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Abstract—In this work, we consider the front-end processing
for an active sensor. We are interested in estimating signal
amplitude and noise power based on the outputs from filters
that match transmitted waveforms at different ranges and bear-
ing angles. These parameters identify the distributions in, for
example, likelihood ratio tests used by detection algorithms and
characterise the probability of detection and false alarm rates.
Because they are observed through measurements induced by a
(hidden) target process, the associated parameter likelihood has a
time recursive structure which involves estimation of the target
state based on the filter outputs. We use a track-before-detect
scheme for maintaining a Bernoulli target model and updating
the parameter likelihood. We use a maximum likelihood strategy
and demonstrate the efficacy of the proposed approach with an
example.

I. I NTRODUCTION

Active sensors send energy packets towards a surveillance
region in order to locate objects within from the reflections.
For example, radars transmit radio frequency (RF) electro-
magnetic (EM) pulses and locate reflectors by searching for
the pulse waveform in the spatio-temporal energy content of
the received signal. This search is often performed using the
matched filtering technique in which the received signal is
projected onto versions of the transmitted waveform shifted
so as to encode the desired reflector locations [1]. The more
the energy a projection has, the more likely that it is due to
the presence of a reflector.

In this work, we are interested in estimating parameters
related to the signal at the output of the matched filters (MF)
of a radar. This signal is composed of a distorted version
of the waveform auto-correlation function in the presence of
a reflector and additive thermal noise. Detection algorithms
aim to decide on the existence of an object based on these
outputs sampled at selected time instances so as to give
the energy of the aforementioned projected signal [2]. These
decisions are characterised by a probability of detection and
a probability of false alarm which can be found given the
energy of the reflected pulse at the receiver front-endE, and,
the noise powerβ2 (or, the standard deviation of the noise
process). These parameters also determine the signal-to-noise
ratio which can be used to characterise the expected accuracy
in further levels of processing [1].

Often only the noise powerβ2 is estimated using spatial
windows over one snapshot of the outputs from MFs asso-

ciated with different range-bearing bins. These estimatesare
then used as design parameters in constant-false-alarm rate
detection algorithms [3]. However, this approach is prone to
errors due to incorrect identification of bins that contain only
noise or signal-and-noise as a result of that this identification
task requires the temporal information in the received signal
which is ignored. Estimation of the signal energyE requires
collection of temporal samples, as well. One way of doing this
is to replace the MF bank in the basedband processing chain
with iterative processing algorithms preferably working with
high sampling rates (e.g., [4], [5]). This places requirements
on the hardware architecture that are hard to satisfy in practice.

In this work, we use multiple snapshots from the MF bank
collected across a time interval and perform spatio-temporal
processing to jointly estimateE andβ2. We treat the problem
as a parameter estimation problem in state space models. This
allows us to integrate all the information in the measurements
in a single likelihood function for bothE andβ2. Such likeli-
hood functions require the state distribution of the underlying
(target) process given the measurement history, which can
be found by the prediction stage of Bayesian filtering (or,
tracking) recursions [6]. As the measurements are the MF
outputs (as opposed to the outputs from a detection algorithm
as in widely studied tracking scenarios), the corresponding
recursions describe a track-before-detect algorithm.

In this framework, we derive explicit formulae for the
parameter likelihood and its score function, i.e., the log-
likelihood gradient. We use a maximum likelihood (ML)
approach to design an unbiased and minimum variance esti-
mator. In particular, we maximise the log-likelihood by using
a coordinate ascent algorithm [7] in which we select the
directions of increase based on the gradient and perform
(golden section) line search along these directions.

This article is outlined as follows: We give the ML problem
definition in Sec. II and detail the parameter likelihood in
Sec. III. In Sec. IV, we derive the gradient of the objective
function and detail an iterative optimisation procedure. We
demonstrate the proposed approach with an example in Sec. V.

II. PROBLEM DEFINITION

We consider a pulse transmitted towards a surveillance
region which gets reflected if it interacts with an object at state



x = [xT
l , xT

v ]T wherexl is the location,xv = ẋl is the velocity
of the object and(.)T denotes the transpose of a vector. These
reflections are sought in the the spatio-temporal energy content
of the received signal by matched filtering [1]. Typically, the
filter output is sampled with a period of the pulse length so as
to compute the correlation of the transmitted waveform with
the received signal corresponding to theith range bin of width
∆r andjth bearing bin of width∆φ. Therefore, at time step
k, the filter output for the bin(i, j) is given by

rk(i, j) =< m(i, j), r > (1)

wherer is the (complex) received signal andm(i, j) represents
the transmitted waveform shifted to the(i, j)th bin.

