electralows us to integrate all the information in the measureien
magnetic (EM) pulses and locate reflectors by searching fara single likelihood function for boti and 32. Such likeli-
the pulse waveform in the spatio-temporal energy content flood functions require the state distribution of the unded
the received signal. This search is often performed usieg tfiarget) process given the measurement history, which can
matched filtering technique in which the received signal e found by the prediction stage of Bayesian filtering (or,
projected onto versions of the transmitted waveform sthiftéracking) recursions [6]. As the measurements are the MF
so as to encode the desired reflector locations [1]. The mareatputs (as opposed to the outputs from a detection algorith
the energy a projection has, the more likely that it is due &5 in widely studied tracking scenarios), the correspandin
the presence of a reflector. recursions describe a track-before-detect algorithm.

In this work, we are interested in estimating parametersin this framework, we derive explicit formulae for the
related to the signal at the output of the matched filters (Miparameter likelihood and its score function, i.e., the log-
of a radar. This signal is composed of a distorted versitikelihood gradient. We use a maximum likelihood (ML)
of the waveform auto-correlation function in the presente approach to design an unbiased and minimum variance esti-
a reflector and additive thermal noise. Detection algorihnmator. In particular, we maximise the log-likelihood by ngi
aim to decide on the existence of an object based on theseoordinate ascent algorithm [7] in which we select the
outputs sampled at selected time instances so as to gileections of increase based on the gradient and perform
the energy of the aforementioned projected signal [2]. #he§jolden section) line search along these directions.
decisions are characterised by a probability of detectiwth a This article is outlined as follows: We give the ML problem
a probability of false alarm which can be found given thdefinition in Sec. Il and detail the parameter likelihood in
energy of the reflected pulse at the receiver front-ehdnd, Sec. Ill. In Sec. IV, we derive the gradient of the objective
the noise powers? (or, the standard deviation of the noisdunction and detail an iterative optimisation proceduree W
process). These parameters also determine the signaide-ndemonstrate the proposed approach with an example in Sec. V.
ratio which can be used to characterise the expected agcurac
in further levels of processing [1].

Often only the noise powe8? is estimated using spatial We consider a pulse transmitted towards a surveillance
windows over one snapshot of the outputs from MFs ass@gion which gets reflected if it interacts with an objecttates

Il. PROBLEM DEFINITION



z = [z}, 2117 wherex, is the locationg, = 4, is the velocity time stepl throughk. Therefore, the ML estimation problem

of the object and.)” denotes the transpose of a vector. Thesmn be formulated as
reflections are sought in the the spatio-temporal energieabn Aoy o 2
of the received signal by matched filtering [1]. Typicallget (B, 57) = arg %{% logl(zy, -~ 24|, 5, )

filter output is sampled with a period of the pulse length so gg computation of which will be described next.
to compute the correlation of the transmitted waveform with

the received signal corresponding to terange bin of width IIl. THE SIGNAL PARAMETER LIKELIHOOD
Ar andj*" bearing bin of widthA¢. Therefore, at time step  Let us represent with a random s¥},, the events that there
k, the filter output for the bir(i, j) is given by exists a reflector with statey, and, none, in which cases

o . X, = {z3} and X, = 0, respectively.X;, is referred to
(i, g) =< (i, j),r > D) asa Bérngulli random finite sgt (RFSy) [8]. The likelihoods
wherer is the (complex) received signal and(4, j) represents for z;(i, j) given the signal parameters to be estimateg?
the transmitted waveform shifted to ttig 5)** bin. for the cases thak, = {z;} and X, = () are well known
Let F; represent the energy of the transmitted pulse, i.ggsults in the literature: After the uniformly distribut@thase
E; = m"m where (.)¥ denotes the Hermitian transpose. Ins marginalised-out, the modulus (i, j) is distributed with a
the presence of a reflecting object at statethe inner product Rician distribution, i.e.,

above leads to ll(zk(i,j)|mk;E,ﬁ2)

1 (i §) = B i j(wr) + i @ 2 p(ai, )| Xk = {an ) E, 8)
where nj, ~ N(.;0,4?) is circularly symmetric complex  2zx(i, ) zp(iyg)? + EP I 221, (i, j)E ®)
Gaussian noise with complex powst, h; ;(x) specifies the B2 32 0 32 ’

ratio of E that has been reflected from tiie ;)" bin with
(an unknown) phaséy, ~ (0, 27].

