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ABSTRACT

In this work we propose a novel method to automatically de-
tect and localise the dominant speaker in an enclosed scenario
by means of audio and video cues. The underpinning idea is
that gesturing means speaking, so observing motions means
observing an audio signal. To the best of our knowledge state-
of-the-art algorithms are focussed on stationary motion sce-
narios and close-up scenes where only one audio source ex-
ists, whereas we enlarge the extent of the method to larger
field of views and cluttered scenarios including multiple non-
stationary moving speakers. In such contexts, moving ob-
jects which are not correlated to the dominant audio may exist
and their motion may incorrectly drive the audio-video (AV)
correlation estimation. This suggests extra localisation data
may be fused at decision level to avoid detecting false posi-
tives. In this work, we learn Mel-frequency cepstral coeffi-
cients (MFCC) coefficients and correlate them to the optical
flow. We also exploit the audio and video signals to estimate
the position of the actual speaker, narrowing down the visual
space of search, hence reducing the probability of incurring
in a wrong voice-to-pixel region association. We compare
our work with a state-of-the-art existing algorithm and show
on real datasets a 36% precision improvement in localising a
moving dominant speaker through occlusions and speech in-
terferences.

Index Terms— Audio-Video Correlation, Speaker Track-
ing, Speaker Recognition, Multimodal tracking, AV Tracking

1. INTRODUCTION AND RELATED WORK

Tracking a speaker in an enclosed scenario has become an in-
creasingly interesting topic over the last twenty years. The
establishment of the digital era has created a number of appli-
cations which combine or not the usage of voices and videos
to different aims, i.e. detecting a threatening behaviour in
a public place or understanding how people interact during
a meeting. Such applications mostly involve analysing large

This work was supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) Grant number EP/JO15180/1 and the MOD Univer-
sity Defence Research Collaboration in Signal Processing.

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE

cluttered areas where no constraints on people movements ex-
ist. In such scenarios, designing novel joint audio-video (AV)
systems may require a lower complexity than using state-of-
the-art stand alone systems, as audio waves reverberations and
visual clutter are very difficult to predict and this severely
compromises the estimation. Existing AV speaker tracking
systems [1-6] treat the two signals as they were independent
processes. Conversely, little attention has been given to the
exploitation of underlied relations between audio and video
to detect and localise a moving speaker over time in large
indoor environments, whereas instead event anomalies detec-
tion literature is widely based on inferring AV signal correla-
tion [7-10]. This work proposes to borrow the consolidated
anomaly detection techniques [9] to be novelly applied to-
gether with AV tracking techniques [11] in far distance clut-
tered scenes (e.g. cocktail party scenarios) where the dom-
inant speaker must be detected and tracked. Nevertheless,
the cited event detection techniques are normally applied in
close-up scenes in which speaking sources are mostly sta-
tionary. In light of this, the presented work contributions are:
a) AV correlation techniques are extended to a larger range
of data i.e. complex scenarios; b) in complex scenarios we
enhance on a state-of-the-art algorithm to make it fully auto-
matic, by adding in the audio localisation information, so that
distracting correlated AV moving objects do not compromise
the dominant speaker estimation.

2. ALGORITHM DESCRIPTION

The assumptions behind this work comes from the obser-
vation that very often locating gesturing in a conversational
scene gives an indication of where speaking activity spatially
originates. In fact, it has been proved in several ways that the
“gesturer is the speaker” [12], meaning gesturing is almost
always (80%-90% of times [13, 14]) associated to speaking
activity [13—-17] and that gesticulation and speaking activ-
ity are the fundamental cues to define dominance [18-20].
For this reason, we attempt to recognise and exploit a some-
what inherent correlation between audio and video signal as
done previously in [9]. In particular, we compute canonical
correlation analysis (CCA) between audio features i.e. Mel-
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Fig. 1: Baseline Method ( [9]) application example. In (a) one of the analysed video frames from the baseline method dataset is shown. (b) presents the
QuickShift spatial segmentation which is obtained by overlapping colour, motion velocity and acceleration features of frame (a), (c) shows its K-means spatio-
temporal segmentation. At last, (d) represents the final AV correlation result as an overlaid heatmap, which represents the probability of the ball to be the
moving object which is the most correlated to the the audio signal, hence which is generating the sound. This results has no audio localisation information. We
seek to improve on the state-of-the-art by including tracking information at data decision level.