Let Et represent the energy of the transmitted pulse, i.e.,
Et = m

H
m where(.)H denotes the Hermitian transpose. In

the presence of a reflecting object at statexk, the inner product
above leads to

rk(i, j) = Ete
jθkhi,j(xk) + nk (2)

where nk ∼ N (.; 0, β2) is circularly symmetric complex
Gaussian noise with complex powerβ2, hi,j(xk) specifies the
ratio of E that has been reflected from the(i, j)th bin with
(an unknown) phaseθk ∼ U(0, 2π].

In this work, we assume a sensor resolution such that an
object in the surveillance region affects only a single range-
bearing bin, i.e.,

hi,j(xk) = HδC(xk),(i,j) (3)

whereδ is the Kronecker’s delta function,C : X → M × N
maps object states to range-bearing bins andH is the reflection
coefficient.

We consider (2) and (3), and, are interested in estimating
the received signal energyE , EtH , and, the noise powerβ2.
These signal parameters determine the signal-to-noise ratio at
the matched filter by

SNR = 10 log10

E2

β2
, (4)

and are also required to compute false alarm rates and object
detection probabilities of threshold rules [1].

We treat these parameters as (non-random) unknown con-
stants and consider an ML solution. We now specify the
arguments of the likelihood function: The reflection phaseθk

in (2) models the ambiguity related to the exact position of
the reflector within the(i, j)th bin which cannot be mitigated.
The modulus of (2), i.e.,

zk(i, j) , |rk(i, j)|

neglects the phase and is a sufficient statistic when testing
whetherrk(i, j) is induced by a reflector at statexk or noise
alone. Therefore, we treat the intensity map given byzk(i, j)s
as measurements based on which the ML estimation will be
relying upon.

Let us denote withzk the concatenation ofzk(i, j)s for all
range-bearing bins, i.e., the intensity map. We would like to
base the parameter likelihood on all measurements covering

time step1 throughk. Therefore, the ML estimation problem
can be formulated as

(Ê, β̂2) = argmax
E,β2

log l(z1, · · · , zk|E, β2), (5)

the computation of which will be described next.

III. T HE SIGNAL PARAMETER L IKELIHOOD

Let us represent with a random setXk, the events that there
exists a reflector with statexk, and, none, in which cases
Xk = {xk} and Xk = ∅, respectively.Xk is referred to
as a Bernoulli random finite set (RFS) [8]. The likelihoods
for zk(i, j) given the signal parameters to be estimatedE, β2

for the cases thatXk = {xk} and Xk = ∅ are well known
results in the literature: After the uniformly distributedphase
is marginalised-out, the moduluszk(i, j) is distributed with a
Rician distribution, i.e.,

l1(zk(i, j)|xk; E, β2)

, p(zk(i, j)|Xk = {xk}; E, β2)

=
2zk(i, j)

β2
exp

(

−
zk(i, j)2 + E2

β2

)

I0

(

2zk(i, j)E

β2

)

,(6)

if Xk = {xk} andxk ∈ C−1(i, j), whereI0 is the zero order
modified Bessel function of the first kind. Otherwise,zk(i, j)
follows a Rayleigh law given by [1, Chp.6]

l0(zk(i, j)|β2) , p(zk(i, j)|Xk = ∅; E, β2)

=
2zk(i, j)

β2
exp

(

−
zk(i, j)2

β2

)

. (7)

Let us define the intensity mapzk related quantities:

Λ(zk|xk, E, β2) , l1(zk(C(xk))|xk; E, β2)
∏

(i,j)∈C(xk)

l0(zk(i, j)|β2), (8)

whereC(xk) denotes the set of range-bearing bins comple-
menting C(xk), and, l0 and l1 are given in (6) and (7),
respectively. Similarly

Λ(zk|β
2) ,

∏

i,j

l0(zk(i, j)|β2) (9)

where the product is over all the range-bearing bins.
We assume that the noise processes for different bins and

time steps are independent given the state of the object process
Xk. Hence,

p(zk|Xk, E, β2) =

{

Λ(zk|xk, E, β2), if Xk = {xk}

Λ(zk|β
2), if Xk = ∅.