In this work, we assume a sensor resolution such that
object in the surveillance region affects only a single eng

if Xy, = {2} andzy € C~1(i,j), wherel, is the zero order
modified Bessel function of the first kind. Otherwisg(:, j)
fBlows a Rayleigh law given by [1, Chp.6]

bearing bin, i.e., lo(z1(,5)|8%) £ p(2x (4, )| Xk = 0; B, B?)
hij(xx) = Hoc(ay),(1.5) 3) = % exp (—%(;72‘7)2) )

where/ is the Kronecker’s delta functiorq} : X — M x N

maps object states to range-bearing bins Arid the reflection Let us define the intensity mag, related quantities:

coeflicient. | o Aalek BB £ (o (C ) s B, 6°)
We consider (2) and (3), and, are interested in estimating oo
the received signal enerdy £ E, H, and, the noise powef?. H lo(2x(,7)16%), (8)
These signal parameters determine the signal-to-noigeatt (4,5)€C (zk)
the matched filter by where C(z;) denotes the set of range-bearing bins comple-
E? menting C(zx), and, lyp and l; are given in (6) and (7),
SNER = 10logyg 3 4)  respectively. Similarly
and are also required to compute false alarm rates and object A(zi|B%) £ Hlo(Zk(Lj)WQ) 9)
detection probabilities of threshold rules [1]. 4.

We treat these parameters as (non-random) unknown CQfsere the product is over all the range-bearing bins.

stants and consider an ML solution. We now specify the \ve assume that the noise processes for different bins and

arguments of the likelihood function: The reflection phége {jme steps are independent given the state of the objeceégsoc
in (2) models the ambiguity related to the exact position gtzk_ Hence

the reflector within thei, j)* bin which cannot be mitigated. A B i x
. ’ | _
The modulus of (2), i.e., P2k X, B, 52) = { (Zk |z, B, B7), k= {zK}

Aai|52), i x, 0. O

We would like to compute the parameter likelihood based

neglects the phase and is a sufficient statistic when testi&g all measurements covering time steghrough & which
whetherry (i, j) is induced by a reflector at staig or noise can be found as

alone. Therefore, we treat the intensity map giver:py, j)s

k

as measurements based on which the ML estimation will b%(zl 2| E, 87 = Hp(z 2101, B, )

relying upon. 1 ) 11 t1Z1:e—1, &,
Let us denote withe;, the concatenation ofy (i, j)s for all Az, 7 |E, 5

range-bearing bins, i.e., the intensity map. We would like t )
base the parameter likelihood on all measurements covering xp(zk|Z1:k-1, E, §7)



after using the chain rule of probabilities in the first lifidhe an object that existed & — 1 continuing to exist at tim& is
recursive structure revealed in the second line is typioal given by Ps. A Bernoulli model at timek — 1 characterised by
parameter estimation problems in state space models @, [1(rx—1, sk—1(2x—1)), then, leads to the following prediction:
in which the update term is found by marginalising-out the

underlying process(y, i.e., k-1 = Po(1 = rp—1) + 151 Ps
5 Skt (@) = Mb(m)
p(zr|z1.6-1, B, 3°) = =1 Thik—1
' P
/p(zk|X"~’vE’62)p(Xk|Z1:k*17Ea52)5Xk (11) —I—T: ‘1 5 /Wklkfl(ﬂxk—l)sk—l(mk—l)dmk—l(]ﬁ)
klk—1

where the right hand side is a set integral [8, Chp.11Kas wherer,,_, is the state transition density [11].

is a _set_random va_riable. The first term inside the inte_gral iSUpon receivingz, the posterior model is given by [11]
the likelihood atk given by (10), and, the second term is the

prediction of X;, based on the previous measurements. . Tklk—1 J gx (x| B, B%)day
The objective function for the ML solution in (5), hence, is L= rppp—1 + Thjk—1 [ gr(zi| E, B?)dxy,
given by () = gr(zi| E, B?)
J(E, 8% 215) = J(E, 8% 21.5—1) + log p(zi|21:6—1, E, 7). J gk (@i| B, 52)dy,
(12) a L(z(Clxp))|zx; B, B%)

(zi|E, %) & Sgjk—1(7x). (17)

Let us now consider the likelihood update term in (11). 9k

o s p o it | lo(z1(C(zx))15?)
The computation of the predictive term inside the integra - . .
is detailed later in Section IlI-A. For our discussion on the As a result, the predictive term in (13) required for the

likelihood update term, suppose that it is given by Eggzrpeetc?c”eteg:%d(fz) f;:(;]((jl%/ lterating prediction and

Tholk—15kik—1(Tk), if X = {a} The object birth model we use is selected so as to have
it X, = 0. a uniform distribution in the location component which is
nonzero in the sensor field of view, and, a uniform distriboiti