frequency cepstral coefficients (MFCC) and A -MFCC and
video features (optical flow velocity and acceleration) asso-
ciated with the scene. Hence, we infer a speaker likelihood
in every video frame, by selecting the frame segment where
most likely the sound has originated from, to eventually con-
clude the actual/dominant speaker is within that pixel region.
In [9], they improve on this procedure by manually selecting
AV foreground and background points in the frame. They
show this step increase results accuracy in complex scenar-
ios where distracting, occluding and correlated motion may
appear. We further enhance this approach to make it fully
automatic, by substituting the user with the audio localisation
information i.e. the position calculated by evaluating the time
delays of arrival of the audio signals at the microphones.
Video Features Extraction. To extract video features we
first compute the forward and backward dense optical flow of
each image frame. Then, we calculate velocity and accelera-
tion of two adjacent frames motion. If U™ (p, ) represents the
optical flow (u,v) at pixel position p = (i, j), at time ¢, calcu-
lated between frames F; and F;;; and analogously U~ (p,t)
the flow vector computed over time between F; and F;_|, then
the velocity and acceleration vectors are defined as:

aCl:U_F(pvt)*(*U_(p?t))' (H

Hence, we combine the RGB colour, velocity and accel-
eration of each pixel in a frame p into a single feature
vector: v;j = (p,col,vel,acl). Thus, we spatially segment
every frame using the QuickShift algorithm. Furthermore,
we compute across frames a K-means spatio-temporal seg-
mentation. In consequence of that, when the processing
ends, every pixel in a frame can be ascribed to the spatio-
temporal centre of mass of the k-th segment found by K-
means. The k final segments Sy(k = 1,...,K) are described
by the averaged normalised velocity and acceleration of the
pixels they enclose, in addition to their mean RGB colour :
vij = (Up, Heol s Hvels Mact). Finally, the m; top segments for
velocities and the mjy top for acceleration are chosen to com-
pose the final video features vector v. In practice, vis am X t
matrix whose columns correspond to frames.

vel =U" (p,1),

Audio Features Extraction. Audio feature vectors are rep-
resented by the first 7/ MFCC coefficients [21] (audio signal
velocity) and their #/2 derivatives (audio signal acceleration).
The audio feature vector a is a n X t matrix whose columns
correspond to frames. Note that the audio signal must be
windowed and processed accordingly to the video frame rate
in order for the CCA to be based on the same number of
observations.

2.1. Audio Video Correlation and Tracking Data Fusion

Audio Video Correlation. We use canonical correlation
analysis (CCA) [22] to seek audio and video feature vectors
correlation, hypothesising a hidden correspondence between
the image motion velocity together with the audio MFCC,
and the motion acceleration with the MFCC derivatives (A
-MFCC) exists. Canonical correlation analysis allows to
find a common coordinate system where a and v can be
projected, and also to immediately know their maximised
correlation. This ensure the retrieved video segment to be the
one that maximise the correlation between audio and video
data, hence to be associated with the dominant audio source.
Specifically, the CCA problem between two random variables
has the closed form solution:

C,'CouClCoyw, = A2w,
—1 —1 2
Caa Cava CoaWo = A Wq,

where C = (g;‘v g:z) represents the total covariance matrix
and w, and w, are the canonical basis of v and a. The
largest CCA eigenvectors w1 and w,i, which correspond to
the largest eigenvalue 7L]2 are the ones which give the larger
contribution to the maximum audio and video correlation,
hence they maximises the canonical variates v/1 = WVTIV and
a/l = WZI a. If we assume that only a single dominant audio
source exists, the first of these eigenvectors w1 is chosen
and the corresponding frame segments S are said to be the
ones where the sound is originating. Only the normalised ele-
ments of w1 largest then a predefined threshold are selected,
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Fig. 2: ‘Cocktail Party’ Frame 19 Results. This figure shows the Second Speaker talking while the other two people are listening without moving. In (a) the
results of the baseline method [9] are given whereas (b) shows the result for the speaker localisation (SL) algorithm. (c) presents the output of the proposed
method. Finally, (d) shows what is the results when the information about the speaker identity is given. Ground truth is shown in red.

thus those segments are identified by a binary confidence map
smoothed over space and time by a Gaussian kernel. Figure
1 shows the reimplementation of the baseline method [9] as a
walk-through example.