(10)

We would like to compute the parameter likelihood based
on all measurements covering time step1 throughk which
can be found as

l(z1, · · · , zk|E, β2) =

k
∏

t=1

p(zt|z1:t−1, E, β2)

= l(z1, · · · , zk−1|E, β2)

×p(zk|z1:k−1, E, β2)



after using the chain rule of probabilities in the first line.The
recursive structure revealed in the second line is typical to
parameter estimation problems in state space models [9], [10],
in which the update term is found by marginalising-out the
underlying processXk, i.e.,

p(zk|z1:k−1, E, β2) =
∫

p(zk|Xk, E, β2)p(Xk|z1:k−1, E, β2)δXk (11)

where the right hand side is a set integral [8, Chp.11] asXk

is a set random variable. The first term inside the integral is
the likelihood atk given by (10), and, the second term is the
prediction ofXk based on the previous measurements.

The objective function for the ML solution in (5), hence, is
given by

J(E, β2; z1:k) = J(E, β2; z1:k−1) + log p(zk|z1:k−1, E, β2).
(12)

Let us now consider the likelihood update term in (11).
The computation of the predictive term inside the integral
is detailed later in Section III-A. For our discussion on the
likelihood update term, suppose that it is given by

p(Xk|z1:k−1, E, β2) =

{

rk|k−1sk|k−1(xk), if Xk = {xk}

1 − rk|k−1, if Xk = ∅.
(13)

Then, (11) expands using the set integration rule in [8, Chp.11]
with a Bernoulli RFS characterised by (13) and the likelihood
in (10) as

p(zk|z1:k−1, E, β2) = p(zk|∅, E, β2)p(∅|z1:k−1, E, β2)

+

∫

p(zk|Xk = {xk}, E, β2)p(Xk = {xk}|z1:k−1, E, β2)dxk

= (1 − rk|k−1)Λ(zk|β
2)

+rk|k−1

∫

Λ(zk|xk, E, β2)sk|k−1(xk)dxk. (14)

After dividing both parts of the equation above byΛ(zk|β2),
it can easily be shown that

log p(zk|z1:k−1, E, β2) = log Λ(zk|β
2)+

log
(

1 − rk|k−1+

rk|k−1

∫

l1(zk(C(xk))|xk; E, β2)

l0(zk(C(xk))|β2)
sk|k−1(xk)dxk

)

(15)

Therefore, the ML objective can be recursively evaluated using
(15) in (12). Next, we discuss the computation of the predictive
state distribution in (13) using Bernoulli track before detect.

A. Bernoulli track before detect

Recursive updating of a Bernoulli object model using
measurements with likelihood models in the form of (10)
can be carried out using the Bayesian recursive filtering
principles [11], [12]. An important component of filtering with
RFS models is the object appearance, or, birth model. The
probability of object appearance at timek is given byPb and
the state of this object is distributed asb(x). The probability of

an object that existed atk − 1 continuing to exist at timek is
given byPS . A Bernoulli model at timek−1 characterised by
(rk−1, sk−1(xk−1)), then, leads to the following prediction:

rk|k−1 = Pb(1 − rk−1) + rk−1PS

sk|k−1(x) =
Pb(1 − rk−1)

rk|k−1
b(x)

+
rk−1PS

rk|k−1

∫

πk|k−1(x|xk−1)sk−1(xk−1)dxk−1(16)

whereπk|k−1 is the state transition density [11].
Upon receivingzk, the posterior model is given by [11]

rk =
rk|k−1

∫

gk(xk|E, β2)dxk

1 − rk|k−1 + rk|k−1

∫

gk(xk|E, β2)dxk

sk(xk) =
gk(xk|E, β2)

∫

gk(xk|E, β2)dxk

gk(xk|E, β2) ,
l1(zk(C(xk))|xk; E, β2)

l0(zk(C(xk))|β2)
sk|k−1(xk). (17)

As a result, the predictive term in (13) required for the
parameter likelihood is found by iterating prediction and
update cycles using (16) and (17).

The object birth model we use is selected so as to have
a uniform distribution in the location component which is
nonzero in the sensor field of view, and, a uniform distribution
in the velocity component which is nonzero if the speed is
between selected minimum and maximum values:

b([xT
l , xT

v ]T ) = UFOV (xl)Uvmin≤|xv|≤vmax
(xv). (18)

IV. M AXIMUM L IKELIHOOD SIGNAL AMPLITUDE AND

NOISE POWER ESTIMATION

The objective function of the ML solution in (5) is not
straightforward to maximise partly because, in practice, only a
noisy approximation of it can be obtained via particle methods,
and, the term due toE in the right hand side (RHS) of (15) is
dominated by the influence ofβ2 through the first term (see,
e.g., the example in Section V).