Then, (11) expands using the set integration rule in [8, CHp. in the velocity component which is nonzero if the speed is
with a Bernoulli RFS characterised by (13) and the likeliiog?€tWeen selected minimum and maximum values:

p(Xk|z1:0-1, B, 3%) = {

I —7gjk—1,

In (10) as b([:rf’ I’Z]T) = UFOV (xl)uvwnngllu‘gvnulm (:E'U) (18)
2\ __ 2 2
p(zk|Z1:6-1, E, 87) = p(zx|0, E, 7)p(0|z1:4 -1, E, 57) IV. MAXIMUM LIKELIHOOD SIGNAL AMPLITUDE AND
Jr/p(zkp(k = {2}, B, B2)p(Xp, = (o} z1em1, B, 52)dy, NOISE POWER ESTIMATION

) The objective function of the ML solution in (5) is not

= (1 = rejp—1)A(zx] 57) straightforward to maximise partly because, in practicagy a
R A B, B2)s ik dar. 14) Noisy approximation of it can .be obtameq via particle melﬂj(_)
il 1/ (®elee, B, B8 (@r)da (14) and, the term due t&@ in the right hand side (RHS) of (15) is

dominated by the influence @f through the first term (see,
e.g., the example in Section V).

Our ML realisation strategy is to apply coordinate ascent
log p(zx|21.6—1, E, 3%) = log A(z|3%)+ along the projections of the log-likelihood gradient. Than
be viewed as a subgradient approach with the difference that
i . ) we do not explicitly select step sizes to move along the
T’k|k_1/ L (zx(Clzp))|2x; E, B )skk_1($k)d$k> (15) selected subgradient direction. Instead, we perform @gold

lo(z(C(zk))]6°) ratio) line search along the subgradient direction. Theligra

Therefore, the ML objective can be recursively evaluatédgus €quals the sum of the gradients of the log update term in (15)
(15) in (12). Next, we discuss the computation of the prégict over time. Note that, the first term in the RHS of (15) is
state distribution in (13) using Bernoulli track beforeetst  independent ofz, hence,

After dividing both parts of the equation above hyz;|3?),
it can easily be shown that

log (1 = rrje—1+

A. Bernoulli track before detect dlogp(zi|zie—1, E, %)  Thk-1 J ag)%zl %Sk\kfl
Recursive updating of a Bernoulli object model using OF 1= rpr—1 +Tk|k—1f%5k\k—1

measurements with likelihood models in the form of (10) r [
. . . . o klk—1 or Yk
can be carried out using the Bayesian recursive filtering =1= n T
principles [11], [12]. An important component of filteringtiv Tklk=1 T Tklk—1 ) Gk
RFS models is the object appearance, or, birth model. Tivaere the first line follows after differentiating the ternside
probability of object appearance at timds given by P, and the integral and using the identif}, /OF = [; x dlogl; /OF.
the state of this object is distributed i@s:). The probability of The second line is obtained through the definitiog;ofn (17).

dlogly

(19)



The partial derivative ofog /; with respect toF can easily be 1“05

found [13] as ‘ .
0 0.8] 0.8

1 0.6} 0.6f

0.4 0.4

dlogly, 2B 22,(C(x1)) L (224(C(x1))E/B2)

log Iz, |E.B%)

=——+ 20
o5 = @ P LieaCa)E/P) O
wherel, and I; are the modified Bessel functions of the firstz \>/ 02 02
kind of order zero and one, respectively. After substigi(20) ST : % oo g oo
in (19),we get @) (b) ©
alOgP(ZHZl-k—l, E, 52) 2Ery, Fig. 1. (a) Log-likelihood surface for the example scenami@luated over
- =-——0 the grid 1.5 < E < 2.5 and 0.01 < £20.25 with step sizes 0f).05 and
oE B 0.01, respectively. (b) The normalised profile of the surfacengl&-axis for
2kl Z’zigk varying 32. (c) The normalised profile along? for varying E.
|k—1 J BT, e
L= e + 7hje—1 9k using golden section search [14].
wherer;, andg; are given in (17). The iterations terminate if two consecutive points areelos
Next, we consider the partial derivative of the log updatian a selected tolerance value. In other words, the salutio
term with respect tgs%: to (5) is declared a$E, 32) = (Ep1, 8%,41) if
dlogp(zk|z1.k-1, E, %) . H[Em-i—h 7271+1]T - [Emaﬁ?n]TH <.
op? The computations are carried out using particle methods:
dlogly | (8(1%211 _ ff’(lao_ﬁgzlo) m We sample from the predigtive_ distribution in (13)_ gsing a
Z 952 + (22) Sequential Monte Carlo realisation [11] of the recursionsigy
o7 9P 1= rije—r + i1 J g by (16) and (17). In order to sample from the birth model
The first partial derivative inside the integral above can He (18), we find a grid ofl. samples for each bit™ (i, j)
and concatenate with velocity components generated from
found [13] as d tenat th velocity p ts g ted f
Uy, <z . The integrals in (19)-(23) are estimated
2 2 2 'Um,zn_‘lvlgvm,am
510g211 _ _LQ (1 2k +2E 2Zk2E Il(QZkE/BQ)) . using samples generated frgmduring Bernoulli track before
op B g B Io(2zkE/B?) detect within the Monte Carlo method [15, Chp.3].