Correlation and Sound Localisation Fusion. Details of the
triangulation, by mean of an extended Kalman filter (EKF)
can be found in [11,23]. Briefly, we feed the time difference
of arrival (TDOA) computed for each microphones pair to an
EKEF over time to iteratively calculate the dominant speaker
position xg;, = (x,y) on the ground plane.

The integration between audio speaker localisation (SL) data
(i.e. speaker trajectory) and the CCA result is carried out at
confidence map level. In other words, we project the audio
source trajectory xgz (¢) onto the pixel domain. Thus, at every
time step we associate the trajectory points to the k-th seg-
mented region to which they belong i.e. (x,y)sr — (i, j)sL €
Sk, - Therefore, we set Sy, as a further confidence map (other
than the ones already given by the first base eigenvector coef-
ficients) and define a smoothing Gaussian kernel as said above
to finally obtain a heatmap to be overlaid on the image. Ul-
timately, we treat the resulting kernel as an extra first base
eigenvector coefficient adding up its contribution to the CCA
result, according to an averaged sum decision rule.

3. EXPERIMENTATION AND RESULTS

We now present comprehensive results on real data. No com-
parison is made for them since, as far as we are aware of, no
other works exist with same experiment setup. Neither the au-
thors of [9] used more microphones for localisation purposes.
We analyse a real indoor room where people can freely move.
In particular, audio and video data are gathered in a typical
open office room, whose size is 111.44 m2, where the area
considered of interest is 12 m?>. Also we make no attempt
to reduce normal background noise (desk fans, footsteps,
talking etc.). A significant reverberation time (Tgg ~ 0.5 s)
is measured. Ground-truth data is hand labelled considering
feet position to 10 cm of accuracy on a ground plane common
to the cameras and the microphones. Synchrony of data is ob-
tained by processing audio and video signals accordingly to

the cameras frame rate ~ 7.5 Hz. Only 4 pairs of directional
microphones are used. The EKF filter is initialised using a
video detected position of the targets and static matrices Q
and R [23], whose values is chosen on the basis of an opti-
misation step. Audio is sampled at 44.1 KHz, and framed
with 50 % overlap. 10 MFCC coefficients are computed, as
well as their first 10 derivatives (A - MFCC). The QuickShift
algorithm parameters used are Yy =0.25,0 =1 and 7 = 15 i.e.
the same as in [9]. The number of clusters in the K-means
algorithm is set to be 30. And the smoothing Gaussian kernel
has a variance of o = 5.

Experiment ‘Cocktail Party’ (Fig. 2) is a recording of several
people having a conversation in groups and some passer-by.
Speakers are at least 50 ¢m far from the microphones. They
stand still and move around. The ground-truth consists of the
speaker on the left foreground and the speaker on the right
foreground whereas a third person in the foreground (blue
jumper) is just paying attention to the conversation while
producing some distracting fine motion by slightly moving
his body on a side. Note that another group of speaking peo-
ple is in the background. This results in challenging speech
interferences and occlusions.

Experiment ‘Occlusion’ (Fig.3) shows two people who look
alike walking while having a conversation. They meet along a
diagonal where they keep on walking past each other causing
an occlusion in the resulting image. Also two moving people
external to the main scene are in the room.