Our ML realisation strategy is to apply coordinate ascent
along the projections of the log-likelihood gradient. Thiscan
be viewed as a subgradient approach with the difference that
we do not explicitly select step sizes to move along the
selected subgradient direction. Instead, we perform (golden
ratio) line search along the subgradient direction. The gradient
equals the sum of the gradients of the log update term in (15)
over time. Note that, the first term in the RHS of (15) is
independent ofE, hence,

∂ log p(zk|z1:k−1, E, β2)

∂E
=

rk|k−1

∫

∂ log l1
∂E

l1
l0

sk|k−1

1 − rk|k−1 + rk|k−1

∫

l1
l0

sk|k−1

=
rk|k−1

∫

∂ log l1
∂E

gk

1 − rk|k−1 + rk|k−1

∫

gk

(19)

where the first line follows after differentiating the term inside
the integral and using the identity∂l1/∂E = l1×∂ log l1/∂E.
The second line is obtained through the definition ofgk in (17).



The partial derivative oflog l1 with respect toE can easily be
found [13] as

∂ log l1
∂E

= −
2E

β2
+

2zk(C(xk))

β2

I1(2zk(C(xk))E/β2)

I0(2zk(C(xk))E/β2)
(20)

whereI0 andI1 are the modified Bessel functions of the first
kind of order zero and one, respectively. After substituting (20)
in (19),we get

∂ log p(zk|z1:k−1, E, β2)

∂E
= −

2Erk

β2
+

2rk|k−1

∫

zkI1
β2I0

gk

1 − rk|k−1 + rk|k−1

∫

gk

, (21)

whererk andgk are given in (17).
Next, we consider the partial derivative of the log update

term with respect toβ2:

∂ log p(zk|z1:k−1, E, β2)

∂β2
=

∑

i,j

∂ log l0
∂β2

+
rk|k−1

∫

(

∂ log l1
∂β2 −

∫

∂ log l0
∂β2

)

gk

1 − rk|k−1 + rk|k−1

∫

gk

(22)

The first partial derivative inside the integral above can be
found [13] as

∂ log l1
∂β2

= −
1

β2

(

1 −
z2

k + E2

β2
+

2zkE

β2

I1(2zkE/β2)

I0(2zkE/β2)

)

,

and the derivative of log-noise term with respect to the noise
power is given by

∂ log l0
∂β2

= −
1

β2
+

z2
k

β4
.

Therefore, the first term inside the integral in (22) is givenby

∂ log l1
∂β2

−
∂ log l0
∂β2

=
E2

β4
−

2Ezk

β4

I1

I0
. (23)

As a result, the gradient of the log-likelihood function
in (12) can be computed using (19)–(23) in the recursive form
given by

∇J(E, β2; z1:k) = ∇J(E, β2; z1:k−1)+

[

∂ log p(zk|z1:k−1,E,β2)
∂E

∂ log p(zk|z1:k−1,E,β2)
∂β2

]

(24)
In order to maximiseJ , we adopt a coordinate ascent

approach: Starting from an initial point(E0, β
2
0), at each

iterationm, we find the gradient vector (24) and select a line
search direction as follows:

dm =
∇J(E, β2; z1:k)T em

‖∇J(E, β2; z1:k)T em‖
(25)

em =

{

[0, 1]T , if m = 0, 2, 4, ...

[1, 0]T , if m = 1, 3, 4, ...

Then, we solve the following one dimensional problem

(Em+1, β
2
m+1) = arg min

λ∈[0,λmax]
J([Em, β2

m]T + λdm; z1:k)

(26)
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Fig. 1. (a) Log-likelihood surface for the example scenarioevaluated over
the grid 1.5 ≤ E ≤ 2.5 and 0.01 ≤ β20.25 with step sizes of0.05 and
0.01, respectively. (b) The normalised profile of the surface along E-axis for
varying β2. (c) The normalised profile alongβ2 for varying E.

using golden section search [14].
The iterations terminate if two consecutive points are closer

than a selected tolerance value. In other words, the solution
to (5) is declared as(Ê, β̂2) = (Em+1, β

2
m+1) if

∥

∥[Em+1, β
2
m+1]

T − [Em, β2
m]T

∥

∥ < δ.

The computations are carried out using particle methods:
We sample from the predictive distribution in (13) using a
Sequential Monte Carlo realisation [11] of the recursions given
by (16) and (17). In order to sample from the birth model
in (18), we find a grid ofL samples for each binC−1(i, j)
and concatenate with velocity components generated from
Uvmin≤|xv|≤vmax

. The integrals in (19)–(23) are estimated
using samples generated fromgk during Bernoulli track before
detect within the Monte Carlo method [15, Chp.3].