and the derivative of log-noise term with respect to the @ois

ower is given b V. EXAWPLE
P 9 Y ) Let us consider an example scenario consisting of an object
dlogly _ 1 %k with initial state zp = [-503.5,4974.6,5,0]7 moving in
op? p* B accordance with a constant velocity motion model with a smal

Therefore, the first term inside the integral in (22) is gilgn process noise term and a sensor located at the origin with
2 range and bearing resolutions dfm and 1°, respectively.
alog2l1 — 810g210 = E—4 — QEfkﬁ. (23) The sensor field of view is selected as the region bounded
o o p st Io by 4800m and 5200m in range andt-10° around they-axis
As a result, the gradient of the log-likelihood functionn order o restrict the size of the intensity map and hence the
in (12) can be computed using (19)—(23) in the recursive forglume of computations needed. As a result)a 20 intensity
given by map is observed fok = 200 time steps with signal amplitude
dlogp(zi|zin_1,E,8°)7 FE = 2 and noise powep? = 0.1. The target signal, hence,
D1og p( oK 2y | has~ 16dB SNR in the corresponding bin.
g p(zk|z1.6—1,E,8”) . 2
2 In Fig. 1(a), we present the ML objective surface evaluated
o ) (24) for a given realisation of the measurement histeryy, and a
In order to maximise/, we adopt a coordinate asceniq of (E, 3?) values using the parameter likelihood detailed
approach: Starting from an initial pointEo, 57), at each in section Il together with MC computations. For Bernoulli
iterationm, we find the gradient vector (24) and select a ling,ck pefore detect, we use — 225 uniform grid points for
search direction as follows: each of the300 state bins given by~ (4, 5) to represent(z)
VJ(E,* z1.1) em in (16). Here,r is selected as a constant velocity motion model

o, = [VJ(E, 8% z1.6) T eml| (25 ith a small additive process noise term. We maintsin00

VJ(E, 3% 214) = VJ(E, 3% 216-1)+

0,1)7,if m =0,2,4, ... samples generated from in (17) after resampling weighted
m= { L T samples fromy,,. The probability of birthP, = 0.01 whereas
[1,0)7,if m=1,3,4,.. the Pg — 0.99.

Then, we solve the following one dimensional problem There are much less target associated measurements con-
5 . 9T tributing to (15) compared to noise assoicated terms. This
(Emt1, fni1) = arg A A o] J([Em, Bul” + Admiz1:)  manifests itself in Fig. 1(a) as the significantly smaller-cu
' (26) vature of the surface alon@ compared to that along?.
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There is a tradeoff between the observation length and
the accuracy in whichE can be estimated (see, e.g., [17]).
The relations between the Hessian, Fisher information bed t
associated Cramer-Rao lower bound can be explored in order
to investigate this tradeoff. Another possible extensibthis

0.2f

0.151

)

01f -,..,_fw,_.
work is to accommodate multi-Bernoulli models in order to
0.08 handle multiple moving objects via track-before-dete@][1
; 5 5 25 Esimation of parameters for other Swerling target types [1]

F within the proposed ML framework is also left as future work.
Fig. 2. Iterative maximisation of the parameter likelihofm 200 Monte
Carlo runs: Initial point (blue circle), and converged esties (red crosses)
joined by estimates in the intermediate steps (green saas® dashed lines).
Diamond is the correct value ¢, 52).
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E is higher and estimates ot will be less accurate [16,
App. 8A]. For a closer look to the log-likelihood objective
function, we provide the normalised profiles of the surface
along E and 3% axis in Fig. 1(b) and (c), respectively. Note 1]
that, for almost all values of? in the grid, it is possible
to estimate? through maximising the objective along? [?
direction. 3
Next, we use the proposed scheme described in Section IV
starting from (Eo, 53) (1.5,0.25). After evaluating the
gradient in (24), a golden section line search is performeﬁ]
along the direction selected using (25). The initial search
interval length, i.e.\nqz in (26), is selected to ensure that thel®!
resulting interval of uncertainty will be smaller thard01. For
golden ratio search, this is given ljlog(0.001 —0.618)] + 1.
The tolerancé for checking convergence is selected)a¥)1.
We repeat the proposed ML scheme f00 Monte Carlo (7
realisations of this scenario. The iterations are depidted [8]
Fig. 2, in which the resulting estimates are shown by re?g]
crosses. The average number of iteration3.6s The average
of (E,3?) is (1.972,0.104), which is very close to the true
value of (2,0.1). This indicates that the optimisation schem&©l
is approximately unbiased. The variance of the estimatign;

(6]

Collaboration in Signal Processing.
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