Results. In first instance we give a qualitative description
of the preliminary results we have obtained referring to their
corresponding figures. In particular, Figure 2a shows frame
19 baseline method results. The actual speaker is about to
raise his hand while the listener has been moving his body
resulting in false positive detections. This can be only mit-
igated by the SL corresponding segment (2b), so that the
fusion results, despite pointing out the correct speaker, still
presents false detection trails corresponding to the other peo-
ple movements (2c). When we can also recognise the speaker
identity, as we did previously in [6], we can actually further
filter out these trails as shown in Fig.2d. Figure 3a shows
results of the baseline method applied to the second dataset

1553



Baseline Method 34 Tracking 34

(@) (b)

Proposed Method 34 PM knowing Speaker ID 34

© (d)

Fig. 3: ‘Occlusion’ Frame 34 Results. In (a) the results of the baseline method [9] are given whereas (b) shows the result for the SL results projected onto the
image plane. In (c) the output of the proposed method is given, whereas (d) presents results when the information about the speaker identity is given. Ground

truth is shown in red.

at the moment of occlusion. The segments corresponding to
the tracked position of the actual speaker are given in Fig. 3b
whereas Fig. 3c shows the results of the proposed method.
Again, knowing the information about the speaker identity
the results are ascribed at the current speaker (Fig. 3d).

We evaluate our method performance against the baseline
method ( [9]) by using a precision-recall measure. In partic-
ular, we first manually define the moving pixel ground truth
by selecting those region of the video which correlated with
the dominant speaker’s voice. In practice, as this method is
meant to be used for tracking purposes this is always repre-
sented by a bounding box including the speaker’s body pixel.
This region is denoted as R, ,whereas R is the pixel region
detected by the method. Hence, the two curves are defined
as: Pr=RNRir, and Rec = R:NRa/r,.. The precision-recall
curve is given by letting vary a threshold between zero and
one for every frame, thus we present the average curve for
all the video frames. Figure (4a) shows that the proposed
method (PM) precision is higher than the one of audio and
video only and than the baseline method (BM) over the en-
tire range of recall, although when the recall value increases
both curves drops dramatically. However, this is largely ex-
pected as the ground truth size is larger if compared to the
recovered segments size, which decreases the accuracy of the
methods by definition. Nevertheless, the size of the segments
cannot be increased, as clutter will take over the segmenta-
tion phase and foreground region would be blended in to the
background. On the other hand, for detection for tracking
purposes we cannot restrict the size of the ground truth re-
gions to just the joint of a person. Note that also the results of
the proposed method using the information about the speaker
identity (PM+SR) is shown. This is because for speaker diari-
sation purposes, the pixel based precision-recall metric does
not make much sense. Hence, by defining R; as the detected
pixel which actually belong to the current speaker, we can
evaluate the goodness of the method in recognising the actual
speaker among other potential speakers. At last, to capture
the temporal aspect of the methods performances we show in
Fig.4b their hit-ratio curves. Note that a hit occurs in a frame
if Pr>0.5.

Hit Ratio Curve
Hit Ratio
c oo oo 00

Precision-Recall Curve
Precision

04 06 04 08 08 : 1
Recall Threshold
(a) (b)
Fig. 4: Comparison to [9]. Precision-recall and Hit Ratio curves for the
testing videos averaged over the total number of frames. On average, PM+SR
improves on speaker ID recognition by 23% and 59% over audio only and
video only systems and by 36% over BM [9].

4. CONCLUSION AND FUTURE WORK

This paper has presented a new approach to audio-video (AV)
speaker detection and localisation in a large unconstrained
environment. We have shown that we improve a state-of-
the-art AV correlation technique by adding speaking localisa-
tion data. In particular, we have reported preliminary results
of the baseline method failing when distracting and interfer-
ing/occluding AV sources exist in the scene and we have pro-
vided for an alternative solution, showing that the speaker de-
tection and localisation precision improves. [9] results deeply
rely on the chosen segmentation techniques. Hence, it may
be worthy investigating new segmentation methods to work
in more visually challenging scenarios.

5. RELATION TO PRIOR WORK

This paper stems from the work of [9] which shows how au-
dio and video signals correlation at feature level allows to de-
tect the dominant source of audio in sanitized scenarios where
stationary moving objects emit some sound. Hence, it is is
not at all suited to moving targets in the prototypical cock-
tail party or video diarisation (even indoor surveillance) sce-
narios, however we show with a small extra cost in sensing
overheads the method may be adapted for wider use.
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