V. EXAMPLE

Let us consider an example scenario consisting of an object
with initial state x0 = [−503.5, 4974.6, 5, 0]T moving in
accordance with a constant velocity motion model with a small
process noise term and a sensor located at the origin with
range and bearing resolutions of10m and 1◦, respectively.
The sensor field of view is selected as the region bounded
by 4800m and 5200m in range and±10◦ around they-axis
in order o restrict the size of the intensity map and hence the
volume of computations needed. As a result, a40×20 intensity
map is observed fork = 200 time steps with signal amplitude
E = 2 and noise powerβ2 = 0.1. The target signal, hence,
has∼ 16dB SNR in the corresponding bin.

In Fig. 1(a), we present the ML objective surface evaluated
for a given realisation of the measurement historyz1:200 and a
grid of (E, β2) values using the parameter likelihood detailed
in Section III together with MC computations. For Bernoulli
track before detect, we useL = 225 uniform grid points for
each of the800 state bins given byC−1(i, j) to representb(x)
in (16). Here,π is selected as a constant velocity motion model
with a small additive process noise term. We maintain10000
samples generated fromsk in (17) after resampling weighted
samples fromgk. The probability of birthPb = 0.01 whereas
the PS = 0.99.

There are much less target associated measurements con-
tributing to (15) compared to noise assoicated terms. This
manifests itself in Fig. 1(a) as the significantly smaller cur-
vature of the surface alongE compared to that alongβ2.
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Fig. 2. Iterative maximisation of the parameter likelihoodfor 200 Monte
Carlo runs: Initial point (blue circle), and converged estimates (red crosses)
joined by estimates in the intermediate steps (green crosses and dashed lines).
Diamond is the correct value of(E, β2).

Correspondingly, the Cramer-Rao lower bound (CRLB) for
E is higher and estimates ofE will be less accurate [16,
App. 8A]. For a closer look to the log-likelihood objective
function, we provide the normalised profiles of the surface
along E and β2 axis in Fig. 1(b) and (c), respectively. Note
that, for almost all values ofE in the grid, it is possible
to estimateβ2 through maximising the objective alongβ2

direction.
Next, we use the proposed scheme described in Section IV

starting from (E0, β
2
0) = (1.5, 0.25). After evaluating the

gradient in (24), a golden section line search is performed
along the direction selected using (25). The initial search
interval length, i.e.,λmax in (26), is selected to ensure that the
resulting interval of uncertainty will be smaller than0.001. For
golden ratio search, this is given by⌈log(0.001−0.618)⌉+1.
The toleranceδ for checking convergence is selected as0.001.

We repeat the proposed ML scheme for200 Monte Carlo
realisations of this scenario. The iterations are depictedin
Fig. 2, in which the resulting estimates are shown by red
crosses. The average number of iterations is3.6. The average
of (Ê, β̂2) is (1.972, 0.104), which is very close to the true
value of (2, 0.1). This indicates that the optimisation scheme
is approximately unbiased. The variance of the estimation
scheme as measured by the empirical average of the squared
errors forÊ andβ̂2 are found as1.78×10−2 and1.7×10−5,
respectively. The variance of̂E is much higher than that for
β̂2, as expected.

VI. CONCLUSIONS ANDFUTURE WORK

In this work, we proposed a ML scheme for jointly es-
timating the signal amplitude and noise power using the
matched filter outputs of an active sensor. This likelihood
involves track-before-detect in order predict the underlying
target process which is modelled by a Bernoulli RFS. We
derived explicit formulae for the score function and proposed
an iterative maximisation procedure using a coordinate ascent
approach.

It is possible to improve the optimisation step of the
proposed algorithm. For example, Newtonian methods can
be used after finding the Hessian of the log-likelihood. Such
an approach would remove the need for line search and
potentially provide more accurate estimates for fewer number
of iterations and objective evaluations.

There is a tradeoff between the observation length and
the accuracy in whichE can be estimated (see, e.g., [17]).
The relations between the Hessian, Fisher information and the
associated Cramer-Rao lower bound can be explored in order
to investigate this tradeoff. Another possible extension of this
work is to accommodate multi-Bernoulli models in order to
handle multiple moving objects via track-before-detect [18].
Esimation of parameters for other Swerling target types [1]
within the proposed ML framework is also left as future work.
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